Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A class of convergent primal-dual subgradient algorithms for decomposable convex programs.(English)Zbl 0594.90074

Summary: We develop a primal-dual subgradient algorithm for preferably decomposable, generally nondifferentiable, convex programming problems, under usual regularity conditions. The algorithm employs a Lagrangian dual function along with a suitable penalty function which satisfies a specified set of properties, in order to generate a sequence of primal and dual iterates for which some subsequence converges to a pair of primal-dual optimal solutions. Several classical types of penalty functions are shown to satisfy these specified properties. A geometric convergence rate is established for the algorithm under some additional assumptions. This approach has three principal advantages. Firstly, both primal and dual solutions are available which prove to be useful in several contexts. Secondly, the choice of step sizes, which plays an important role in subgradient optimization, is guided more determinably in this method via primal and dual information. Thirdly, typical subgradient algorithms suffer from the lack of an appropriate stopping criterion, and so the quality of the solution obtained after a finite number of steps is usually unknown. In contrast, by using the primal-dual gap, the proposed algorithm possesses a natural stopping criterion.

MSC:

90C25 Convex programming
90C55 Methods of successive quadratic programming type

Cite

References:

[1]S. Agmon, ”The relaxation method for linear inequalities”,Canadian Journal of Mathematics 6 (1954) 382–392. ·Zbl 0055.35001 ·doi:10.4153/CJM-1954-037-2
[2]M.S. Bazaraa and H.D. Sherali, ”On the choice of step size in subgradient optimization”,European Journal of Operational Research 7 (1981) 380–388. ·Zbl 0454.90056 ·doi:10.1016/0377-2217(81)90096-5
[3]M.S. Bazaraa and C.M. Shetty,Nonlinear Programming: Theory and Applications (John Wiley and Sons, New York, New York, 1979).
[4]D.P. Bertsekas, ”Combined primal-dual and penalty methods for constrained minimization”,SIAM Journal of Control 13 (1975) 521–544. ·doi:10.1137/0313030
[5]G. Bitran and A. Hax, ”On the solution of convex knapsack problems with bounded variables”,Proceedings of the IX International Symposium on Mathematical Programiming, Budapest (1976) 357–367. ·Zbl 0428.90062
[6]J.D. Buys, ”Dual algorithms for constrained optimization problems”, Unpublished Ph.D. Thesis, University of Leiden (The Netherlands, 1972).
[7]G. Cohen and D.L. Zhu, ”Decomposition coordination methods in large scale optimization problems: The nondifferentiable case and the use of augmented lagrangians”, in: J.B. Cruz, ed.,Advances in Large Scale Systems 1 (JAI Press Inc., 1984) pp. 203–266.
[8]M.L. Fisher, ”Lagrangian relaxation methods for combinatorial optimization”,Management Science 27 (1981) 1–18. ·Zbl 0466.90054 ·doi:10.1287/mnsc.27.1.1
[9]M. Fukushima, ”A descent algorithm for nonsmooth convex optimization”,Mathematical Programming 30 (2) (1984) 163–175. ·Zbl 0545.90082 ·doi:10.1007/BF02591883
[10]A.M. Geoffrion, ”Generalized Benders’ decomposition”,Journal of Optimization Theory and Applications 10 (4) (1972) 237–260. ·Zbl 0229.90024 ·doi:10.1007/BF00934810
[11]P.E. Gill, W. Murray and M.H. Wright,Practical optimization (Academic Press, New York, New York, 1981).
[12]J.L. Goffin, ”Convergence results on a class of variable metric subgradient methods, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear Programming 4 (1981) pp. 283–325. ·Zbl 0545.65045
[13]E.G. Gol’shtein, ”A generalized gradient method for finding saddlepoints,”Matekon 10 (3) (1974) 36–52.
[14]M. Held and R.M. Karp, ”The traveling-salesman problem and minimum spanning trees: Part II”,Mathematical Programming 1 (1971) 6–26. ·Zbl 0232.90038 ·doi:10.1007/BF01584070
[15]M. Held, P. Wolfe and H.P. Crowder, ”Validation of subgradient optimization”,Mathematical Programming 6 (1974) 62–88. ·Zbl 0284.90057 ·doi:10.1007/BF01580223
[16]L.G. Khacijan, ”A polynomial algorithm in linear programming”,Doklady Akademiia Nauk SSSR, 224 (1979) 1093–1096, Translated inSoviet Mathematics Doklady 20 191–194. ·Zbl 0414.90086
[17]K. Kiwiel, ”An aggregate subgradient method for nonsmooth convex minimization”,Mathematical Programming 27 (1983) 320–341. ·Zbl 0525.90074 ·doi:10.1007/BF02591907
[18]G.M. Korpelevich, ”The extragradient method for finding saddle points and other problems”,Makedon 13 (4) (1977) 35–49.
[19]C. Lemarechal, J. Strodiot and A. Bihain, ”On a bundle algorithm for nonsmooth optimization”,Nonlinear Programming Study No. 4 (Academic Press, New York, 1981) pp. 245–282. ·Zbl 0533.49023
[20]D. Maistroskii, ”Gradient methods for finding saddlepoints”,Matekon 13 (1977) 3–22.
[21]T. Motzkin and I.J. Schoenberg, ”The relaxation method for linear inequalities”,Canadian Journal of Mathematics 6 (1954) 393–404. ·Zbl 0055.35002 ·doi:10.4153/CJM-1954-038-x
[22]B.T. Poljak, ”A general method of solving extremum problems”,Soviet Mathematics Doklady 8(3) (1967) 593–597. ·Zbl 0177.15102
[23]B.T. Poljak, ”Minimization of unsmooth functionals”,USSR Computational Mathematics and Mathematical Physics 9 (1969) 14–29. ·Zbl 0229.65056 ·doi:10.1016/0041-5553(69)90061-5
[24]R.T. Rockafellar, ”A dual approach to solving nonlinear programming problems by unconstrained optimization”,Mathematical Programming 5 (1973a) 354–373. ·Zbl 0279.90035 ·doi:10.1007/BF01580138
[25]R.T. Rockafellar, ”The multiplier method of Hestenes and Powell applied to convex programming”,Journal of Optimization Theory and Applications 12 (1973b) 555–562. ·Zbl 0254.90045 ·doi:10.1007/BF00934777
[26]R.T. Rockafellar, ”Augmented Lagrange multiplier functions and duality in nonconvex programming”,SIAM Journal on Control and Optimization 12 (1974) 268–285. ·doi:10.1137/0312021
[27]S. Sen and D.S. Yakowitz, ”A primal-dual subgradient algorithm for time staged capacity expansion planning”, SIE Working Paper Series, 84-002, Department of Systems and Industrial Engineering, The University of Arizona (Tucson, Arizona, 1984).
[28]H.D. Sherali and D.C. Myers, ”Algorithmic strategies for using subgradient optimization with Lagrangian relaxation in solving mixed-integer programming problems”, Working Paper, Department of Industrial Engineering and Operations Research, Virginia Polytechnic Institute and State University (Blacksburg, Virginia, 1984).
[29]N.Z. Shor, ”Generalized gradient methods of non-differentiable optimization employing space dilatation operators”, in: A. Bachem, M. Grotschel and B. Korte, eds.Mathematical Programming: The State of the Art (Bonn, W. Germany, 1983) pp. 501–529. ·Zbl 0558.49013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp