Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Decomposition through formalization in a product space.(English)Zbl 0523.49022


MSC:

49M27 Decomposition methods
52A40 Inequalities and extremum problems involving convexity in convex geometry
90C25 Convex programming
52A07 Convex sets in topological vector spaces (aspects of convex geometry)
49M25 Discrete approximations in optimal control
49M30 Other numerical methods in calculus of variations (MSC2010)
65K05 Numerical mathematical programming methods

Cite

References:

[1]A. Auslender, ”Etude numérique des problèmes d’optimisation avec contraintes”, Doctoral thesis, University of Grenoble (Grenoble, 1969). ·Zbl 0213.17301
[2]A. Auslender,Optimisation, méthodes numériques (Masson, Paris, 1976).
[3]J. Baranger and T. Dumont ”Decomposition and projection for nonlinear boundary value problems”, Discussion paper, UER de Mathématiques, University of Lyon I (Lyon, September 1980).
[4]A. Bensoussan and P. Kenneth, ”Sur l’analogie entre les méthodes de régularisation et de pénalisation”,Revue d’Informatique et de Recherche Opérationnelle 13-R3 (1968) 13–25.
[5]J. Cea,Optimisation (Dunod, Paris, 1971).
[6]J. Dumont, ”Décomposition par projection de certains problèmes elliptiques non linéaires”, 3rd C. Thesis, University of Lyon (Lyon 1978).
[7]I. Ekeland and R. Temam,Analyse convexe et problèmes variationnels (Dunod, Paris, 1974). ·Zbl 0281.49001
[8]W. Findeisen, ”Parametric optimization by primal method in multilevel systems”,IEEE Transactions on Systems Science and Cybernetics 4 (1968) 155–164. ·Zbl 0181.16501 ·doi:10.1109/TSSC.1968.300143
[9]N. Gastinel,Analyse numérique linéaire (Hermann, Paris, 1966).
[10]L. G. Gubin, B.T. Polyak and E.V. Raik, ”The method of projections for finding the common point of convex sets”,USSR Computational Mathematics and Mathematical Physics 7 (1967) 1–24 (Translation of theZhurnal vychislitelnoj Matematiki i matematicheskoj Fiziki). ·Zbl 0199.51002 ·doi:10.1016/0041-5553(67)90113-9
[11]Y. Haugazeau, ”Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes”, Doctoral thesis, University of Paris (Paris 1968).
[12]A.A. Kaplan, ”Determination of the extremum of a linear function of a convex set”,Soviet Mathematics Doklady 9 (1968) 269–271 (Translation of the Pure Mathematics Section of the Doklady Akademii Nauk SSSR) ·Zbl 0186.23704
[13]J.E. Kelley, ”The cutting plane method for solving convex programs”,Journal of the Society for Industrial and Applied Mathematics 6 (1958) 15–22. ·Zbl 0084.15804 ·doi:10.1137/0106002
[14]P.J. Laurent and B. Martinet, ”Méthodes duales pour le calcul du minimum d’une fonction convexe sur une intersection de convexes”, in: A. V. Balakrishnan, M. Contensou, B.F. de Veubeke, P. Krée, J. L. Lions and N.N. Moiseev, eds,Lecture Notes in Mathematics 132 (Springer, Berlin, 1970) pp. 159–180. ·Zbl 0243.90034
[15]J.L. Lions and R. Temam, ”Eclatement et décentralisation en calcul des variations”, in: A.V. Balakrishnan, M. Contensou, B.F. de Veubeke, P. Krée, J.L. Lions and N.N. Moiseev, eds.,Lecture Notes in Mathématics 132 (Springer, Berlin, 1970) pp. 196–217. ·Zbl 0223.49033
[16]J.L. Lions and G.I. Marchouk,Sur les méthodes numériques en sciences physiques et économiques (Dunod, Paris, 1974). ·Zbl 0332.65040
[17]L. McLinden, ”Symmetrized separable convex programming”,Transactions of the American Mathematical Society 247 (1979) 1–44. ·Zbl 0431.90064 ·doi:10.1090/S0002-9947-1979-0517685-5
[18]B. Martinet, ”Algorithmes pout la résolution des problèmes d’optimisation et de minimax”, Doctoral thesis, University of Grenoble (Grenoble, 1972).
[19]B. Martinet and A. Auslander, ”Méthodes de décomposition pour la minimisation d’une fonction sur un espace produit”,SIAM Journal on Control 12 (1974) 635–642. ·Zbl 0302.49025 ·doi:10.1137/0312047
[20]Y.I. Merzlyakov, ”On a relaxation method of solving systems of linear inequalities”USSR Computational Mathematics and Mathematical Physics 2 (1962) 482–487 (Translation of the Zhurnal vychislitelnoj Matematiki i matematicheskoj Fiziki). ·Zbl 0123.11204
[21]M. D. Mesarovic, D. Macko and Y. Takahara,Theory of hierarchical multilevel systems (Academic Press, New York, 1970). ·Zbl 0224.93005
[22]J.J. Moreau, ”Proximité et dualité dans un espace hilbertien”,Bulletin de la Société Mathématique de France 93 (1965) 273–299.
[23]W. Oettli, ”An iterative method, having a linear rate of convergence, for solving a pair of dual linear programs”,Mathematical Programming 3 (1972) 302–311. ·Zbl 0259.90019 ·doi:10.1007/BF01585003
[24]E.L. Peterson, ”Generalization and symmetrization of duality in geometric programming”, Discussion paper, Northwestern University, [Evanston, 1972].
[25]G. Pierra, ”Eclatement de contraintes en parallèle pour la minimisation d’une forme quadratique” in: J. Cea, ed.,Lecture Notes in Computer Science 41 (Springer, Berlin, 1976) pp. 200–218. ·Zbl 0346.49032
[26]G. Pierra, ”Crossing of algorithms in decomposition methods”, in: G. Gardabassi and A. Locatelli, eds.,Large Scale Systems theory and applications (ISA, Pittsburg, 1976) pp. 309–319.
[27]G. Pierra, ”Méthodes de décomposition et croisement d’algorithmes pour des problèmes d’optimisation”, Doctoral thesis, University of Grenoble (Grenoble 1976).
[28]R. T. Rockafellar, ”Monotone operators and the proximal point algorithm”,SIAM Journal on Control 14 (1976) 877–898. ·Zbl 0358.90053 ·doi:10.1137/0314056
[29]R. Temam, ”Quelques méthodes de décomposition en analyse numérique”, in:Actes, Congrès International des Mathématiciens 1970 (Gauthier-Villars, Paris, 1971) pp. 311–319.
[30]N.N. Yanenko,Méthode à pas fractionnaires (Armand Colin, Paris, 1968).
[31]R.S. Varga,Matrix iterative analysis (Prentice Hall, Englewood Cliffs, N.J., 1962). ·Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp