65K10 | Numerical optimization and variational techniques |
49M20 | Numerical methods of relaxation type |
49J40 | Variational inequalities |
[1] | H.Z. Aashtiani and T.L. Magnanti, ”Equilibria on a congested transportation network”,SIAM Journal on Algebraic and Discrete Methods 2 (1981) 213–226. ·Zbl 0501.90033 ·doi:10.1137/0602024 |
[2] | B.H. Ahn,Computation of market equilibria for policy analysis: the project independence evaluation system (PIES) approach (Gurland, New York, 1979). |
[3] | R. Asmuth, B.C. Eaves and E.L. Peterson, ”Computing economic equilibria on affine networks with Lemke’s algorithm”,Mathematics of Operations Research 4 (1979) 209–214. ·Zbl 0443.90027 ·doi:10.1287/moor.4.3.209 |
[4] | A. Auslender, ”Problèmes de minimax via l’analyse convexe et les inégalités variationelles: theorie et algorithmes”, Lecture Notes in Economics and Mathematical Systems (Springer, New York, 1972). ·Zbl 0251.90039 |
[5] | D.P. Bertsekas and E.M. Gafni, ”Projection methods for variational inequalities with application to the traffic assignment problem”, Tech. Rept., Laboratory for Information and Decision Systems, M.I.T., Cambridge, MA (1980). ·Zbl 0478.90071 |
[6] | H. Brezis and M. Sibony, ”Méthodes d’approximation et d’iteration pour les opérateurs monotones”Archive for Rational Mechanics and Analysis 28 (1969) 59–82 ·Zbl 0157.22501 ·doi:10.1007/BF00281564 |
[7] | R.E. Bruck, ”An iterative solution of a variational inequality for certain monotone operators in Hilbert space”,Bulletin of the American Mathematical Society 81 (1975) 890–892. ·Zbl 0332.49005 ·doi:10.1090/S0002-9904-1975-13874-2 |
[8] | S. Dafermos, ”Traffic equilibrium and variational inequalities”,Transportation Science 14 (1980) 42–54. ·doi:10.1287/trsc.14.1.42 |
[9] | S. Dafermos, ”The general multimodal traffic equilibrium problem”,Networks, 12 (1982) 57–72. ·Zbl 0478.90022 ·doi:10.1002/net.3230120105 |
[10] | S. Dafermos, ”Relaxation algorithms for the general asymmetric traffic equilibrium problem”,Transportation Science 16 (1982) 231–240. ·doi:10.1287/trsc.16.2.231 |
[11] | B.C. Eaves, ”A locally quadratically convergent algorithm for computing stationary points”, Tech. Rep., Department of Operations Research, Stanford University, Stanford, CA (1978). ·Zbl 0458.65057 |
[12] | R. Glowinski, J.L. Lions and R. Trémolières,Analyse numérique des inéquations variationelles, méthodes mathématiques de l’informatique (Bordas, Paris, 1976). |
[13] | N.H. Josephy, ”Newton’s method for generalized equations”, Tech. Rept. 1965, Mathematics Research Center, University of Wisconsin, Madison, WI (1979). |
[14] | S. Karamardian, ”Generalized complementarity problem”,Journal of Optimization Theory and Applications 8 (1971) 161–168. ·doi:10.1007/BF00932464 |
[15] | D. Kinderlehrer and G. Stampacchia,An introduction to variational inequalities and applications (Academic Press, New York, 1980). ·Zbl 0457.35001 |
[16] | R. Kluge. Nichtlineare Variationsungleichungen und Extremaufgaben; Theorie und Näherungsverfahren (Deutscher Verlag der Wissenchaften, Berlin 1979). ·Zbl 0452.49001 |
[17] | J.J. Moré, ”Coercivity Conditions in nonlinear complementarity problems”,SIAM Review 16 (1974) 1–15. ·doi:10.1137/1016001 |
[18] | M.J. Smith, ”Existence, uniqueness and stability of traffic equilibria”,Transportation Research 13B (1979) 295–304. |
[19] | T. Takayama and G.G. Judge,Spatial and temporal price and allocation models (North-Holland, Amsterdam, 1971). |