57M25 | Knots and links in the \(3\)-sphere (MSC2010) |
46L99 | Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.) |
[1] | J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. 9 (1923), 93-95. |
[2] | Точно решаемые модели в статистической механике, ”Мир”, Мосцощ, 1985 (Руссиан). Транслатед фром тхе Енглиш бы Е. П. Вол\(^{\приме}\)ский анд Л. И. Дайхин; Транслатион едитед анд щитх а префаце бы А. М. Бродский. |
[3] | D. Bennequin, Entrelacements et structures de contact, These, Paris, 1982. |
[4] | Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. ·Zbl 0297.57001 |
[5] | W. Burau, Uber Zopfgruppen und gleichsinning verdrillte Verkettunger, Abh. Math. Sem. Hanischen Univ. 11 (1936), 171-178. |
[6] | J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329 – 358. |
[7] | H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London-New York, 1974. ·Zbl 0296.50009 |
[8] | F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235 – 254. ·Zbl 0194.03303 ·doi:10.1093/qmath/20.1.235 |
[9] | V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1 – 25. ·Zbl 0508.46040 ·doi:10.1007/BF01389127 |
[10] | V. F. R. Jones, Braid groups, Hecke algebras and type II1 factors, Japan-U.S. Conf. Proc. 1983. ·Zbl 0659.46054 |
[11] | Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. ·Zbl 0537.57002 |
[12] | Shin’ichi Kinoshita and Hidetaka Terasaka, On unions of knots, Osaka Math. J. 9 (1957), 131 – 153. ·Zbl 0080.17001 |
[13] | J. Lannes, Sur l’invariant de Kervaire pour les noeuds classiques, École Polytechnique, Palaiseau, 1984 (preprint). ·Zbl 0571.57005 |
[14] | J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537 – 554. ·Zbl 0196.55905 ·doi:10.2307/1970459 |
[15] | A. A. Markov, Uber die freie Aquivalenz geschlossener Zopfe, Mat. Sb. 1 (1935), 73-78. |
[16] | Kunio Murasugi, On closed 3-braids, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathmatical Society, No. 151. ·Zbl 0327.55001 |
[17] | Kenneth A. Perko Jr., On the classification of knots, Proc. Amer. Math. Soc. 45 (1974), 262 – 266. ·Zbl 0256.55004 |
[18] | Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 57 – 106. ·Zbl 0646.46057 |
[19] | Robert T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. (2) 86 (1967), 138 – 171. ·Zbl 0157.20605 ·doi:10.2307/1970364 |
[20] | Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. ·Zbl 0339.55004 |
[21] | Lee Rudolph, Nontrivial positive braids have positive signature, Topology 21 (1982), no. 3, 325 – 327. ·Zbl 0495.57003 ·doi:10.1016/0040-9383(82)90014-3 |
[22] | S. Svensson, Handbook of Seaman’s ropework, Dodd, Mead, New York, 1971. |
[23] | H. N. V. Temperley and E. H. Lieb, Relations between the ”percolation” and ”colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ”percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251 – 280. ·Zbl 0211.56703 ·doi:10.1098/rspa.1971.0067 |
[24] | Hans Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5 – 9. ·Zbl 0622.47019 |