[1] | André, D., Developpements de sec \(x\) et de tang \(x\), C. R. Acad. Sci. Paris, 965-967 (1879) ·JFM 11.0187.01 |
[2] | Carlitz, L., Permutations with prescribed pattern, Math. Nachr., 58, 31-53 (1973) ·Zbl 0229.05015 |
[3] | Chaundy, T., The unrestricted plane partition, Quart. J. Math. Oxford, 3, 76-80 (1932) ·JFM 58.1039.03 |
[4] | Franzblau, D. S.; Zeilberger, D., A bijective proof of the hook-length formula, J. Algorithms, 3, 317-343 (1982) ·Zbl 0498.68042 |
[5] | Gansner, E., Matrix Correspondences and the Enumeration of Plane Partitions, (Ph.D. thesis (1978), Massachusetts Institute of Technology) |
[6] | Gansner, E., The Hillman-Grassl correspondence and the enumeration of reverse plane partitions, J. Combin. Theory Ser. A, 30, 71-89 (1981) ·Zbl 0474.05008 |
[7] | Garsia, A.; Milne, S., A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A, 31, 289-339 (1981) ·Zbl 0477.05009 |
[8] | I. Gessel and G. Viennot;I. Gessel and G. Viennot ·Zbl 0579.05004 |
[9] | I. Gessel and G. Viennot;I. Gessel and G. Viennot ·Zbl 0579.05004 |
[10] | Goulden, I. P.; Jackson, D. M., Combinatorial Enumeration (1983), Wiley: Wiley New York ·Zbl 0519.05001 |
[11] | Gupta, H., A new look at the permutations of the first \(n\) natural numbers, Indian J. Pure Appl. Math., 9, 600-631 (1978) ·Zbl 0386.05005 |
[12] | Hillman, A. P.; Grassl, R. M., Reverse plane partitions and tableau hook numbers, J. Combin. Theory Ser. A, 21, 216-221 (1976) ·Zbl 0341.05008 |
[13] | Jacobi, C. G.J, De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas transformandis, quae solis quadratis variabilium constant; una cum variis theorematis de transformatione et determinatione integralium multiplicium, J. Reine Angew. Math., 12, 1-69 (1834) ·ERAM 012.0440cj |
[14] | Karlin, S.; McGregor, G., Coincidence probabilities, Pacific J. Math., 9, 1141-1164 (1959) ·Zbl 0092.34503 |
[15] | Knuth, D. E., “The Art of Computer Programming,” Vol. 3 “Searching and Sorting,” (1973), Addison-Wesley: Addison-Wesley Reading, Mass ·Zbl 0302.68010 |
[16] | Lascoux, A., Classes de Chern d’un produit tensoriel, C. R. Acad. Sci. Paris, 286, 385-387 (1978) ·Zbl 0379.55011 |
[17] | Ledermann, W., Introduction to Group Characters (1977), Cambridge Univ. Press: Cambridge Univ. Press New York/London ·Zbl 0373.20001 |
[18] | Lindström, B., On the vector representation of induced matroids, Bull. London Math. Soc., 5, 85-90 (1973) ·Zbl 0262.05018 |
[19] | Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press: Oxford Univ. Press New York/London ·Zbl 0487.20007 |
[20] | MacMahon, P. A., Second memoir on the compositions of numbers, Philos. Trans. Roy. Soc. London Ser. A, 207, 65-134 (1908) ·JFM 39.0241.01 |
[21] | Niven, I., A combinatorial problem of finite sequences, Nieuw Arch. Wisk., 16, 3, 116-123 (1968) ·Zbl 0164.33102 |
[22] | Remmel, J. B., Bijective proofs of formulae for the number of standard Young tableaux, Linear and Multilinear Algebra, 11, 45-100 (1982) ·Zbl 0485.05005 |
[23] | Remmel, J. B.; Whitney, R., A bijective proof of the hook formula for the number of column strict tableaux with bounded entries, European J. Combin., 4, 45-63 (1983) ·Zbl 0521.05007 |
[24] | Remmel, J. B.; Whitney, R., A bijective proof of the generating function for the number of reverse plane partitions via lattice paths, Linear and Multilinear Algebra, 16, 75-91 (1984) ·Zbl 0551.05015 |
[25] | Stanley, R. P., Theory and applications of plane partitions, part 2, Stud. Appl. Math., 50, 259-279 (1971) ·Zbl 0225.05012 |
[26] | Stanley, R. P., \( GL (n, C)\) for combinatorialists, (Lloyd, E. Keith, Surveys in Combinatorics: Invited Papers for the Ninth British Combinatorial Conference 1983 (1983), Cambridge Univ. Press: Cambridge Univ. Press New York/London), 187-199 ·Zbl 0525.20026 |
[27] | R. A. Sulanke\(qn\);R. A. Sulanke\(qn\) ·Zbl 0716.05002 |
[28] | Viennot, G., Interpretations combinatoire de nombres d’Euler et de Genocchi, (Séminaire théorie des nombres (1980/1981), Université Bordeaux I), exposé no. 11 ·Zbl 0505.05006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.