Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A boundary integral equation method for radiation and scattering of elastic waves in three dimensions.(English)Zbl 0551.73035

A vector boundary integral equation (BIE) formulation and numerical solution procedure is presented for problems of three-dimensional elastic wave radiation and scattering from arbitarily shaped obstacles. The formulation is explicitly in terms of surface traction and displacement, rather than wave potentials, and the BIE on which numerical work is based is written in a form entirely free of Cauchy principal value integrals. Indeed, the subsequent computational process, based on quadratic isoparametric boundary elements, renders all integrals free of singularities, so that ordinary Gaussian quadrature may be used. Numerical examples include scattering from spherical surfaces and radiation from a cube.

MSC:

74J99 Waves in solid mechanics
74S99 Numerical and other methods in solid mechanics
74J20 Wave scattering in solid mechanics
65R20 Numerical methods for integral equations

Cite

References:

[1]Manolis, A comparative study on three boundary element method approaches to problems in elastodynamics, Int. j. numer. methods eng. 19 pp 73– (1983) ·Zbl 0497.73085 ·doi:10.1002/nme.1620190109
[2]Spyrakos, Dynamic response of frameworks by fast Fourier transform, Comput. Struct. 15 (1982) ·Zbl 0489.73092 ·doi:10.1016/0045-7949(82)90001-3
[3]Manolis, Dynamic response of lined tunnels by an isoparametric boundary element method, Comp. Meth. Appl. Mech. Eng. 36 pp 291– (1983) ·Zbl 0487.73105 ·doi:10.1016/0045-7825(83)90126-3
[4]Love, The Mathematical Theory of Elasticity (1944) ·Zbl 0063.03651
[5]Rizzo, An integral equation approach to boundary value problems of classical elastostatics, Q. Appl. Math. 25 (1967) ·Zbl 0158.43406
[6]Pao, Dept. of Theoretical and Applied Mechanics (1975)
[7]Ewing, Elastic Waves in Layered Media (1957) ·Zbl 0083.23705
[8]Banaugh, Diffraction of steady elastic waves by surfaces of arbitrary shape, J. Appl. Mech. 1 (9) (1963) ·Zbl 0134.44704
[9]Shaw, Integral equation formulation of dynamic acoustic fluid-elastic solid interaction problems, J. Acoust. Soc. Am. 53 pp 514– ·doi:10.1121/1.1913351
[10]Rizzo, An advanced boundary integral equation method for three-dimensional thermoelasticity, Int. j. numer. methods eng. 11 pp 1753– (1977) ·Zbl 0387.73007 ·doi:10.1002/nme.1620111109
[11]Muskhelishvili, Singular Integral Equations pp 26– (1953)
[12]Theocaris, A numerical method for the solution of static and dynamic three-dimensional elasticity problems, Comput. Struct. 16 (1983) ·Zbl 0502.73022 ·doi:10.1016/0045-7949(83)90069-X
[13]Kupradze, Progress in Solid Mechanics III (1963)
[14]Leigh, Nonlinear Continuum Mechanics (1968)
[15]Rizzo, Some observations on Kelvin’s solution in classical elastostatics as a double tensor field with implications for Somigliana’s integral, J. Elasticity 13 pp 91– (1983) ·Zbl 0525.73013 ·doi:10.1007/BF00041318
[16]Lachat, Effective numerical treatment of boundary integral equations: a formulation for three dimensional elastostatics, Int. j. numer. methods eng. 10 pp 991– (1976) ·Zbl 0332.73022 ·doi:10.1002/nme.1620100503
[17]F. C. Moon Y-H. Pao The influence of the curvature of spherical waves on dynamic stress concentration 1967
[18]Pao, Diffraction of Elastic Waves and Dynamic Stress Concentrations, Crane (1973)
[19]Brigham, Wave Propagation in Elastic Solids (1976)
[20]K. G. Yegnanarayanan Analysis of transient problems by numerical inversion of transforms 1983
[21]Durbin, Numerical inversion of Laplace transforms: an efficient improvement to Dubncr and Abate’s method, Computer J. 17 (4) (1974) ·Zbl 0288.65072 ·doi:10.1093/comjnl/17.4.371
[22]F. J. Rizzo D. J. Shippy Boundary integral equation analysis for a class of earth-structure interaction problems 1983
[23]Shaw, Development in Boundary Element Methods 1 (1979)
[24]Shaw, Advances in Computer Methods for Partial Differential Equations (1981)
[25]Einspruch, Scattering of a plane transverse wave by a spherical obstacle in an elastic medium, J. Appl. Phys. 31 pp 801– (1960) ·Zbl 0093.41901 ·doi:10.1063/1.1735701
[26]Rizzo, A formulation and solution procedure for the general non-homogeneous elastic inclusion problem, Int. J. Solids Struct. 4 pp 1161– (1968) ·Zbl 0253.73010 ·doi:10.1016/0020-7683(68)90003-6
[27]Pao, Scattering of plane compressional waves by a spherical obstacle, J. Appl. Phys. 34 pp 493– (1963) ·Zbl 0114.17702 ·doi:10.1063/1.1729301
[28]Achenbach, Wave Propagation in Elastic Solids (1976)
[29]Schenck, Improved integral formulation for acoustic radiation problems, J. Acoust. Soc. Am. 44 pp 41– (1968) ·Zbl 0187.50302 ·doi:10.1121/1.1911085
[30]Meyer, Boundary integral solutions of three dimensional acoustic radiation problems, J. Sound Vib 59 (2) pp 245– (1978) ·Zbl 0391.76052 ·doi:10.1016/0022-460X(78)90504-7
[31]Ursell, On the exterior problem of acoustics, Proc. Camb. Phil. Soc. 74 pp 117– (1973) ·Zbl 0259.35019 ·doi:10.1017/S0305004100047861
[32]Lamb, On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. Lond. A203 pp 1– (1904) ·JFM 34.0859.02 ·doi:10.1098/rsta.1904.0013
[33]Johnson, Green’s function for Lamb’s problem, Geophys. J. R. Astr. Soc. 37 pp 99– (1974) ·Zbl 0298.73029 ·doi:10.1111/j.1365-246X.1974.tb02446.x
[34]R. J. Apsel Dynamic Green’s functions for layered media and applications to boundary-value problems 1979
[35]J. Dominguez Dynamic stiffness of rectangular foundations 1978
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp