Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Computational experience with advanced implementation of decomposition algorithms for linear programming.(English)Zbl 0521.65043


MSC:

65K05 Numerical mathematical programming methods
90C05 Linear programming

Citations:

Zbl 0093.328

Software:

LIFT

Cite

References:

[1]D.C. Ament, ”An implementation of theLift algorithm”, Master’s Thesis, Econometric Institute, Erasmus University (Rotterdam, 1981).
[2]D.C. Ament, J.K. Ho, F. Loute and M. Remmelswaal, ”Lift: A nested decomposition algorithm for solving lower block-triangular programs”, in: G.B. Dantzig et al., eds.,Large-scale linear programming (IIASA, Laxenberg, 1981) pp. 383–408. ·Zbl 0538.90053
[3]C. Berger, ”Une étude sur l’efficacité des algorithmes de décomposition à résoudre les problèmes linéaires engendrés parOreste”, Report to the CCE (Contract EM2-012-B), C.O.R.E., (Louvain-la-Neuve, 1981).
[4]A.M. Costa and L.P. Jennergen, ”Trade and development in the world economy: methodological features of projectDynamico”,Journal of Policy Modeling 4 (1982) 3–22. ·doi:10.1016/0161-8938(82)90002-3
[5]B. Culot, and E. Loute, ”Description du programmeDecompsx”, C.O.R.E. Computing Report 80-B-02 (Louvain-la-Neuve, 1980).
[6]B. Culot, ”Mise en oeuvre de l’algorithme de décomposition de Dantzig et Wolfe”, Master’s Thesis, Université Catholique de Louvain (Louvain-la-Neuve, 1978).
[7]G.B. Dantzig, and P. Wolfe, ”The decomposition algorithm for linear programs”,Econometrica 29 (1961) 767–778. ·Zbl 0104.14305 ·doi:10.2307/1911818
[8]G.B. Dantzig, and S.C. Parikh, ”On aPilot linear programming model for assessing physical impact on the economy of a changing energy picture”, Technical Report SOL 75-14, Department of Operations Research, Stanford University (Stanford, CA, 1975). ·Zbl 0356.90015
[9]R. Geottle, E. Cherniavsky and R. Tessmer, ”An integrated multiregional energy and interindustry model of the United States”, BNL 22728, Brookhaven National Laboratory (New York, 1977).
[10]J.K. Ho, ”Implementation and application of a nested decomposition algorithm”, in: W.W. White, ed.,Computers and mathematical programming, Special Publication 502 (National Bureau of Standards, 1978) pp. 21–30.
[11]J.K. Ho and E. Loute, ”A comparative study of two methods for staircase linear programs”,ACM Transactions on Mathematical Software 6 (1980) 17–30. ·Zbl 0432.90048 ·doi:10.1145/355873.355875
[12]J.K. Ho and E. Loute, ”An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming”,Mathematical Programming 20 (1981) 303–326. ·Zbl 0468.90042 ·doi:10.1007/BF01589355
[13]J.K. Ho and E. Loute, ”A set of staircase linear programming test problems”,Mathematical Programming 20 (1981) 245–250. ·Zbl 0448.90036 ·doi:10.1007/BF01589349
[14]J.K. Ho and E. Loute, ”Computational aspects ofDynamico: a model of trade and development in the world economy”, CBA WP-159, University of Tennessee (Knoxville, 1982).
[15]J.K. Ho, E. Loute, Y. Smeers and E. Van der Voort, ”The use of decomposition techniques for large-scale linear programming energy models”, in: A. Strub, ed.,Energy models for the European community (IPC Press, London, 1979) pp. 94–101.
[16]J.K. Ho and A.S. Manne, ”Nested decomposition for dynamic models”,Mathematical Programming 6 (1974) 121–140. ·Zbl 0294.90051 ·doi:10.1007/BF01580231
[17]IBM, ”IBM mathematical programming system extended/370 (MPSX/370) program reference manual” SH19-1095-3 (December, 1979).
[18]P. Jadot, T. Heirwegh and C. Thonet, ”Data base, simulation and optimization models”, in: A. Strub, ed.,Energy models for the European community (IPC Press, London, 1979), pp. 72–88.
[19]M.W. Remmelswaal, ”Lift: A nested decomposition algorithm for lower block-triangular LP problems”, Master’s Thesis, Econometric Institute, Erasmus University (Rotterdam, 1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp