[1] | S. Agmon, ”The relaxation method for linear inequalities”,Canadian Journal of Mathematics 6 (1954) 382–392. ·Zbl 0055.35001 ·doi:10.4153/CJM-1954-037-2 |
[2] | M.S. Bazaraa and H.D. Sherali, ”On the choice of step size in subgradient optimization”,European Journal of Operational Research 7 (1981) 380–388. ·Zbl 0454.90056 ·doi:10.1016/0377-2217(81)90096-5 |
[3] | M.S. Bazaraa and C.M. Shetty,Nonlinear Programming: Theory and Applications (John Wiley and Sons, New York, New York, 1979). |
[4] | D.P. Bertsekas, ”Combined primal-dual and penalty methods for constrained minimization”,SIAM Journal of Control 13 (1975) 521–544. ·doi:10.1137/0313030 |
[5] | G. Bitran and A. Hax, ”On the solution of convex knapsack problems with bounded variables”,Proceedings of the IX International Symposium on Mathematical Programiming, Budapest (1976) 357–367. ·Zbl 0428.90062 |
[6] | J.D. Buys, ”Dual algorithms for constrained optimization problems”, Unpublished Ph.D. Thesis, University of Leiden (The Netherlands, 1972). |
[7] | G. Cohen and D.L. Zhu, ”Decomposition coordination methods in large scale optimization problems: The nondifferentiable case and the use of augmented lagrangians”, in: J.B. Cruz, ed.,Advances in Large Scale Systems 1 (JAI Press Inc., 1984) pp. 203–266. |
[8] | M.L. Fisher, ”Lagrangian relaxation methods for combinatorial optimization”,Management Science 27 (1981) 1–18. ·Zbl 0466.90054 ·doi:10.1287/mnsc.27.1.1 |
[9] | M. Fukushima, ”A descent algorithm for nonsmooth convex optimization”,Mathematical Programming 30 (2) (1984) 163–175. ·Zbl 0545.90082 ·doi:10.1007/BF02591883 |
[10] | A.M. Geoffrion, ”Generalized Benders’ decomposition”,Journal of Optimization Theory and Applications 10 (4) (1972) 237–260. ·Zbl 0229.90024 ·doi:10.1007/BF00934810 |
[11] | P.E. Gill, W. Murray and M.H. Wright,Practical optimization (Academic Press, New York, New York, 1981). |
[12] | J.L. Goffin, ”Convergence results on a class of variable metric subgradient methods, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear Programming 4 (1981) pp. 283–325. ·Zbl 0545.65045 |
[13] | E.G. Gol’shtein, ”A generalized gradient method for finding saddlepoints,”Matekon 10 (3) (1974) 36–52. |
[14] | M. Held and R.M. Karp, ”The traveling-salesman problem and minimum spanning trees: Part II”,Mathematical Programming 1 (1971) 6–26. ·Zbl 0232.90038 ·doi:10.1007/BF01584070 |
[15] | M. Held, P. Wolfe and H.P. Crowder, ”Validation of subgradient optimization”,Mathematical Programming 6 (1974) 62–88. ·Zbl 0284.90057 ·doi:10.1007/BF01580223 |
[16] | L.G. Khacijan, ”A polynomial algorithm in linear programming”,Doklady Akademiia Nauk SSSR, 224 (1979) 1093–1096, Translated inSoviet Mathematics Doklady 20 191–194. ·Zbl 0414.90086 |
[17] | K. Kiwiel, ”An aggregate subgradient method for nonsmooth convex minimization”,Mathematical Programming 27 (1983) 320–341. ·Zbl 0525.90074 ·doi:10.1007/BF02591907 |
[18] | G.M. Korpelevich, ”The extragradient method for finding saddle points and other problems”,Makedon 13 (4) (1977) 35–49. |
[19] | C. Lemarechal, J. Strodiot and A. Bihain, ”On a bundle algorithm for nonsmooth optimization”,Nonlinear Programming Study No. 4 (Academic Press, New York, 1981) pp. 245–282. ·Zbl 0533.49023 |
[20] | D. Maistroskii, ”Gradient methods for finding saddlepoints”,Matekon 13 (1977) 3–22. |
[21] | T. Motzkin and I.J. Schoenberg, ”The relaxation method for linear inequalities”,Canadian Journal of Mathematics 6 (1954) 393–404. ·Zbl 0055.35002 ·doi:10.4153/CJM-1954-038-x |
[22] | B.T. Poljak, ”A general method of solving extremum problems”,Soviet Mathematics Doklady 8(3) (1967) 593–597. ·Zbl 0177.15102 |
[23] | B.T. Poljak, ”Minimization of unsmooth functionals”,USSR Computational Mathematics and Mathematical Physics 9 (1969) 14–29. ·Zbl 0229.65056 ·doi:10.1016/0041-5553(69)90061-5 |
[24] | R.T. Rockafellar, ”A dual approach to solving nonlinear programming problems by unconstrained optimization”,Mathematical Programming 5 (1973a) 354–373. ·Zbl 0279.90035 ·doi:10.1007/BF01580138 |
[25] | R.T. Rockafellar, ”The multiplier method of Hestenes and Powell applied to convex programming”,Journal of Optimization Theory and Applications 12 (1973b) 555–562. ·Zbl 0254.90045 ·doi:10.1007/BF00934777 |
[26] | R.T. Rockafellar, ”Augmented Lagrange multiplier functions and duality in nonconvex programming”,SIAM Journal on Control and Optimization 12 (1974) 268–285. ·doi:10.1137/0312021 |
[27] | S. Sen and D.S. Yakowitz, ”A primal-dual subgradient algorithm for time staged capacity expansion planning”, SIE Working Paper Series, 84-002, Department of Systems and Industrial Engineering, The University of Arizona (Tucson, Arizona, 1984). |
[28] | H.D. Sherali and D.C. Myers, ”Algorithmic strategies for using subgradient optimization with Lagrangian relaxation in solving mixed-integer programming problems”, Working Paper, Department of Industrial Engineering and Operations Research, Virginia Polytechnic Institute and State University (Blacksburg, Virginia, 1984). |
[29] | N.Z. Shor, ”Generalized gradient methods of non-differentiable optimization employing space dilatation operators”, in: A. Bachem, M. Grotschel and B. Korte, eds.Mathematical Programming: The State of the Art (Bonn, W. Germany, 1983) pp. 501–529. ·Zbl 0558.49013 |