[1] | J.F. Bard, ”Sequential optimization in hierarchical structures”, Working Paper 82-12, College of Business Administration, Northeastern University (Boston, MA, 1982). |
[2] | J.F. Bard and J.E. Falk, ”An explicit solution to the multi-level programming problem”,Computers and Operations Research 9 (1982) 77–100. ·doi:10.1016/0305-0548(82)90007-7 |
[3] | T. Baker, J. Gill and R. Solovay, ”Relativizations of theP = ?NP questions”,SIAM Journal on Computing 4 (1975) 431–442. ·Zbl 0323.68033 ·doi:10.1137/0204037 |
[4] | W.F. Bialas and M.H. Karwan, ”On two-level optimization”,IEEE Transactions on Automatic Control AC-27 (1982) 211–215. ·Zbl 0487.90005 |
[5] | W. Candler and R. Norton, ”Multi-level programming and development policy”, World Bank Staff Working Paper no. 258, IBRD (Washington, DC, 1977). |
[6] | W. Candler and R. Townsley, ”A linear two-level programming problem”,Computers and Operations Research 9 (1982) 59–76. ·doi:10.1016/0305-0548(82)90006-5 |
[7] | V. Chvatal, ”Rational behaviour and computational complexity”, Technical Report SOCS-78.9, McGill University (Montreal, 1978). |
[8] | S.A. Cook, ”The complexity of theorem proving procedures”,Proceedings of the Third Annual ACM Symposium on Theory of Computing (1971) 151–158. ·Zbl 0253.68020 |
[9] | J. Fortuny and B. McCarl, ”Multi-level programming”, Industrial Engineering Department, Purdue University (West Lafayette, IN, 1979). ·Zbl 0459.90067 |
[10] | M. Garey and D.S. Johnson,Computers and intractibility (W.H. Freeman, San Francisco, 1979). |
[11] | R.G. Jeroslow, ”Bracketing discrete problems by two problems of linear optimization”, in:Operations Research Verfahren XXV (Verlag Anton Hain, Meisenheim am Glan, 1977) pp. 205–216. ·Zbl 0398.90076 |
[12] | R.M. Karp, ”Reducibility among combinatorial problems”, in: R.E. Miller and J.W. Thatcher, eds.,Complexity of computer computations (Plenum Press, New York, 1972) pp. 85–104. |
[13] | L.G. Khachiyan, ”A polynomial algorithm for linear programming”,Doklady Akademii Nauk SSR 244 (1979) 1093–1096 (English translation in Soviet Mathematics Doklady 20, 191–194). ·Zbl 0414.90086 |
[14] | T.S. Motzkin, H. Raiffa, G.L. Thompson and R.M. Thrall, ”The double description method”, in:Contributions to the theory of games II, H.W. Kuhn and A.W. Tucker, eds., (Princeton University Press, Princeton, NJ, 1953) pp. 51–73. |
[15] | N.J. Nilsson,Problem-solving methods in artificial intelligence (McGraw-Hill, New York, 1971). |
[16] | C.H. Papadimitriou, ”Games against nature”,Proceedings of the Twenty Fourth Symposium on the Foundations of Computer Science, 1983. ·Zbl 0583.68020 |
[17] | K. Pasumarty, ”Product positioning in a competitive market”, College of Management, Georgia Institute of Technology (Atlanta, GA, 1982). |
[18] | E.C. Prescott and M. Visscher, ”Sequential location among firms with foresight”,Bell Journal of Economics 8 (1977) 378–393. ·doi:10.2307/3003293 |
[19] | H. Rogers,Theory of recursive functions and effective computability (McGraw-Hill, New York, 1967). ·Zbl 0183.01401 |
[20] | H. Scarf (with T. Hansen)The computation of economic equilibria (Yale University Press, New Haven, 1973). ·Zbl 0311.90009 |
[21] | M. Simaan and J.B. Cruz, Jr., ”On the Stackelberg strategy in nonzero-sum games”,Journal of Optimization Theory and Applications 11 (1973) 533–555. ·doi:10.1007/BF00935665 |
[22] | H.D. Sherali, A.L. Soyster and F.H. Murphy, ”Stackelberg-Nash-Cournot equilibria characterizations and computations”,Operations Research 31 (1983) 253–276. ·Zbl 0506.90011 ·doi:10.1287/opre.31.2.253 |
[23] | H.D. Sherali, ”A multiple leader Stackelberg model and analysis”,Operations Research 32 (1984) 390–404. ·Zbl 0581.90008 ·doi:10.1287/opre.32.2.390 |
[24] | R. Smullyan,First order logic (Springer-Verlag, New York, 1968). ·Zbl 0172.28901 |
[25] | H. Stackelberg,Marktform und Gleichgewicht (Julius Springer, Vienna, 1934). |
[26] | L.J. Stockmeyer, ”The polynomial-time hierarchy”,Theoretical Computer Science 3 (1977) 1–22. ·Zbl 0353.02024 ·doi:10.1016/0304-3975(76)90061-X |
[27] | J. Stoer and C. Witzgall,Convexity and optimization in finite dimensions: I (Springer-Verlag, New York, 1970). ·Zbl 0203.52203 |
[28] | C. Wrathall, ”Complete sets and the polynomial time hierarchy”,Theoretical Computer Science 3 (1977) 23–33. ·Zbl 0366.02031 ·doi:10.1016/0304-3975(76)90062-1 |