[1] | L.J. Billera, ”On games without side payments arising from a general class of markets”,Journal of Mathematical Economics 1 (1974) 129–139. ·Zbl 0292.90069 ·doi:10.1016/0304-4068(74)90004-4 |
[2] | L.J. Billera and J. Raanan, ”Cores of non-atomic linear production games”,Mathematics of Operations Research 6 (1981) 420–423. ·Zbl 0506.90095 ·doi:10.1287/moor.6.3.420 |
[3] | O.N. Bondareva, ”Some applications of linear programming methods to the theory of cooperative games” (in Russian),Problemy Kibernetiki 10 (1963) 119–139. ·Zbl 1013.91501 |
[4] | V.P. Crawford and E.M. Knoer, ”Job matching with heterogeneous firms and workers”,Econometrica 49 (1981) 437–450. ·Zbl 1202.91141 ·doi:10.2307/1913320 |
[5] | P. Dubey and L.S. Shapley,Totally balanced games arising from convex programs, Report No. 15/80, Institute for Advanced Studies, The Hebrew University of Jerusalem (May 1980). |
[6] | S. Hart, ”On the number of commodities required to represent a market game”,Journal of Economic Theory 27 (1982) 163–169. ·Zbl 0486.90016 ·doi:10.1016/0022-0531(82)90019-9 |
[7] | T. Ichiishi, ”Coalition structures in a labor managed market economy”,Econometrica 45 (1977) 341–360. ·Zbl 0368.90021 ·doi:10.2307/1911214 |
[8] | E. Kalai and E. Zemel, ”Totally balanced games and games of flow”,Mathematics of Operations Research 30 (1982) 476–478. ·Zbl 0498.90030 ·doi:10.1287/moor.7.3.476 |
[9] | E. Kalai and E. Zemel, ”Generalized network problems yielding totally balanced games”,Operations Research 30 (1982) 998–1008. ·Zbl 0493.90032 ·doi:10.1287/opre.30.5.998 |
[10] | M. Kaneko, ”The central assignment game and the assignment markets”,Journal of Mathematical Economics 10 (1982) 205–232. ·Zbl 0489.90025 ·doi:10.1016/0304-4068(82)90038-6 |
[11] | G. Owen, ”On the core of linear production games”,Mathematical Programming 9 (1975) 358–370. ·Zbl 0318.90060 ·doi:10.1007/BF01681356 |
[12] | J. Rosenmüller, ”LP games with sufficiently many players”,International Journal of Game Theory 11 (1982) 124–149. |
[13] | D. Samet and E. Zemel, ”On the core and dual set of linear programming games”,Mathematics of Operations Research, to appear. ·Zbl 0537.90103 |
[14] | H. Scarf, ”The core of ann person game”,Econometrica 35 (1967) 50–69. ·Zbl 0183.24003 ·doi:10.2307/1909383 |
[15] | L.S. Shapley, ”Simple games: An outline of the descriptive theory”,Behavioral Science 7 (1962) 59–66. ·doi:10.1002/bs.3830070104 |
[16] | L.S. Shapley, ”On balanced sets and cores”,Naval Research Logistics Quarterly 14 (1967) 453–460. ·doi:10.1002/nav.3800140404 |
[17] | L.S. Shapley, ”On balanced games without side payments”, in: T.C. Hu and S.M. Robinson, eds.,Mathematical programming, Academic Press, New York, 1973; 261–290. ·Zbl 0267.90100 |
[18] | L.S. Shapley and M. Shubik, ”On market games”,Journal of Economic Theory 1 (1969) 9–25. ·doi:10.1016/0022-0531(69)90008-8 |
[19] | L.S. Shapley and M. Shubik, ”The assignment game I: The core”,International Journal of Game Theory 1 (1972) 111–130. (Also see L.S. Shapley, Markets as cooperative games, Paper P-629, The Rand Corporation, Santa Monica, March 1955). ·Zbl 0236.90078 ·doi:10.1007/BF01753437 |
[20] | L.S. Shapley and M. Shubik, ”Competitive outcomes in the cores of market games”,International Journal of Game Theory 4 (1975) 229–237. ·Zbl 0341.90070 ·doi:10.1007/BF01769270 |
[21] | D. Sondermann, ”Economies of scale and equilibria in coalitional production economies”,Journal of Economic Theory 8 (1974) 259–291. ·doi:10.1016/0022-0531(74)90087-8 |
[22] | G.L. Thompson: ”Computing the core of a market game”, in: A. V. Fiacco and K. O. Kortanek, eds.,Extremal Methods and Systems Analysis, Lecture Notes in Economic and Mathematical Systems No. 174 (Springer, Berlin, 1980) pp. 312–334. ·Zbl 0448.90004 |