Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The traveling salesman problem on a graph and some related integer polyhedra.(English)Zbl 0562.90095

Given a graph \(G=(N,E)\) and a length function l:E\(\to {\mathbb{R}}\), the graphical traveling salesma problem is that of finding a minimum length cycle going at least once through each node of G. This formulation has advantages over the traditional formulation where each node must be visited exactly once. We give some facet inducing inequalities of the convex hull of the solutions to that problem. In particular, the so- called comb inequalities of Grötschel and Padberg are generalized. Some related integer polyhedra are also investigated. Finally, an efficient algorithm is given when G is a series-parallel graph.

MSC:

90C35 Programming involving graphs or networks
52Bxx Polytopes and polyhedra
05B35 Combinatorial aspects of matroids and geometric lattices
90C10 Integer programming

Cite

References:

[1]J.A. Bondy and U.S.R. Murty,Graph theory with applications (North-Holland, Amsterdam, 1976). ·Zbl 1226.05083
[2]G. Cornuéjols, D. Naddef and W.R. Pulleyblank, ”Halin graphs and the travelling salesman problem”,Mathematical Programming 26 (1983) 287–294. ·Zbl 0506.90083 ·doi:10.1007/BF02591867
[3]J. Edmonds, ”Matroids and the greedy algorithm”,Mathematical Programming 1 (1971) 127–136. ·Zbl 0253.90027 ·doi:10.1007/BF01584082
[4]B. Fleischmann, ”Linear programming approaches to travelling salesman and vehicle scheduling problems”, Technical Report, Universität Hamburg (paper presented at the XI. International Symposium on Mathematical Programming, Bonn, 1982).
[5]B. Fleischmann, ”A new class of cutting planes for the symmetric travelling salesman problem”, Report No. QM-03-83, Institut für Unternehmensforschung, Universität Hamburg (1983). ·Zbl 0652.90072
[6]G.N. Frederikson and J. Jager, ”On the relationship between biconnectivity and travelling salesman problems”,Theoretical Computer Science 19 (1982) 189–201. ·Zbl 0486.90082 ·doi:10.1016/0304-3975(82)90059-7
[7]M. Grötschel and M.W. Padberg, ”On the symmetric travelling salesman problem I, II”,Mathematical Programming 16 (1979) 265–302. ·Zbl 0413.90048 ·doi:10.1007/BF01582116
[8]W. Pulleyblank, ”Faces of matching polyhedra”, Ph.D. Thesis, University of Waterloo (Waterloo, Ontario, 1973). ·Zbl 0318.65027
[9]D. M. Ratliff and A.S. Rosenthal, ”Order-picking in a rectangular warehouse: A solvable case of the travelling salesman problem”,Operations Research 31 (1983) 507–521. ·Zbl 0523.90060 ·doi:10.1287/opre.31.3.507
[10]K. Takamizawa, T. Nishizeki and N. Saito, ”Linear time computability of combinatorial problems on series-parallel graphs”,Journal of the ACM 29 (1982) 632–641. ·Zbl 0485.68055 ·doi:10.1145/322326.322328
[11]J.A. Wald and C.J. Colbourn, ”Steiner trees, partial 2-trees and minimum IFI methods”,Networks 13 (1983) 159–167. ·Zbl 0529.68036 ·doi:10.1002/net.3230130202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp