Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Scalarization in vector optimization.(English)Zbl 0539.90093

A scalarization of a general nonconvex vector optimization problem is investigated. Scalarization means the replacement of the vector optmization problem by a scalar optimization problem. Under suitable assumptions it is shown that an optimal solution of the considered vector optimization problem is also a solution of an appropriate approximation problem. With the aid of this theory a complete characterization of minimal and weakly minimal elements of a nonempty nonconvex subset of a partially ordered real linear space is presented. Moreover, these results are applied to general vector approximation problems.

MSC:

90C31 Sensitivity, stability, parametric optimization

Cite

References:

[1]A. Bacopoulos, G. Godini and I. Singer, ”On best approximation in vector-valued norms”,Colloquia Mathematica Societatis János Bolyai 19 (1978) 89–100. ·Zbl 0425.41026
[2]A. Bacopoulos, G. Godini and I. Singer, ”Infima of sets in the plane and applications to vectorial optimization”,Revue Roumaine de Mathématiques Pures et Appliquées 23 (1978) 343–360. ·Zbl 0393.90089
[3]A. Bacopoulos, G. Godini and I. Singer, ”On infima of sets in the plane and best approximation, simultaneous and vectorial, in a linear space with two norms”, in: J. Frehse, D. Pallaschke and U. Trottenberg, eds.,Special topics of applied mathematics (North-Holland, Amsterdam, 1980), pp. 219–239. ·Zbl 0482.41026
[4]A. Bacopoulos and I. Singer, ”On convex vectorial optimization in linear spaces”,Journal of Optimization Theory and Applications 21 (1977) 175–188. ·Zbl 0326.90052 ·doi:10.1007/BF00932518
[5]A. Bacopoulos and I. Singer, ”Errata corrige: On vectorial optimization in linear spaces”,Journal of Optimization Theory and Applications 23 (1977) 473–476. ·Zbl 0326.90052 ·doi:10.1007/BF00933455
[6]J. Borwein, ”Proper efficient points for maximizations with respect to cones”,SIAM Journal on Control and Optimization 15 (1977) 57–63. ·Zbl 0369.90096 ·doi:10.1137/0315004
[7]J.M. Borwein, ”The geometry of Pareto efficiency over cones”,Mathematische Operationsforschung und Statistik 11 (1980) 235–248. ·Zbl 0447.90077
[8]W. Dinkelbach, ”Über eine Lösungsansatz zum Vektormaximumproblem”, in: M. Beckmann, ed.,Unternehmensforschung Heute (Springer, Lecture Notes in Operations Research and Mathematical Systems No. 50, 1971), pp. 1–13. ·Zbl 0269.90040
[9]W. Dinkelbach and W. Dürr, ”Effizienzaussagen bei Ersatzprogrammen zum Vektormaximumproblem”Operations Research Verfahren XII (1972) 69–77. ·Zbl 0253.90056
[10]N. Dunford and J.T. Schwartz,Linear operators, Part I (Interscience Publishers, 1957). ·Zbl 0128.34803
[11]W.B. Gearhart, ”Compromise solutions and estimation of the noninferior set”,Journal of Optimization Theory and Applications 28 (1979) 29–47. ·Zbl 0422.90074 ·doi:10.1007/BF00933599
[12]A.M. Geoffrion, ”Proper efficiency and the theory of vector maximazation”,Journal of Mathematical Analysis and Applications 22 (1968) 618–630. ·Zbl 0181.22806 ·doi:10.1016/0022-247X(68)90201-1
[13]S.C. Huang, ”Note on the mean-square strategy of vector values objective function”,Journal of Optimization Theory and Applications 9 (1972) 364–366. ·Zbl 0222.49004 ·doi:10.1007/BF00932935
[14]L. Hurwicz, ”Programming in linear spaces”, in: K.J. Arrow, L. Hurwicz and H. Uzawa, eds.,Studies in linear and non-linear programming (Stanford University Press, Stanford, 1958). 38–102.
[15]L. Kantorovitch, ”The method of successive approximations for functional equations”,Acta Mathematica 71 (1939) 63–97. ·Zbl 0021.13604 ·doi:10.1007/BF02547750
[16]W. Krabs,Optimization and approximation (John Wiley & Sons, New York, 1979). ·Zbl 0409.90051
[17]J.G. Lin, ”Maximal vectors and multi-objective optimization”,Journal of Optimization Theory and Applications 18 (1976) 41–64. ·Zbl 0298.90056 ·doi:10.1007/BF00933793
[18]R. Reemtsen, ”On level sets and an approximation problem for the numerical solution of a free boundary problem”,Computing 27 (1981) 27–35. ·Zbl 0457.65042 ·doi:10.1007/BF02243436
[19]S. Rolewicz, ”On a norm scalarization in infinite dimensional Banach spaces”,Control and Cybernetics 4 (1975) 85–89. ·Zbl 0334.49015
[20]M.E. Salukvadze, ”Optimization of vector functionals” (in Russian).Automatika i Telemekhanika 8 (1971) 5–15. ·Zbl 0236.49019
[21]W. Vogel,Vektoroptimierung in Produkträumen (Verlag Anton Hain, Mathematical Systems in Economics 35, 1977). ·Zbl 0392.90044
[22]W. Vogel, ”Halbnormen und Vektoroptimierung”, in: H. Albach, E. Helmstädter and R. Henn, eds.,Quantitative Wirtschaftsforschung-Wilhelm Krelle zum 60. Geburtstag (Tübingen 1977), 703–714. ·Zbl 0422.90075
[23]A.P. Wierzbicki, Penalty methods in solving optimization problems with vector performance criteria (Technical Report of the Institute of Automatic Control, TU of Warsaw, 1974).
[24]A.P. Wierzbicki, ”Basic properties of scalarizing functionals for multiobjective optimization”,Mathematische Operationsforschung und Statistik 8 (1977) 55–60.
[25]A.P. Wierzbicki, ”The use of reference objectives in multi-objective optimization”, in: G. Fandel and T. Gal, eds.,Multiple criteria decision making-Theory and application (Springer, Lecture Notes in Economics and Mathematical Systems No. 177, 1980), pp. 468–486.
[26]A.P. Wierzbicki, ”A mathematical basis for satisficing decision making”, in: J.N. Morse,Organizations: Multiple agents with multiple criteria (Springer, Lecture Notes in Economics and Mathematical Systems No. 190, 1981), pp. 465–485.
[27]P.L. Yu, ”A class of solutions for group decision problems”,Management Science 19 (1973) 936–946. ·Zbl 0264.90008 ·doi:10.1287/mnsc.19.8.936
[28]P.L. Yu and G. Leitmann, ”Compromise solutions, domination structures, and Salukvadze’s solution”,Journal of Optimization Theory and Applications 13 (1974) 362–378. ·Zbl 0362.90111 ·doi:10.1007/BF00934871
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp