Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Period mapping associated to a primitive form.(English)Zbl 0539.58003

The author gives a summary of the study of Gauss-Manin connection of a Hamiltonian system, higher residue pairing, primitive forms and period mapping associated with a universal unfolding of an isolated hypersurface singularity. As recent developments in the subject, he shows how to reduce the existence of primitive forms to the existence of certain good section of the ”principal symbol module” \(q_*\Omega_ F\) into the \({\mathcal E}(0)\)-module \({\mathcal H}^ 0_ F\). This result enables one to construct primitive forms for a large class of singularities. In the final paragraph, by using solutions of a certain self-dual holonomic system, he defines a period mapping associated to a primitive form for a universal unfolding of a hypersurface isolated singular point.
Reviewer: S.Tajima

MSC:

58C25 Differentiable maps on manifolds
58K99 Theory of singularities and catastrophe theory
32S05 Local complex singularities

Cite

References:

[1]Arnold, V. I., Indices of singular points of 1 -forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth sur- faces, Uspekhi Mat Nauk, 34:2 (1979), 3-38.
[2]Barlet, D., Formes hermitiennes horizontales et integration dans les fibre, Institut Elie Cartan, Equipe associee d’Analyse Globale n^\circ 839. ·Zbl 0562.32004
[3]- 9 Developpement asymptotique des fonctions obtenues par integration sur les fibres, Invent, math., 68 (1982), 129-174. ·Zbl 0508.32003 ·doi:10.1007/BF01394271
[4]Birkhoff, G. D., The generalized Rieman problem for linear differential equations..., Proc. Amer. Acad. Arts. Sci., 49 (1913), 521-568.
[5]Brieskorn, E., Die monodromie der isolierten Singularitaten von Hyperflachen, Man- uscripta math., 2 (1970), 103-160. ·Zbl 0186.26101 ·doi:10.1007/BF01155695
[6]? Singular elements of semi-simple algebraic groups, Actes Congres Intern. Math. 2 (1970), 279-284. ·Zbl 0223.22012
[7]9 jhe unfolding of exceptional singularities, Nova Acta Leopoldina, NF 52 Nr. 240 (1981), 65-93.
[8]Brylinski, J-L., Transformations canoniques dualite Projective Theorie de Lefschetz, Transformations de Fourier et Sommes Trigonometriques, (1983).
[9]Deligne, P., Equations differentielles a points singulier reguliers, Lecture Notes in Mathematics, 163, Springer-Verlag, 1970. ·Zbl 0244.14004 ·doi:10.1007/BFb0061194
[10]Ishiura, S. and Noumi, M., A calculus of the GauD-Manin system of type At. I, II. Proc. Japan Acad., 58 (1982), 13-16, 62-65. ·Zbl 0524.32013 ·doi:10.3792/pjaa.58.13
[11], The GauG-Manin system of type Ah in preparation.
[12]Kato, M. and Watanabe, S., The flat coordinate system of the rational double point of E8 type, Bull. Coll. Sci., Univ. Ryukyus, 32 (1981), 1-3. ·Zbl 0472.14001
[13]Kac, V. and Peterson, D. H., Infinite-dimensional Lie algebras, theta functions and modular forms, preprint (1982). ·Zbl 0584.17007 ·doi:10.1016/0001-8708(84)90032-X
[14]Kashiwara, M. and Kawai, T., Microlocal analysis, RIMS-preprint 430, Kyoto Univ. (1983).
[15]Katz, N. M., The regularity theorem in algebraic geometry, Actes Congres Intern. Math. 1 (1970), 437-443. ·Zbl 0235.14006
[16]Le Dung Trang et Mebkhout, Z., Introduction to linear differential systems, Proc. Symposia in Pure Math., A. M. S. (1983).
[17]Looijenga, E., A period mapping for certain semi-universal deformations, Com. Mah., 30 (1975), 299-316. ·Zbl 0312.14006
[18], On the semi-universal deformation of a simple-elliptic hypersurface sin- gularity Part II: The discriminant, Topology, 17 (1978), 23-40. ·Zbl 0392.57013 ·doi:10.1016/0040-9383(78)90010-1
[19]? Homogeneous spaces associated to unimodular singularities, Proc. Int. Congress Helsinki (1978), 531-536.
[20], Root systems and elliptic curves, Invent, math., 38 (1976), 17-32.
[21], Invariant theory for generalized root systems, Invent, math., 61 (1980), 1-32. ·Zbl 0436.17005 ·doi:10.1007/BF01389892
[22]Malgrange, B., Integrates asymptotiques et monodromie, Ann. E. N. S. 4^\circ 7 (1974). ·Zbl 0305.32008
[23], Modules microdifferentiels et classes de Gevrey, Advances in Math. IB (1981), 513-530.
[24]1 Deformation de modules differentiels et microdifferentiels, preprint. [25] , Sur les deformations isomonodromiques, I, Singularites Regulieres.
[25]Milnor, J. W., Singular points of complex hypersurfaces, Ann. of Math. Studies 61 Princeton Univ. Press, 1968. ·Zbl 0184.48405
[26]Namikawa, Y., Higher residues associated with an isolated hypersurface singularity, Advanced Studies in Pure Math., I (1982). ·Zbl 0512.32007
[27]Noumi, M., Expantion of the solution of a GauB-Manin system at a point of infinity, preprint, 1982.
[28]Pham, F., Singularities des systemes differentiels de Gauft-Manin, Birkhauser, (1979).
[29], Structure de Hodge mixed associees a un germ de fonction a point critiques isolee, preprint.
[30], Remarque sur I’equivalence des fonctions de phase, Institut Fourier Uni- versite de Grenoble I.
[31]Pinkham, H. C., Simple-elliptic singularities, del Pezzo surfaces and Cremona trans- formations, Proceedings of Symposia in Pure Mathematics, 30 (1977), 69-71. ·Zbl 0391.14006
[32]Saito, K., On a linear structure of a quotient variety by a finite reflexion group, RIMS- preprint 288, Kyoto Univ. (1979).
[33]? Theory of logarithmic differential forms and logarithmic vector fields, /. Fac. ScL Univ. Tokyo, Sect. IA Math, 27 (1981), 265-291. ·Zbl 0496.32007
[34]j On the periods of primitive integrals, preprint, Harvard, 1980.
[35]9 Primitive forms for a universal unfolding of a function with an isolated critical point, /. Fuc. ScL Univ. Tokyo, Sect. IA Math, 28 (1982), 775-792. ·Zbl 0523.32015
[36]9 The zeroes of characteristic function xf for the exponents of a hypersurface isolated singular point, Advanced Studies in Pure Math., 1 (1982), 193-215.
[37], The higher residue pairings Kpk* for a family of hypersurface singular points, Proc. Symposia in Pure Math., A. M. S., Arcata, 1981.
[38]? A characterization of the intersection form of a Milnor’s fiber for a function with an isolated critical point, Proc. Japan Acad., 58, Ser. A, No. 2, (1982), 79-81. ·Zbl 0539.57011 ·doi:10.3792/pjaa.58.79
[39], On the identification of intersection form on the middle homology group with the flat function via period mapping, Proc. Japan Acad., 58, Ser. A, No. 5 (1982), 196-199. ·Zbl 0562.32005 ·doi:10.3792/pjaa.58.196
[40]? On the periods of primitive integrals I, RIMS-preprint 412, Kyoto Univ. 1982.
[41], The primitive forms for simply elliptic singularities, in preparation.
[42]9 Extended affine root systems and their invariants, in preparation.
[43]Saito, K., Yano, T. and Sekiguchi, J., On a certain generator system of the ring of invariants of a finite reflexion group, Comm. Algebra 8 (4) (1980), 373-408. ·Zbl 0428.14020 ·doi:10.1080/00927878008822464
[44]Saito, M., Hodge filtrations on GauO-Manin system I, IT, preprint, 1982.
[45], On the structure of Brieskorn lattice, preprint. [47] Slodowy, P., Simple singularities and simple algebraic groups, Lecture Notes in Math. 815, 1980.
[46]f Chevalley group over C((t)) and deformations of simply elliptic singularities, RIMS-preprint 415, Kyoto Univ., (1981), 19-38.
[47]9 A character approach to Looijenga’s invariant theory for generalized root system, preprint.
[48]Steenbrink, J., Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities, Proceedings of the Nordic Summer School, Oslo, 1976. ·Zbl 0373.14007
[49]Teissier, B., These, Universite de Paris VII, 1973.
[50]Terao, H., Generalized exponents of a free arrangement of hyperplanes and Shephard- Todd-Brieskorn formula, Invent, math., 63 (1981), 159-179. ·Zbl 0437.51002 ·doi:10.1007/BF01389197
[51]9 Discriminant of a holomorphic map and logarithmic vector fields, to appear.
[52]^ jhe bifurcation set and logarithmic vector fields, Math. Ann., to appear. ·Zbl 0497.32016 ·doi:10.1007/BF01457134
[53]Thorn, R., Ensembles et morphismes stratifies, Bull. Amer. Math. Soc., 75 (1969). ·Zbl 0197.20502 ·doi:10.1090/S0002-9904-1969-12138-5
[54]Varchenko, A., Asymptotic mixed Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR, Ser. math., 45 (1981), 541-591. ·Zbl 0476.14002
[55]Varcenko, A. N., On the monodromy operator of multiplication by/in the local ring, Soviet Math. Dokl, 24 (1981).
[56]Varcenko, A. N. and Givental, A. B., Period mapping and intersection form, Func- tional Analysis and its Application, 16 (1982), 7-20. ·Zbl 0497.32008
[57]Yano, T., Flat coordinate system for the deformation of type E6, Proc. Japan Acad. 57, Ser. A. No. 8 (1981), 412-414. ·Zbl 0524.14003 ·doi:10.3792/pjaa.57.412
[58], Flat coordinate system for the deformation of type E7, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp