Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Geometric quantization and multiplicities of group representations.(English)Zbl 0503.58018


MSC:

53D50 Geometric quantization
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
53D20 Momentum maps; symplectic reduction
22E99 Lie groups
81S10 Geometry and quantization, symplectic methods

Cite

References:

[1]Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lon. Math. Soc. 14 (1982) 1-15 ·Zbl 0482.58013 ·doi:10.1112/blms/14.1.1
[2]Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergmann et de Szegö. Asterisque34-35, 123-164 (1976) ·Zbl 0344.32010
[3]Boutet de Monvel, L., Guillemin, V.: The spectral theory of toeplitz operators. Annals of Math. Studies Vol. 99. Princeton, NJ: Princeton University Press 1981 ·Zbl 0469.47021
[4]Guillemin, V., Sternberg, S.: Some problems in integral geometry and some related problems in micro-local analysis. Am. J. Math.101, 915-955 (1979) ·Zbl 0446.58019 ·doi:10.2307/2373923
[5]Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. in press (1982) ·Zbl 0503.58017
[6]Heckman, G.: Projections of orbits and asymptotic behavior of multiplicities for compact Lie groups. Thesis, Leiden (1980) ·Zbl 0497.22006
[7]Hörmander, L.: Fourier integral operators I. Acta Math.127, 79-183 (1972) ·Zbl 0212.46601 ·doi:10.1007/BF02392052
[8]Kempf, G., Ness, L.: The length of vectors in representation space. Lect. notes in Math. 732 (1979). Springer-Verlag ·Zbl 0407.22012
[9]Kobayashi, S.: Geometry of bounded domains. Trans. Amer. Math. Soc.92, 267-290 (1959) ·Zbl 0136.07102 ·doi:10.1090/S0002-9947-1959-0112162-5
[10]Kostant, B.: Orbits, symplectic structures, and representation theory. Proc. US-Japan Seminar in Differential Geometry, Kyoto, (1965), Nippon Hyoronsha, Tokyo, 1966 ·Zbl 0134.03504
[11]Kostant, B.: Quantization and unitary representations. In: Modern analysis and applications. Lecture Notes in Math., Vol. 170, pp. 87-207. Berlin-Heidelberg-New York: Springer 1970 ·Zbl 0223.53028
[12]Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Reports on Math. Phys.5, 121-130 (1974) ·Zbl 0327.58005 ·doi:10.1016/0034-4877(74)90021-4
[13]Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions. In: Fourier integral operators and partial differential equations. Lecture Notes, vol. 459. pp. 120-223. Berlin-Heidelberg-New York: Springer 1975 ·Zbl 0306.42007
[14]Mumford, D.: Geometric invariant theory. Ergebnisse der Math., Vol. 34. Berlin-Heidelberg-New York: Springer 1965 ·Zbl 0147.39304
[15]Simms, D., Woodhouse, N.: Lectures on geometric quantization. Lectures Notes in Physics, Vol. 53. Berlin-Heidelberg-New York: Springer 1976 ·Zbl 0343.53023
[16]Weinstein, A.: Lectures on symplectic manifolds, AMS, Regional Conference in Mathematics Series, Vol. 29, AMS, Providence, R.I. 1976 ·Zbl 0406.53031
[17]Weinstein, A.: Symplectic geometry. Bull. Am. Math. Soc.5, 1-13 (1981) ·Zbl 0465.58013 ·doi:10.1090/S0273-0979-1981-14911-9
[18]Atiyah, M., Singer, I.M.: The index of elliptic operators, III. Ann. of Math.87, 546-604 (1968) ·Zbl 0164.24301 ·doi:10.2307/1970717
[19]Kawasaki, T.: The Riemann-Roch theorem for complexV-manifolds. Osaka Journal of Math.16, 151-159 (1979) ·Zbl 0405.32010
[20]Satake, I.: On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. USA42, 359-363 (1956) ·Zbl 0074.18103 ·doi:10.1073/pnas.42.6.359
[21]Weinstein, A.: SymplecticV-manifolds, periodic orbits of Hamiltonian systems and the volume of certain Riemann manifolds. Comm. Pure and App. Math.30, 265-271 (1977) ·Zbl 0339.58007 ·doi:10.1002/cpa.3160300207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp