90C31 | Sensitivity, stability, parametric optimization |
[1] | A. Bacopoulos, G. Godini and I. Singer, ”On best approximation in vector-valued norms”,Colloquia Mathematica Societatis János Bolyai 19 (1978) 89–100. ·Zbl 0425.41026 |
[2] | A. Bacopoulos, G. Godini and I. Singer, ”Infima of sets in the plane and applications to vectorial optimization”,Revue Roumaine de Mathématiques Pures et Appliquées 23 (1978) 343–360. ·Zbl 0393.90089 |
[3] | A. Bacopoulos, G. Godini and I. Singer, ”On infima of sets in the plane and best approximation, simultaneous and vectorial, in a linear space with two norms”, in: J. Frehse, D. Pallaschke and U. Trottenberg, eds.,Special topics of applied mathematics (North-Holland, Amsterdam, 1980), pp. 219–239. ·Zbl 0482.41026 |
[4] | A. Bacopoulos and I. Singer, ”On convex vectorial optimization in linear spaces”,Journal of Optimization Theory and Applications 21 (1977) 175–188. ·Zbl 0326.90052 ·doi:10.1007/BF00932518 |
[5] | A. Bacopoulos and I. Singer, ”Errata corrige: On vectorial optimization in linear spaces”,Journal of Optimization Theory and Applications 23 (1977) 473–476. ·Zbl 0326.90052 ·doi:10.1007/BF00933455 |
[6] | J. Borwein, ”Proper efficient points for maximizations with respect to cones”,SIAM Journal on Control and Optimization 15 (1977) 57–63. ·Zbl 0369.90096 ·doi:10.1137/0315004 |
[7] | J.M. Borwein, ”The geometry of Pareto efficiency over cones”,Mathematische Operationsforschung und Statistik 11 (1980) 235–248. ·Zbl 0447.90077 |
[8] | W. Dinkelbach, ”Über eine Lösungsansatz zum Vektormaximumproblem”, in: M. Beckmann, ed.,Unternehmensforschung Heute (Springer, Lecture Notes in Operations Research and Mathematical Systems No. 50, 1971), pp. 1–13. ·Zbl 0269.90040 |
[9] | W. Dinkelbach and W. Dürr, ”Effizienzaussagen bei Ersatzprogrammen zum Vektormaximumproblem”Operations Research Verfahren XII (1972) 69–77. ·Zbl 0253.90056 |
[10] | N. Dunford and J.T. Schwartz,Linear operators, Part I (Interscience Publishers, 1957). ·Zbl 0128.34803 |
[11] | W.B. Gearhart, ”Compromise solutions and estimation of the noninferior set”,Journal of Optimization Theory and Applications 28 (1979) 29–47. ·Zbl 0422.90074 ·doi:10.1007/BF00933599 |
[12] | A.M. Geoffrion, ”Proper efficiency and the theory of vector maximazation”,Journal of Mathematical Analysis and Applications 22 (1968) 618–630. ·Zbl 0181.22806 ·doi:10.1016/0022-247X(68)90201-1 |
[13] | S.C. Huang, ”Note on the mean-square strategy of vector values objective function”,Journal of Optimization Theory and Applications 9 (1972) 364–366. ·Zbl 0222.49004 ·doi:10.1007/BF00932935 |
[14] | L. Hurwicz, ”Programming in linear spaces”, in: K.J. Arrow, L. Hurwicz and H. Uzawa, eds.,Studies in linear and non-linear programming (Stanford University Press, Stanford, 1958). 38–102. |
[15] | L. Kantorovitch, ”The method of successive approximations for functional equations”,Acta Mathematica 71 (1939) 63–97. ·Zbl 0021.13604 ·doi:10.1007/BF02547750 |
[16] | W. Krabs,Optimization and approximation (John Wiley & Sons, New York, 1979). ·Zbl 0409.90051 |
[17] | J.G. Lin, ”Maximal vectors and multi-objective optimization”,Journal of Optimization Theory and Applications 18 (1976) 41–64. ·Zbl 0298.90056 ·doi:10.1007/BF00933793 |
[18] | R. Reemtsen, ”On level sets and an approximation problem for the numerical solution of a free boundary problem”,Computing 27 (1981) 27–35. ·Zbl 0457.65042 ·doi:10.1007/BF02243436 |
[19] | S. Rolewicz, ”On a norm scalarization in infinite dimensional Banach spaces”,Control and Cybernetics 4 (1975) 85–89. ·Zbl 0334.49015 |
[20] | M.E. Salukvadze, ”Optimization of vector functionals” (in Russian).Automatika i Telemekhanika 8 (1971) 5–15. ·Zbl 0236.49019 |
[21] | W. Vogel,Vektoroptimierung in Produkträumen (Verlag Anton Hain, Mathematical Systems in Economics 35, 1977). ·Zbl 0392.90044 |
[22] | W. Vogel, ”Halbnormen und Vektoroptimierung”, in: H. Albach, E. Helmstädter and R. Henn, eds.,Quantitative Wirtschaftsforschung-Wilhelm Krelle zum 60. Geburtstag (Tübingen 1977), 703–714. ·Zbl 0422.90075 |
[23] | A.P. Wierzbicki, Penalty methods in solving optimization problems with vector performance criteria (Technical Report of the Institute of Automatic Control, TU of Warsaw, 1974). |
[24] | A.P. Wierzbicki, ”Basic properties of scalarizing functionals for multiobjective optimization”,Mathematische Operationsforschung und Statistik 8 (1977) 55–60. |
[25] | A.P. Wierzbicki, ”The use of reference objectives in multi-objective optimization”, in: G. Fandel and T. Gal, eds.,Multiple criteria decision making-Theory and application (Springer, Lecture Notes in Economics and Mathematical Systems No. 177, 1980), pp. 468–486. |
[26] | A.P. Wierzbicki, ”A mathematical basis for satisficing decision making”, in: J.N. Morse,Organizations: Multiple agents with multiple criteria (Springer, Lecture Notes in Economics and Mathematical Systems No. 190, 1981), pp. 465–485. |
[27] | P.L. Yu, ”A class of solutions for group decision problems”,Management Science 19 (1973) 936–946. ·Zbl 0264.90008 ·doi:10.1287/mnsc.19.8.936 |
[28] | P.L. Yu and G. Leitmann, ”Compromise solutions, domination structures, and Salukvadze’s solution”,Journal of Optimization Theory and Applications 13 (1974) 362–378. ·Zbl 0362.90111 ·doi:10.1007/BF00934871 |