Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A polynomial invariant for knots via von Neumann algebras.(English)Zbl 0564.57006

The author introduces a new polynomial invariant \(V_ L(t)\) for tame oriented links via certain representations of the braid group. That the invariant depends only on the closed braid is a direct consequence of Markov’s theorem and a certain trace formula, which was discovered because of the uniqueness of the trace on certain von Neumann algebras. There is an alternate way to calculate \(V_ L(t)\) without converting L into a closed braid, using only a Conway type relation; \(V_{unknot}=1\) and 1/t \(V_{L-}-t V_{L+}=(\sqrt{t}-1/\sqrt{t})V_ L\). This is also interesting from a view point of formal knot theory. The author gives many results using this invariant. For an example, \(V_{L\sim}(t)=V_ L(1/t)\) where \(L\sim\) means the mirror image of L, \(V_{L_ 1\#L_ 2}=V_{L_ 1}\cdot V_{L_ 2}\) where # means a connected sum of links, \(V_ L(-1)=\Delta_ L(-1)\) where \(\Delta_ L\) means the Alexander polynomial, \(V_ L(1)=(-2)^{p-1}\) where p is the number of components of L, \(V_ K(e^{2\pi i/3})=1\) and d/dt \(V_ K(1)=0\) if K is a knot. If K is a knot and \(| \Delta_ K(i)| >3\), then k cannot be represented as a closed 3 braid. If K is a knot and \(\Delta (e^{2\pi i/5})>6.5\), then K cannot be represented as a closed 4 braid.
Reviewer: Y.Nakanishi

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)

Cite

References:

[1]J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. 9 (1923), 93-95.
[2]Точно решаемые модели в статистической механике, ”Мир”, Мосцощ, 1985 (Руссиан). Транслатед фром тхе Енглиш бы Е. П. Вол\(^{\приме}\)ский анд Л. И. Дайхин; Транслатион едитед анд щитх а префаце бы А. М. Бродский.
[3]D. Bennequin, Entrelacements et structures de contact, These, Paris, 1982.
[4]Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. ·Zbl 0297.57001
[5]W. Burau, Uber Zopfgruppen und gleichsinning verdrillte Verkettunger, Abh. Math. Sem. Hanischen Univ. 11 (1936), 171-178.
[6]J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329 – 358.
[7]H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London-New York, 1974. ·Zbl 0296.50009
[8]F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235 – 254. ·Zbl 0194.03303 ·doi:10.1093/qmath/20.1.235
[9]V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1 – 25. ·Zbl 0508.46040 ·doi:10.1007/BF01389127
[10]V. F. R. Jones, Braid groups, Hecke algebras and type II1 factors, Japan-U.S. Conf. Proc. 1983. ·Zbl 0659.46054
[11]Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. ·Zbl 0537.57002
[12]Shin’ichi Kinoshita and Hidetaka Terasaka, On unions of knots, Osaka Math. J. 9 (1957), 131 – 153. ·Zbl 0080.17001
[13]J. Lannes, Sur l’invariant de Kervaire pour les noeuds classiques, École Polytechnique, Palaiseau, 1984 (preprint). ·Zbl 0571.57005
[14]J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537 – 554. ·Zbl 0196.55905 ·doi:10.2307/1970459
[15]A. A. Markov, Uber die freie Aquivalenz geschlossener Zopfe, Mat. Sb. 1 (1935), 73-78.
[16]Kunio Murasugi, On closed 3-braids, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathmatical Society, No. 151. ·Zbl 0327.55001
[17]Kenneth A. Perko Jr., On the classification of knots, Proc. Amer. Math. Soc. 45 (1974), 262 – 266. ·Zbl 0256.55004
[18]Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57 – 106. ·Zbl 0646.46057
[19]Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138 – 171. ·Zbl 0157.20605 ·doi:10.2307/1970364
[20]Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. ·Zbl 0339.55004
[21]Lee Rudolph, Nontrivial positive braids have positive signature, Topology 21 (1982), no. 3, 325 – 327. ·Zbl 0495.57003 ·doi:10.1016/0040-9383(82)90014-3
[22]S. Svensson, Handbook of Seaman’s ropework, Dodd, Mead, New York, 1971.
[23]H. N. V. Temperley and E. H. Lieb, Relations between the ”percolation” and ”colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ”percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251 – 280. ·Zbl 0211.56703 ·doi:10.1098/rspa.1971.0067
[24]Hans Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5 – 9. ·Zbl 0622.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp