Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Boundary behavior of harmonic functions in non-tangentially accessible domains.(English)Zbl 0514.31003


MSC:

31B25 Boundary behavior of harmonic functions in higher dimensions
42B25 Maximal functions, Littlewood-Paley theory
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Cite

References:

[1]Ahlfors, L., Quasiconformal reflection, Acta Math., 109, 291-301 (1963) ·Zbl 0121.06403
[2]Brelot, M., Élements de la théorie classique du potential (1965), Centre de Documentation Universitaire: Centre de Documentation Universitaire Paris ·Zbl 0084.30903
[3]Burkholder, D. L.; Gundy, R., Distribution function inequalities for the area integral, Studia Math., 44, 527-544 (1972) ·Zbl 0219.31009
[4]Burkholder, D. L.; Gundy, R.; Silverstein, M., A maximal function characterization of the class \(H^p\), Trans. Amer. Math. Soc., 157, 137-153 (1971) ·Zbl 0223.30048
[5]Caffarelli, L.; Fabes, E.; Kenig, C., Completely singular elliptic-harmonic measures, Indiana J. Math., 30, 6, 917-924 (1981) ·Zbl 0482.35020
[6]Caffarelli, L.; Fabes, E.; Mortola, S.; Salsa, S., Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana, J. Math., 30, 4, 621-640 (1981) ·Zbl 0512.35038
[7]Calderón, A. P., On the behavior of harmonic functions near the boundary, Trans. Amer. Math. Soc., 68, 47-54 (1950) ·Zbl 0035.18901
[8]Calderón, A. P., On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc., 68, 55-61 (1950) ·Zbl 0035.18903
[9]Calderón, A. P., On the Cauchy integral on Lipschitz curves, and related operators, Proc. Nat. Acad. Sci., 74, 4, 1324-1327 (1977) ·Zbl 0373.44003
[10]Carleson, L., On the existence of boundary values for harmonic functions in several variables, Ark. Mat., 4, 393-399 (1962) ·Zbl 0107.08402
[11]Coifman, R. R., A real variable characterization of \(H^p\), Studia Math., 51, 269-274 (1974) ·Zbl 0289.46037
[12]Coifman, R. R.; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, 241-250 (1974) ·Zbl 0291.44007
[13]Coifman, R. R.; Meyer, Y., Le théorème de Calderón par les méthodes de variable réelle, C. R. Acad. Sci. Paris Sér. A, 289, 425-428 (1979) ·Zbl 0427.42007
[14]Coifman, R. R.; Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, 569-645 (1977) ·Zbl 0358.30023
[15]Dahlberg, B. E.J, On estimates of harmonic measure, Arch. Rational Mech. Anal., 65, 272-288 (1977) ·Zbl 0406.28009
[16]Dahlberg, B. E.J, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal function for functions harmonic in a Lipschitz domain, Studia Math., 67, 297-314 (1980) ·Zbl 0449.31002
[17]B. E. J. Dahlberg\(H^1 BMO \);B. E. J. Dahlberg\(H^1 BMO \)
[18]Fabes, E.; Kenig, C., On the Hardy space \(H^1\) of a \(C^1\) domain, Ark. Mat., 19, 1-22 (1981) ·Zbl 0484.42006
[19]Fabes, E.; Kenig, C.; Neri, U., Carleson measures, \(H^1\) duality and weightedBMO in non-smooth domains, Indiana J. Math., 30, 4, 547-581 (1981) ·Zbl 0441.31004
[20]Fabes, E.; Nerl, U., Dirichlet problem in Lipschitz domains withBMO data, (Proc. Amer. Math. Soc., 78 (1980)), 33-39 ·Zbl 0455.31004
[21]Fefferman, C., Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc., 77, 587-588 (1971) ·Zbl 0229.46051
[22]Fefferman, C.; Stein, E. M., \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) ·Zbl 0257.46078
[23]Gehring, F. W., The \(L^p\) integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 139, 265-277 (1973) ·Zbl 0258.30021
[24]Gehring, F. W.; Osgood, B. G., Uniform domains and the quasihyperbolic metric, Journal d’Analyse Math., 36, 50-74 (1979) ·Zbl 0449.30012
[25]Hunt, R. R.; Wheeden, R. L., On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132, 307-322 (1968) ·Zbl 0159.40501
[26]Hunt, R. R.; Wheeden, R. L., Positive harmońic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147, 507-527 (1970) ·Zbl 0193.39601
[27]Jerison, D. S.; Kenig, C. E., An identity with applications to harmonic measure, Bull. Amer. Math. Soc. (New Series), 2, 447-451 (1980) ·Zbl 0436.31002
[28]Jerison, D. S.; Kenig, C. E., The Dirichlet problem in non-smooth domains, Annals of Math., 113, 367-382 (1981) ·Zbl 0434.35027
[29]John, F., Rotation and strain, Comm. Pure Appl. Math., 14, 391-413 (1961) ·Zbl 0102.17404
[30]John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426 (1961) ·Zbl 0102.04302
[31]Jones, P. W., Extension theorems forBMO, Indiana J. Math., 29, 41-66 (1980) ·Zbl 0432.42017
[32]P. W. Jones;P. W. Jones
[33]Kenig, C. E., Weighted \(H^p\) spaces on Lipschitz domains, Amer. J. Math., 102, 129-163 (1980) ·Zbl 0434.42024
[34]Kenig, C. E., Weighted Hardy spaces on Lipschitz domains, (Proceedings of Symposia in Pure Mathematics, Vol. XXXV (1979)), 263-274, Part 1 ·Zbl 0423.30027
[35]Latter, R., A characterization of \(H^p (R^{n\) ·Zbl 0398.42017
[36]Lavrentiev, M., Boundary problems in the theory of univalent functions, Mat. Sb. (N.S.), 1, 43, 815-844 (1936), [English trans.];Amer. Math. Soc. Trans. Ser. 2,32 ·Zbl 0127.03403
[37]Lehto, O.; Virtanen, K. I., Quasiconformal Mappings in the Plane (1973), Springer-Verlag: Springer-Verlag Berlin/New York ·Zbl 0267.30016
[38]Macias, R.; Segovia, C., Lipschitz functions on spaces of homogeneous type, Advan. in Math., 33, 257-270 (1979) ·Zbl 0431.46018
[39]Macías, R.; Segova, C., A decomposition into atoms of distributions on spaces of homogeneous type, Advan. in Math., 33, 171-309 (1979) ·Zbl 0431.46019
[40]Marcinkiewicz, J.; Zygmund, A., A theorem of Lusin, Duke Math. J., 4, 473-485 (1938) ·JFM 64.0268.01
[41]Martin, R., Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49, 137-172 (1941) ·JFM 67.0343.03
[42]Muckenhoupt, B.; Wheeden, R. L., Weighted bouded mean oscillation and the Hilbert transform, Studia Math., 54, 221-237 (1976) ·Zbl 0318.26014
[43]Nagel, A.; Stein, E. M., Lectures on Pseudo Differential Operators (1979), Princeton Univ. Press and Univ. of Tokyo Press: Princeton Univ. Press and Univ. of Tokyo Press Princeton, N. J ·Zbl 0415.47025
[44]Privalov, I., Randeigenschaften analytischer Funktionen (1956), Deutscher Verlag der Wissenschaften: Deutscher Verlag der Wissenschaften Berlin ·Zbl 0073.06501
[45]Spencer, D., A function theoretic identity, mer. J. Math., 65, 147-160 (1943) ·Zbl 0060.20603
[46]Stein, E. M., On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math., 106, 137-174 (1961) ·Zbl 0111.08001
[47]Stein, E. M., Topics in Harmonic Analysis Related to the Littlewood Paley Theory, (Annals of Mathematics Studies (1970), Princeton Univ. Press and the Univ. of Tokyo Press: Princeton Univ. Press and the Univ. of Tokyo Press Princeton, N. J) ·Zbl 0193.10502
[48]Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, N. J ·Zbl 0207.13501
[49]Stein, E. M.; Weiss, G., On the theory of harmonic functions of several variables, I, Acta Math., 103, 25-62 (1960) ·Zbl 0097.28501
[50]Stein, E. M.; Weiss, G., Fourier Analysis on Euclidean Spaces (1971), Princeton Univ. Press: Princeton Univ. Press Princeton, N. J ·Zbl 0232.42007
[51]Stein, E. M.; Zygmund, A., Boundedness of translation invariant operators on Holder and \(L^p\) spaces, Ann. of Math., 85, 337-349 (1967) ·Zbl 0172.40102
[52]\( \textsc{A. Uchiyama}H^p \); \( \textsc{A. Uchiyama}H^p \) ·Zbl 0503.46020
[53]Väisälä, J., Lectures on \(n\)-dimensional Quasiconformal Mappings, (Lecture Notes in Mathematics, No. 229 (1971), Springer-Verlag: Springer-Verlag New York/Berlin) ·Zbl 0221.30031
[54]Wiener, N., The Dirichlet problem, J. Math. Phys., 3, 127-146 (1924) ·JFM 51.0361.01
[55]Wu, J. M.G, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann Inst. Fourier (Grenoble), 28, 4, 147-167 (1978) ·Zbl 0368.31006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp