Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The symplectic nature of fundamental groups of surfaces.(English)Zbl 0574.32032

A natural symplectic structure on the space of representations \(\pi\) \(\to G\), where \(\pi\) is the fundamental group of a Riemann surface and G is a semisimple Lie group, is introduced. The author considers this result as a common cause for the existence of a symplectic structure on different moduli spaces associated with Riemann surfaces. For example if \(G=PSL_ 2({\mathbb{R}})\) then the symplectic structure coincides with the Weil- Petersson’s one on Teichmüller space.
Reviewer: A.Givental’

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
14H30 Coverings of curves, fundamental group
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
30F99 Riemann surfaces
14E20 Coverings in algebraic geometry
32G13 Complex-analytic moduli problems
22E46 Semisimple Lie groups and their representations
14H15 Families, moduli of curves (analytic)

Cite

References:

[1]Ahlfors, L., Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math., 74, 171-191 (1961) ·Zbl 0146.30602
[2]Ahlfors, L., Lectures on Quasiconformal Mappings (1966), Van Nostrand: Van Nostrand New York ·Zbl 0138.06002
[3]Atiyah, M.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London A, 308, 523-615 (1982) ·Zbl 0509.14014
[4]Brown, K., Cohomology of groups, (Graduate Texts in Mathematics No. 87 (1982), Springer-Verlag: Springer-Verlag New York) ·Zbl 0367.18012
[5]Bers, L., Uniformization, moduli and Kleinian groups, Bull. London Math. Soc., 4, 257-300 (1972) ·Zbl 0257.32012
[6]Birman, J., Braids, links and mapping class groups, Ann. of Math. Stud., 82 (1974)
[7]Earle, C., Teichmüller theory, (Harvey, W., Discrete Groups and Automorphism Functions (1977), Academic Press: Academic Press New York), 143-162
[8]Fox, R., The free differential calculus. I. Derivations in the group ring, Ann. of Math., 57, 547-560 (1953) ·Zbl 0050.25602
[9]Goldman, W., Discontinuous Groups and the Euler Class, (Thesis (1980), University of California: University of California Berkeley)
[10]Goldman, W., Characteristic classes and representations of discrete subgroups of Lie groups, Bull. Amer. Math. Soc. (N. S), 6, 91-94 (1982) ·Zbl 0493.57011
[11]Goldman, W., Representations of fundamental groups of surfaces, (Proceedings of the Special Year in Topology. Proceedings of the Special Year in Topology, Maryland. Proceedings of the Special Year in Topology. Proceedings of the Special Year in Topology, Maryland, Lecture Notes in Mathematics (1983-1984), Springer-Verlag: Springer-Verlag New York), to appear
[12]W. Goldman;W. Goldman ·Zbl 0619.58021
[13]W. Goldman;W. Goldman
[14]Gunning, R. C., Lectures on Vector Bundles over Riemann Surfaces (1967), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J ·Zbl 0163.31903
[15]Hejhal, D., Monodromy groups and Poincaré series, Bull. Amer. Math. Soc., 84, 339-376 (1978) ·Zbl 0393.30035
[16]Hopf, H., Fundamentalgruppe und zweite Bettische gruppe, Comm. Math. Helv., 14, 257-309 (1942) ·JFM 68.0503.01
[17]D. Johnson and J. Millsonin;D. Johnson and J. Millsonin
[18]Kodaira, K.; Spencer, D. C., On deformations of complex analytic structures, I, 71, 43-76 (1960) ·Zbl 0128.16902
[19]Kra, I., Automorphic Forms and Kleinian Groups (1972), Benjamin: Benjamin Reading, Mass ·Zbl 0253.30015
[20]Lyndon, R., Cohomology theory of groups with one defining relation, Ann. of Math., 52, 650-665 (1950) ·Zbl 0039.02302
[21]Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121-130 (1974) ·Zbl 0327.58005
[22]Milnor, J., Construction of universal bundles, I, Ann. of Math., 63, 272-284 (1958) ·Zbl 0071.17302
[23]M.S. Narasimhanin;M.S. Narasimhanin
[24]Narasimhan, M. S.; Seshadri, C. S., Holomorphic vector bundles on a compact Riemann surface, Math. Ann., 155, 69-80 (1964) ·Zbl 0122.16701
[25]Narasimhan, M. S.; Seshadri, C. S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., 82, 540-567 (1965) ·Zbl 0171.04803
[26]Nijenhuis, A.; Richardson, R., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc., 73, 175 (1967) ·Zbl 0153.04402
[27]Raghunathan, M. S., Discrete Subgroups of Lie Groups (1972), Springer-Verlag: Springer-Verlag New York ·Zbl 0254.22005
[28]Shimura, G., Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan, 11, 291-311 (1959) ·Zbl 0090.05503
[29]Steenrod, N., The Topology of Fiber Bundles (1951), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J ·Zbl 0054.07103
[30]Weinstein, A., Lectures on Symplectic Manifolds, (C.B.M.S. 29 (1977), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) ·Zbl 0406.53031
[31]Wolpert, S., An elementary formula for the Fenchel-Nielsen twist, Comm. Math. Helv., 56, 132-135 (1981) ·Zbl 0467.30036
[32]Wolpert, S., The Fenchel-Nielsen deformation, Ann. of Math., 115, 501-528 (1982) ·Zbl 0496.30039
[33]Wolpert, S., On the symplectic geometry of deformations of a hyperbolic surface, Ann of Math., 117, 207-234 (1983) ·Zbl 0518.30040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp