Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Additively decomposed quasiconvex functions.(English)Zbl 0594.26009

The authors give a new definition of the convexity index introduced in a recently published paper byG. Debreu andT. C. Koopmans [Math. Program. 24, 1-38 (1982;Zbl 0495.90063)]. By means of this definition they give then characterizations of the quasiconvexity of the function s defined on \(X_ 1\times X_ 2\times...\times X_ p\) by \[ s(x_ 1,x_ 2,...,x_ p)=f_ 1(x_ 1)+f_ 2(x_ 2)+...+f_ p(x_ p), \] where, for each \(i\in \{1,2,...,p\}\), \(X_ i\) is a non-empty open convex subset of \(R^{n_ i}\) and \(f_ i\) is a non-constant real- valued function on \(X_ i\).
Reviewer: W.W.Breckner

MSC:

26B25 Convexity of real functions of several variables, generalizations
90B30 Production models
91B16 Utility theory

Citations:

Zbl 0495.90063

Cite

References:

[1]K.J. Arrow and A.C. Enthoven, ”Quasiconcave programming”,Econometrica 29 (1961) 779–800. ·Zbl 0104.14302 ·doi:10.2307/1911819
[2]M. Avriel, ”r-convex functions”,Mathematical Programming 2 (1972) 309–323. ·Zbl 0249.90063 ·doi:10.1007/BF01584551
[3]J.-P.Crouzeix and J.A, Ferland, ”Criteria for quasiconvexity and pseudo-convexity: Relationships and comparisons”,Mathematical Programming 23 (1982) 193–205. ·Zbl 0479.90067 ·doi:10.1007/BF01583788
[4]G. Debreu and T.C. Koopmans, ”Additively decomposed quasiconvex functions”,Mathematical Programming 24 (1982) 1–38. ·Zbl 0495.90063 ·doi:10.1007/BF01585092
[5]W.M. Gorman, ”The concavity of additive utility functions”, Research Memorandum, The University of North Carolina (1970). ·Zbl 0198.35802
[6]J. Green, ”Direct additivity and consumers’ behaviour”,Oxford Economic Papers 13 (1961) 132–136.
[7]E.V. Haynsworth, ”Determination of the inertia of a partitioned Hermitian matrix”,Linear Algebra and Applications 1 (1968) 73–81. ·Zbl 0155.06304 ·doi:10.1016/0024-3795(68)90050-5
[8]P.O. Lindberg, ”Onr-convex functions”, Technical Report TRITA-MAT, 1980, 24, Department of Mathematics, Royal Institute of Technology (Stockholm, 1980).
[9]P.O. Lindberg, ”On separable quasiconvex functions”, Technical Report TRITA-MAT, 1980, 26, Department of Mathematics, Royal Institute of Technology (Stockholm, 1980).
[10]T. Rader,Theory of microeconomics (Academic Press, New York, 1972). ·Zbl 0249.90006
[11]S. Schaible, ”Maximization of quasiconvex quotients and products of finitely many functionals”,Cahiers du centre d’ études de recherche opérationnelle 16 (1974) 45–53. ·Zbl 0291.90068
[12]E.E. Slutsky, ”Sulla teoria del bilancio del consumatore”,Giornale degli economisti 51 (1915) 1–26. Translated as ”On the theory of the budget of the consumer” in:Readings in price theory, American Economic Association (Richard Irwin, 1952) 27–56.
[13]P.P. Wakker, ”A characterization of concave additively decomposable representing functions and expected utility with risk aversion”. Report 8419, University of Nijmegen, Netherlands (1984).
[14]M.E. Yaari, ”A note on separability and quasi-concavity”,Econometrica 45 (1977) 1183–1186. ·Zbl 0363.90013 ·doi:10.2307/1914066
[15]M.E. Yaari, ”Separably concave utilities or the principle of diminishing eagerness to trade”,Journal of Economic Theory 18 (1978) 102–118. ·Zbl 0415.90004 ·doi:10.1016/0022-0531(78)90044-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp