Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On box totally dual integral polyhedra.(English)Zbl 0589.52006

A rational linear system Ax\(\leq b\) is a totally dual integral system (TDI system) if for each integral vector for which the optima of \[ \min \{yb: yA=w, y\geq 0\}= \max \{wx: Ax\leq b\} \] exists, the minimum can be achieved by an integral vector. If, for every choice of rational vectors \(\ell\) and u, the linear system \((Ax\leq b)\wedge (\ell \leq x\leq u)\) is a TDI system, the system Ax\(\leq b\) is said to be a base totally dual integral system (base TDI system). The feasible set for such a system is a box TDI polyhedron.
A geometric characterization of these polyhedra is given. It is used to show that each TDI defining system for a box TDI polyhedron is in fact a box TDI system. The class of box TDI polyhedra is in co-NP and is closed under taking projections and dominants.
Reviewer: R.Fourneau

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
52Bxx Polytopes and polyhedra
90C10 Integer programming

Cite

References:

[1]A. Bachem and M. Grötschel, ”New aspects of polyhedral theory”, in: B. Korte, ed.,Modern applied mathematics – Optimization and operations research (North-Holland, Amsterdam, 1982) 51–106. ·Zbl 0481.90063
[2]E. Balas and W.R. Pulleyblank, ”The perfectly matchable subgraph polytope of a bipartite graph”,Networks 13 (1983) 495–516. ·Zbl 0525.90069 ·doi:10.1002/net.3230130405
[3]C. Berge,Graphs and hypergraphs (North-Holland, Amsterdam, 1973). ·Zbl 0254.05101
[4]C. Berge and V. Chvátal,Topics on perfect graphs (North-Holland, Amsterdam, 1984). ·Zbl 0546.00006
[5]K. Cameron, ”Polyhedral and algorithmic ramifications of antichains”, Ph.D. Thesis, University of Waterloo, 1982.
[6]R. Chandrasekaran, ”Polynomial algorithms for totally dual integral systems and extensions”,Annals of Discrete Mathematics 11 (1981) 39–51. ·Zbl 0469.90060
[7]W. Cook, L. Lovász and A. Schrijver, ”A polynomial-time test for total dual integrality in fixed dimension”,Mathematical Programming Study 22 (1984) 64–69. ·Zbl 0557.90071
[8]W.H. Cunningham, ”An unbounded matroid intersection polyhedron”, Linear Algebra and its Appliications 16 (1977) 209–215. ·Zbl 0373.05024 ·doi:10.1016/0024-3795(77)90003-9
[9]W.H. Cunningham and J. Green-Krotki, to appear.
[10]J. Edmonds, ”Submodular functions, matroids, and certain polyhedra”, in: R. Guy, H. Hanani, N. Sauer and J. Schonheim, eds.,Combinatorial structures and their applications (Gordon and Breach, New York, 1970) 69–87. ·Zbl 0268.05019
[11]J. Edmonds and R. Giles, ”A min-max relation for submodular functions on graphs”,Annals of Discrete Mathematics 1 (1977) 185–204. ·Zbl 0373.05040 ·doi:10.1016/S0167-5060(08)70734-9
[12]J. Edmonds and R. Giles, ”Box total dual integrality”, unpublished paper, 1980. ·Zbl 0555.90078
[13]J. Edmonds and R. Giles, ”Total dual integrality of linear inequality systems”, in: W.R. Pulleyblank, ed.,Progress in combinatorial optimization (Academic Press, Toronto, 1984) 117–129. ·Zbl 0555.90078
[14]A. Frank, ”Kernel systems of directed graphs”,Acta Scientiarum Mathematicarum (Szeged) 41 (1979) 63–76. ·Zbl 0425.05028
[15]A. Frank, ”Generalized polymatroids”, Report 81206-OR, Institut für Ökonometrie und Operations Research, Bonn, F.R. Germany, 1981. ·Zbl 0568.05018
[16]A. Frank and E. Tardos, ”Generalized polymatroids and submodular flows”, in preparation. ·Zbl 0665.90073
[17]D.R. Fulkerson, ”Blocking and anti-blocking pairs of polyhedra”,Mathematical Programming 1 (1971) 168–194. ·Zbl 0254.90054 ·doi:10.1007/BF01584085
[18]M.R. Garey and D.S. Johnson,Computers and intractability: A Guide to the theory of NP-completeness (W.H. Freeman and Company, San Francisco, 1979). ·Zbl 0411.68039
[19]J. von zur Gathen and M. Sieveking, ”A bound on solutions of linear integer equalities and inequalities”,Proceedings of the American Mathematical Society 72 (1978) 155–158. ·Zbl 0397.90071 ·doi:10.1090/S0002-9939-1978-0500555-0
[20]F.R. Giles and W.R. Pulleyblank, ”Total dual integrality and integer polyhedra”, Linear Algebra and its Applications 25 (1979) 191–196. ·Zbl 0413.90054 ·doi:10.1016/0024-3795(79)90018-1
[21]C. Greene and D. Kleitman, ”The structure of Spernerk-families”,Journal of Combinatorial Theory Series A 20 (1976) 41–68. ·Zbl 0363.05006 ·doi:10.1016/0097-3165(76)90077-7
[22]H. Gröflin and A.J. Hoffman, ”Lattice polyhedra II: Generalization, constructions and examples”,Annals of Discrete Mathematics 15 (1982) 189–203. ·Zbl 0507.90062
[23]M. Grötschel, L. Lovász and A. Schrijver, ”The ellipsoid method and its consequences in combinatorial optimization”,Combinatorica 1 (1981) 169–197. ·Zbl 0492.90056 ·doi:10.1007/BF02579273
[24]M. Grötschel, L. Lovász and A. Schrijver, ”Polynomial algorithms for perfect graphs”, in: C. Berge and V. Chvátal, eds.,Topics on perfect graphs (North-Holland, Amsterdam, 1984) 325–356. ·Zbl 0554.05041
[25]M. Grötschel, L. Lovász and A. Schrijver, ”Relaxations of vertex packing”, Report 84341-OR, Institut für Ökonometrie und Operations Research, Bonn, W. Germany, 1984. ·Zbl 0596.05052
[26]M. Grötschel, L. Lovász and A. Schrijver,The ellipsoid method and combinatorial optimization (Springer-Verlag), to appear. ·Zbl 0539.90078
[27]A.J. Hoffman, ”A generalization of max flow-min cut”,Mathematical Programming 6 (1974) 352–359. ·Zbl 0357.90068 ·doi:10.1007/BF01580250
[28]A.J. Hoffman and D.E. Schwartz, ”On lattice polyhedra”, in: A. Hajnal and V.T. Sós, eds.,Combinatorics (North-Holland, Amsterdam, 1978) 593–598. ·Zbl 0408.05011
[29]L.G. Khachiyan, ”A polynomial algorithm in linear programming”,Soviet Mathematics Doklady 20 (1979) 191–194. ·Zbl 0414.90086
[30]L. Lovász, ”Normal hypergraphs and the perfect graph conjecture”,Discrete Mathematics 2 (1972) 253–267. ·Zbl 0239.05111 ·doi:10.1016/0012-365X(72)90006-4
[31]L. Lovász, ”Perfect graphs”, in: L.W. Beineke and R.J. Wilson, eds.,Selected topics in graph theory 2 (Academic Press, London, 1983) 55–87. ·Zbl 0536.05055
[32]C. McDiarmid, ”Blocking, antiblocking, and pairs of matroids and polymatroids”,Journal of Combinatorial Theory Series B 25 (1978) 313–325. ·Zbl 0401.05032 ·doi:10.1016/0095-8956(78)90008-4
[33]W.R. Pulleyblank, ”Polyhedral combinatorics”, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming–The state of the art (Springer-Verlag, Heidelberg, 1983) 312–345. ·Zbl 0566.90063
[34]R.T. Rockafeller,Convex analysis (Princeton University Press, Princeton, 1970).
[35]A. Schrijver, ”On total dual integrality”,Linear Algebra and its Applications 38 (1981) 27–32. ·Zbl 0474.90065 ·doi:10.1016/0024-3795(81)90005-7
[36]A. Schrijver, ”Proving total dual integrality with cross-free families–a general framework”,Mathematical Programming 29 (1984) 15–27. ·Zbl 0531.90076 ·doi:10.1007/BF02591726
[37]A. Schrijver, ”Total dual integrality from directed graphs, crossing families, and sub- and supermodular functions”, in: W.R. Pulleyblank, ed.,Progress in combinatorial optimization (Academic Press, Toronto, 1984) 315–361. ·Zbl 0542.90068
[38]A. Schrijver,Theory of linear and integer programming (Wiley) to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp