53D50 | Geometric quantization |
37J15 | Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010) |
53D20 | Momentum maps; symplectic reduction |
22E99 | Lie groups |
81S10 | Geometry and quantization, symplectic methods |
[1] | Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lon. Math. Soc. 14 (1982) 1-15 ·Zbl 0482.58013 ·doi:10.1112/blms/14.1.1 |
[2] | Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergmann et de Szegö. Asterisque34-35, 123-164 (1976) ·Zbl 0344.32010 |
[3] | Boutet de Monvel, L., Guillemin, V.: The spectral theory of toeplitz operators. Annals of Math. Studies Vol. 99. Princeton, NJ: Princeton University Press 1981 ·Zbl 0469.47021 |
[4] | Guillemin, V., Sternberg, S.: Some problems in integral geometry and some related problems in micro-local analysis. Am. J. Math.101, 915-955 (1979) ·Zbl 0446.58019 ·doi:10.2307/2373923 |
[5] | Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. in press (1982) ·Zbl 0503.58017 |
[6] | Heckman, G.: Projections of orbits and asymptotic behavior of multiplicities for compact Lie groups. Thesis, Leiden (1980) ·Zbl 0497.22006 |
[7] | Hörmander, L.: Fourier integral operators I. Acta Math.127, 79-183 (1972) ·Zbl 0212.46601 ·doi:10.1007/BF02392052 |
[8] | Kempf, G., Ness, L.: The length of vectors in representation space. Lect. notes in Math. 732 (1979). Springer-Verlag ·Zbl 0407.22012 |
[9] | Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc.92, 267-290 (1959) ·Zbl 0136.07102 ·doi:10.1090/S0002-9947-1959-0112162-5 |
[10] | Kostant, B.: Orbits, symplectic structures, and representation theory. Proc. US-Japan Seminar in Differential Geometry, Kyoto, (1965), Nippon Hyoronsha, Tokyo, 1966 ·Zbl 0134.03504 |
[11] | Kostant, B.: Quantization and unitary representations. In: Modern analysis and applications. Lecture Notes in Math., Vol. 170, pp. 87-207. Berlin-Heidelberg-New York: Springer 1970 ·Zbl 0223.53028 |
[12] | Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Reports on Math. Phys.5, 121-130 (1974) ·Zbl 0327.58005 ·doi:10.1016/0034-4877(74)90021-4 |
[13] | Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions. In: Fourier integral operators and partial differential equations. Lecture Notes, vol. 459. pp. 120-223. Berlin-Heidelberg-New York: Springer 1975 ·Zbl 0306.42007 |
[14] | Mumford, D.: Geometric invariant theory. Ergebnisse der Math., Vol. 34. Berlin-Heidelberg-New York: Springer 1965 ·Zbl 0147.39304 |
[15] | Simms, D., Woodhouse, N.: Lectures on geometric quantization. Lectures Notes in Physics, Vol. 53. Berlin-Heidelberg-New York: Springer 1976 ·Zbl 0343.53023 |
[16] | Weinstein, A.: Lectures on symplectic manifolds, AMS, Regional Conference in Mathematics Series, Vol. 29, AMS, Providence, R.I. 1976 ·Zbl 0406.53031 |
[17] | Weinstein, A.: Symplectic geometry. Bull. Am. Math. Soc.5, 1-13 (1981) ·Zbl 0465.58013 ·doi:10.1090/S0273-0979-1981-14911-9 |
[18] | Atiyah, M., Singer, I.M.: The index of elliptic operators, III. Ann. of Math.87, 546-604 (1968) ·Zbl 0164.24301 ·doi:10.2307/1970717 |
[19] | Kawasaki, T.: The Riemann-Roch theorem for complexV-manifolds. Osaka Journal of Math.16, 151-159 (1979) ·Zbl 0405.32010 |
[20] | Satake, I.: On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. USA42, 359-363 (1956) ·Zbl 0074.18103 ·doi:10.1073/pnas.42.6.359 |
[21] | Weinstein, A.: SymplecticV-manifolds, periodic orbits of Hamiltonian systems and the volume of certain Riemann manifolds. Comm. Pure and App. Math.30, 265-271 (1977) ·Zbl 0339.58007 ·doi:10.1002/cpa.3160300207 |