Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On maximum principles for monotone matrices.(English)Zbl 0587.15014

The (n,n)-matrix A satisfies the maximum principle if \(Ay=f\) and \(f\geq 0\) implies \(y\geq 0\), and moreover \(\max \{y_ i|\) \(i\in N\}=\max \{y_ i| i\in N^+(f)\}\) with \(N=\{1,...,n\}\) and \(N^+(f)=\{j\in N| f_ j>0\}\). Define \(A^{(+)}=a_{ij}\) for \(i\neq j\) and \(a_{ij}>0\) and 0 elsewhere. The following holds. Let A be nonsingular with nonnegative inverse and such that \(A-A^{(+)}\) is either nonsingular, or singular and irreducible. Moreover, let \(A-A^{(+)}\) have nonnegative row sums. Then A satisfies the maximum principle. Analogous properties of the solutions to linear equations with an irreducible M-matrix are studied in connection with the open Leontief input-output model [the reviewer, ibid. 26, 175-201 (1979;Zbl 0409.90027)].
Reviewer: G.Sierksma

MSC:

15B48 Positive matrices and their generalizations; cones of matrices
93D25 Input-output approaches in control theory
15A09 Theory of matrix inversion and generalized inverses

Citations:

Zbl 0409.90027

Cite

References:

[1]Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1979), Academic: Academic New York ·Zbl 0484.15016
[2]Ciarlet, P. G., An \(O(h^2)\) method for a non-smooth boundary value problem, Aequationes Math., 2, 1, 39-49 (1968) ·Zbl 0159.11703
[3]Ciarlet, P. G., Discrete maximum principle for finite difference operators, Aequationes Math., 4, 338-352 (1970) ·Zbl 0198.14601
[4]Ciarlet, P. G.; Raviart, P. A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., 2, 17-31 (1973) ·Zbl 0251.65069
[5]Collatz, L., Aufgaben monotoner Art, Arch. Math. (Basel), 3, 366-376 (1952) ·Zbl 0048.09802
[6]Gantmacher, F. R., Matrix Theory (1967), Nauka: Nauka Moscow, (in Russian) ·Zbl 0085.01001
[7]Johnson, C. R., Inverse \(M\)-matrices, Linear Algebra Appl., 47, 195-216 (1982) ·Zbl 0488.15011
[8]I-wen, Kuo, The Moore-Penose inverse of singular \(M\)-matrices, Linear Algebra Appl., 17, 1-14 (1977) ·Zbl 0361.15006
[9]Lorenz, J., Zur Inversmonotonie diskreter Probleme, Numer. Math., 27, 227-238 (1977) ·Zbl 0325.65014
[10]Metzler, L. A., A multiple-country theory of income transfers, J. Polit. Economy, 59, 14-29 (1951)
[11]Meyer, C. D., Limits and the index of a square matrix, SIAM J. Appl. Math., 26, 3, 469-478 (1974) ·Zbl 0249.15004
[12]Morishima, M., Equilibrium, Stability and Growth. A Multi-sectoral Analysis (1974), Clarendon: Clarendon Oxford ·Zbl 0117.15406
[13]Moylan, P. J., Matrices with positive principal minors, Linear Algebra Appl., 17, 1, 53-58 (1977) ·Zbl 0356.15005
[14]Ostrowski, A., Determinanten mit überwiegender Hauptdiagonale und die absolute Konvergenz von linearen Iterationsprozessen, Comment. Math. Helv., 30, 175-210 (1955) ·Zbl 0072.13803
[15]Pye, W. C., Nonnegative Drazin inverses, Linear Algebra Appl., 30, 149-153 (1980) ·Zbl 0436.15002
[16]Rothblum, U. G., A representation of the Drazin inverse and characterization of the index, SIAM J. Appl. Math., 31, 4, 646-648 (1976) ·Zbl 0355.15008
[17]Samarskij, A. A., The Theory of Difference Schemes (1977), Nauka: Nauka Moscow, (in Russian) ·Zbl 0462.65055
[18]Schröder, J., Lineare Operatoren mit positiven Inversen, Arch. Rational Mech. Anal., 8, 408-434 (1961) ·Zbl 0104.08802
[19]Sierksma, G., Nonnegative matrices: The open Leontief model, Linear Algebra Appl., 26, 175-201 (1979) ·Zbl 0409.90027
[20]Stoyan, G., On a maximum principle for matrices and on conservation of monotonicity. With applications to discretization methods, Z. Angew. Math. Mech., 62, 375-381 (1982) ·Zbl 0501.65011
[21]Vojevodin, A. F.; Shugrin, S. M., Numerical Methods for Computation of One-Dimensional Systems (1981), Nauka: Nauka Novosibirsk, (in Russian) ·Zbl 0474.65077
[22]Willoughby, R. A., The inverse \(M\)-matrix problem, Linear Algebra Appl., 18, 75-94 (1977) ·Zbl 0355.15006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp