[1] | D.C. Ament, ”An implementation of theLift algorithm”, Master’s Thesis, Econometric Institute, Erasmus University (Rotterdam, 1981). |
[2] | D.C. Ament, J.K. Ho, F. Loute and M. Remmelswaal, ”Lift: A nested decomposition algorithm for solving lower block-triangular programs”, in: G.B. Dantzig et al., eds.,Large-scale linear programming (IIASA, Laxenberg, 1981) pp. 383–408. ·Zbl 0538.90053 |
[3] | C. Berger, ”Une étude sur l’efficacité des algorithmes de décomposition à résoudre les problèmes linéaires engendrés parOreste”, Report to the CCE (Contract EM2-012-B), C.O.R.E., (Louvain-la-Neuve, 1981). |
[4] | A.M. Costa and L.P. Jennergen, ”Trade and development in the world economy: methodological features of projectDynamico”,Journal of Policy Modeling 4 (1982) 3–22. ·doi:10.1016/0161-8938(82)90002-3 |
[5] | B. Culot, and E. Loute, ”Description du programmeDecompsx”, C.O.R.E. Computing Report 80-B-02 (Louvain-la-Neuve, 1980). |
[6] | B. Culot, ”Mise en oeuvre de l’algorithme de décomposition de Dantzig et Wolfe”, Master’s Thesis, Université Catholique de Louvain (Louvain-la-Neuve, 1978). |
[7] | G.B. Dantzig, and P. Wolfe, ”The decomposition algorithm for linear programs”,Econometrica 29 (1961) 767–778. ·Zbl 0104.14305 ·doi:10.2307/1911818 |
[8] | G.B. Dantzig, and S.C. Parikh, ”On aPilot linear programming model for assessing physical impact on the economy of a changing energy picture”, Technical Report SOL 75-14, Department of Operations Research, Stanford University (Stanford, CA, 1975). ·Zbl 0356.90015 |
[9] | R. Geottle, E. Cherniavsky and R. Tessmer, ”An integrated multiregional energy and interindustry model of the United States”, BNL 22728, Brookhaven National Laboratory (New York, 1977). |
[10] | J.K. Ho, ”Implementation and application of a nested decomposition algorithm”, in: W.W. White, ed.,Computers and mathematical programming, Special Publication 502 (National Bureau of Standards, 1978) pp. 21–30. |
[11] | J.K. Ho and E. Loute, ”A comparative study of two methods for staircase linear programs”,ACM Transactions on Mathematical Software 6 (1980) 17–30. ·Zbl 0432.90048 ·doi:10.1145/355873.355875 |
[12] | J.K. Ho and E. Loute, ”An advanced implementation of the Dantzig-Wolfe decomposition algorithm for linear programming”,Mathematical Programming 20 (1981) 303–326. ·Zbl 0468.90042 ·doi:10.1007/BF01589355 |
[13] | J.K. Ho and E. Loute, ”A set of staircase linear programming test problems”,Mathematical Programming 20 (1981) 245–250. ·Zbl 0448.90036 ·doi:10.1007/BF01589349 |
[14] | J.K. Ho and E. Loute, ”Computational aspects ofDynamico: a model of trade and development in the world economy”, CBA WP-159, University of Tennessee (Knoxville, 1982). |
[15] | J.K. Ho, E. Loute, Y. Smeers and E. Van der Voort, ”The use of decomposition techniques for large-scale linear programming energy models”, in: A. Strub, ed.,Energy models for the European community (IPC Press, London, 1979) pp. 94–101. |
[16] | J.K. Ho and A.S. Manne, ”Nested decomposition for dynamic models”,Mathematical Programming 6 (1974) 121–140. ·Zbl 0294.90051 ·doi:10.1007/BF01580231 |
[17] | IBM, ”IBM mathematical programming system extended/370 (MPSX/370) program reference manual” SH19-1095-3 (December, 1979). |
[18] | P. Jadot, T. Heirwegh and C. Thonet, ”Data base, simulation and optimization models”, in: A. Strub, ed.,Energy models for the European community (IPC Press, London, 1979), pp. 72–88. |
[19] | M.W. Remmelswaal, ”Lift: A nested decomposition algorithm for lower block-triangular LP problems”, Master’s Thesis, Econometric Institute, Erasmus University (Rotterdam, 1981). |