Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the K-theory of local fields.(English)Zbl 0548.12009

The author completes his proof of the Lichtenbaum conjecture on the algebraic K-theory of an algebraically closed field. In [Invent. Math. 73, 241-245 (1983;Zbl 0514.18008)] he showed that it suffices to take one field of each characteristic. Here, by considering local rings, he shows that one needs only one field altogether. He computes the K-theory of the complex numbers (also of the real numbers), and so makes the proof independent of computations for fields of finite characteristic.
Reviewer: R.Steiner

MSC:

11S70 \(K\)-theory of local fields
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
13D15 Grothendieck groups, \(K\)-theory and commutative rings

Citations:

Zbl 0514.18008

Cite

References:

[1]Bass, H., Algebraic \(K\)-theory (1968), Benjamin: Benjamin New York ·Zbl 0174.30302
[2]Bourbaki, N., Algébre Commutative (1965), Hermann: Hermann Paris ·Zbl 0141.03501
[3]Charney, R., A note on excision in algebraic \(K\)-theory, (Lecture Notes in Math., 1046 (1984), Springer: Springer Berlin), 47-54 ·Zbl 0534.18006
[4]O. Gabber, On the \(K\); O. Gabber, On the \(K\)
[5]Grayson, D., Higher \(K\)-theory II, (Lecture Notes in Math., 551 (1976), Springer: Springer Berlin), 218-240
[6]Gromoll, D.; Klingenberg, W.; Meyer, W., Riemannsche Geometrie im Grossen (1968), Springer: Springer Berlin ·Zbl 0155.30701
[7]Husemoller, D., Fiber Bundles (1966), McGraw-Hill: McGraw-Hill New York ·Zbl 0144.44804
[8]van der Kellen, W., Homology stability for general linear groups, Inventiones Math., 60, 3, 269-295 (1980) ·Zbl 0415.18012
[9]Lang, S., Introduction to Algebraic Geometry, (Interscience Tracts, 5 (1958), Wiley: Wiley New York) ·Zbl 0095.15301
[10]May, J. P., Simplicial Objects in Algebraic Topology (1967), Van Nostrand: Van Nostrand New York ·Zbl 0165.26004
[11]Milnor, J., On the homology of Lie groups made discrete, Comment. Math. Helvetici, 58, 72-85 (1983) ·Zbl 0528.20033
[12]Neisendorfer, J., Primary homotopy theory, Memoirs AMS, 25, 232 (1980) ·Zbl 0446.55002
[13]Quillen, D., On the cohomology and \(K\)-theory of the general linear group over a finite field, Ann. of Math., 96, 3, 552-585 (1972) ·Zbl 0249.18022
[14]Quillen, D., Higher algebraic \(K\)-theory, (Lecture Notes in Math., 341 (1972), Springer: Springer Berlin), 85-147 ·Zbl 0292.18004
[15]Raynaud, M., Anneaux locaux henséliens, (Lecture Notes in Math., 169 (1970), Springer: Springer Berlin) ·Zbl 0203.05102
[16]Spanier, E. H., Algebraic Topology (1966), McGraw-Hill: McGraw-Hill New York ·Zbl 0145.43303
[17]Suslin, A., Stability in algebraic \(K\)-theory, (Lecture Notes in Math., 966 (1982), Springer: Springer Berlin), 344-356 ·Zbl 0498.18008
[18]Suslin, A., On the \(K\)-theory of algebraically closed fields, Inventiones Math., 73, 241-245 (1983) ·Zbl 0514.18008
[19]A. Suslin, Homology of \(GL_nK\); A. Suslin, Homology of \(GL_nK\)
[20]Weibel, C. A., Algebraic \(K\)-theory and the Adams \(e\)-invariant, (Lecture Notes in Math., 1046 (1984), Springer: Springer Berlin), 451-464 ·Zbl 0531.18008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp