Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Duality in generalized linear fractional programming.(English)Zbl 0526.90083


MSC:

90C32 Fractional programming
49N15 Duality theory (optimization)

Cite

References:

[1]D.J. Ashton and D.R. Atkins, ”Multicriteria programming for financial planning”,Journal of the Operational Research Society 30 (1979) 259–270. ·Zbl 0393.90048
[2]I. Barrodale, ”Best rational approximation and strict quasi-convexity”,SIAM Journal of Numerical Analysis 10 (1973) 8–12. ·Zbl 0262.41034 ·doi:10.1137/0710002
[3]A. Charnes and W.W. Cooper, ”Programming with linear fractional functionals”,Naval Research Logistics Quarterly 9 (1962) 181–186. ·Zbl 0127.36901 ·doi:10.1002/nav.3800090303
[4]A. Charnes and W.W. Cooper, ”Goal programming and multi-objective optimization (Part I)”,European Journal of Operational Research 1 (1977) 39–54. ·Zbl 0375.90079 ·doi:10.1016/S0377-2217(77)81007-2
[5]A. Charnes, L. Cox and M. Lane, ”A Note on the redesigning of a rate structure for allocation of state funds to educational institutions”, Working Paper 70-49 of Project GUM, University of Texas at Austin, (Austin, Texas, 1970).
[6]J.P. Crouzeix, ”Contributions à l’étude des fonctions quasiconvexes”, Doctoral Thesis, Université de Clermont (Clermont, France, 1977).
[7]J.P. Crouzeix, ”A duality framework in quasiconvex programming”, in: S. Schaible and W.T. Ziemba, eds.,Generalized Concavity in Optimization and Economics (Academic Press, New York, 1981) pp. 207–225. ·Zbl 0538.90073
[8]W. Dinkelbach, ”On nonlinear fractional programming”,Management Science 13 (1967) 492–498. ·Zbl 0152.18402 ·doi:10.1287/mnsc.13.7.492
[9]J. Flachs, ”Global saddle-point duality for quasi-concave programs, II”,Mathematical Programming 24 (1982) 326–345. ·Zbl 0493.90070 ·doi:10.1007/BF01585114
[10]E.G. Gol’stein,Theory of convex progranming, Translations of mathematical monographs 36 (American Mathematical Society, Providence, Rhode Island, 1972).
[11]R. Jagannathan, ”On some properties of programming problems in parametric form pertaining to fractional programming”,Management Science 12 (1966) 609–615. ·Zbl 0143.21602 ·doi:10.1287/mnsc.12.7.609
[12]R. Jagannathan and S. Schaible, ”Duality in generalized fractional programming via Farkas Lemma”,Journal of Optimization Theory and Applications, to appear. ·Zbl 0502.90079
[13]J.S.H. Kornbluth, ”A survey of goal programming”,OMEGA 1 (1973) 193–205. ·doi:10.1016/0305-0483(73)90023-6
[14]O.L. Mangasarian,Nonlinear programming (McGraw-Hill, New York, 1969). ·Zbl 0194.20201
[15]U. Passy and A. Keslassy, ”Pseudo duality and duality for explicitly quasiconvex functions”, Mimeograph Series No. 249. Faculty of Industrial Engineering and Management, Technion (Haifa, Israel, 1979). ·Zbl 0496.90075
[16]G.S. Rubinshtein, ”Duality in mathematical programming and some problems of convex analysis”, (English translation)Russian mathematical surveys 25 (1970) 171–200. ·Zbl 0225.90039 ·doi:10.1070/RM1970v025n05ABEH003800
[17]S. Schaible, ”Fractional programming: transformations, duality and algorithmic aspects”, Technical Report 73-9, Department of Operations Research, Stanford University (Stanford, CA, 1973). ·Zbl 0307.26010
[18]S. Schaible, ”Fractional programming I, Duality”,Management Science 22 (1976) 858–867. ·Zbl 0338.90050 ·doi:10.1287/mnsc.22.8.858
[19]S. Schaible, ”Duality in fractional programming: a unified approach”,Operations Research 24 (1976) 452–461. ·Zbl 0348.90120 ·doi:10.1287/opre.24.3.452
[20]S. Schaible,Analyse und Anwendungen von Quotientenprogrammen (Hain-Verlag, Meisenheim, 1978). ·Zbl 0395.90045
[21]S. Schaible, ”A survey of fractional programming”, in: S. Schaible and W.T. Ziemba, eds.,Generalized concavity in optimization and economics (Academic Press, New York, 1981) pp. 417–440. ·Zbl 0535.90092
[22]S. Schaible, ”Bibliography in fractional programming”,Zeitschrift für Operations Research 26 (7) (1982). ·Zbl 0494.90076
[23]E.C. Tammer, ”Dualitätstheorie für hyperbolische und stückweise-lineare konvexe Optimierungs-probleme”,Mathematische Operationenforschung und Statistik 5 (1974) 93–108. ·Zbl 0294.90084
[24]R. Vogt, ”A corporate strategy for realizing equal employment opportunity”,Behavioral and Social Accounting, to appear.
[25]J. von Neumann, ”A model of general economic equilibrium”,Review of Economic Studies 13 (1945) 1–9. ·Zbl 0063.05928 ·doi:10.2307/2296111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp