90C30 | Nonlinear programming |
49M15 | Newton-type methods |
65K05 | Numerical mathematical programming methods |
68Q25 | Analysis of algorithms and problem complexity |
[1] | W. Murray,Numerical methods for unconstrained optimization (Academic Press, New York, 1972). ·Zbl 0264.49026 |
[2] | D.P. O’Leary, ”A discrete Newton algorithm for minimizing a function of many variables”, Computer Science Department Report TR-910, University of Maryland (June 1980). |
[3] | R.P. Brent, ”Some efficient algorithms for solving systems of nonlinear equations”,SIAM Journal on Numerical Analysis 10 (1973) 327–344. ·Zbl 0258.65051 ·doi:10.1137/0710031 |
[4] | A.R. Curtis, M.J.D. Powell and J.K. Reid, ”On the estimation of sparse Jacobian matrices”,Journal of the Institute of Mathematics and its Applications 13 (1974) 117–119. ·Zbl 0273.65036 |
[5] | M.J.D. Powell and Ph.L. Toint, ”On the estimation of sparse Hessian matrices”,SIAM Journal on Numerical Analysis 16 (1979) 1060–1074. ·Zbl 0426.65025 ·doi:10.1137/0716078 |
[6] | M.C. Bartholomew-Biggs, ”A matrix modification method for calculating approximate solutions to systems of linear equations”,Journal of the Institute of Mathematics and its Applications 23 (1979) 131–137. ·Zbl 0397.65023 ·doi:10.1093/imamat/23.2.131 |
[7] | P.E. Gill and W. Murray, ”Newton-type methods for unconstrained and linearly constrained optimization”,Mathematical Programming 7 (1974) 311–350. ·Zbl 0297.90082 ·doi:10.1007/BF01585529 |
[8] | S. Kaniel and A. Dax, ”A modified Newton’s method for unconstrained minimization”,SIAM Journal on Numerical Analysis 16 (1979) 324–331. ·Zbl 0403.65027 ·doi:10.1137/0716024 |
[9] | P.E. Gill and W. Murray, ”Newton-type methods for linearly constrained optimization”, in: P.E. Gill and W. Murray, eds.,Numerical methods for constrained optimization (Academic Press, New York, 1974) pp. 29–66. ·Zbl 0297.90082 |
[10] | A.A. Goldstein, ”On steepest descent”,SIAM Journal on Control 3 (1965) 147–151. ·Zbl 0221.65094 |
[11] | M.R. Hestenes and E. Stiefel, ”Methods of conjugate gradients for solving linear systems”,Journal of Research of the National Bureau of Standards 49 (1952) 409–436. ·Zbl 0048.09901 |
[12] | C. Lanczos, ”An iteration method for the solution of the eigenvalue problem of linear differential and integral operators”,Journal of Research of the National Bureau of Standards 45 (1950) 255–282. |
[13] | C. Lanczos, ”Solution of systems of linear equations by minimized iterations”,Journal of Research of the National Bureau of Standards 49 (1952) 33–53. |
[14] | Rati Chandra, ”Conjugate gradient methods for partial differential equations”, Ph.D. Thesis, Report 129, Department of Computer Science, Yale University (1978). |
[15] | C.C. Paige and M.A. Saunders, ”Solutions of sparse indefinite systems of linear equations”,SIAM Journal on Numerical Analysis 12 (1975) 617–629. ·Zbl 0319.65025 ·doi:10.1137/0712047 |
[16] | J.R. Bunch and B.N. Parlett, ”Direct methods for solving symmetric indefinite systems of linear equations”,SIAM Journal on Numerical Analysis 8 (1971) 639–655. ·doi:10.1137/0708060 |
[17] | J.W. Daniel, ”The conjugate gradient method for linear and nonlinear operator equations”,SIAM Journal on Numerical Analysis 4 (1967) 10–26. ·Zbl 0154.40302 ·doi:10.1137/0704002 |
[18] | S. Kaniel, ”Estimates for some computational techniques in linear algebra”,Mathematics of Computation 20 (1966) 369–378. ·Zbl 0156.16202 ·doi:10.1090/S0025-5718-1966-0234618-4 |
[19] | O. Axelsson, ”Solution of linear systems of equations: Iterative methods”, in: V.A. Barker, ed.,Sparse matrix techniques (Springer-Verlag, New York, 1977). ·Zbl 0354.65021 |
[20] | P. Concus, G.H. Golub and D.P. O’Leary, ”A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations”, in: J.R. Bunch and D.J. Rose, eds.,Sparse matrix computations (Academic Press, New York, 1976) pp. 309–332. |
[21] | M.R. Hestenes,Conjugate direction methods in optimization (Springer-Verlag, New York, 1980). ·Zbl 0439.49001 |
[22] | R.F. Dennemeyer and E.H. Mookini, ”CGS algorithms for unconstrained minimization of functions”,Journal of Optimization Theory and Applications 16 (1975) 67–85. ·Zbl 0281.65043 ·doi:10.1007/BF00935624 |
[23] | J.M. Ortega and W.C. Rheinboldt,Iterative solution of nonlinear equations in several variables (Academic Press, New York, 1970). ·Zbl 0241.65046 |
[24] | J.C.P. Bus, ”Convergence of Newton-like methods for solving systems of nonlinear equations”,Numerische Mathematik 27 (1977) 271–281. ·Zbl 0332.65032 ·doi:10.1007/BF01396177 |
[25] | P.E. Gill and W. Murray, ”Conjugate gradient methods for large-scale nonlinear optimization”, Systems Optimization Lab Report SOL-79-15, Department of Operations Research, Stanford University (1979). |
[26] | M.R. Osborne, ”An efficient weak line search with guaranteed termination”, Report 1870, Mathematics Research Center, University of Wisconsin (1978). |
[27] | N.K. Garg and R.A. Tapia, ”QDN: A variable storage algorithm for unconstrained optimization”, Department of Mathematical Sciences Report, Rice University (1980). |
[28] | R.S. Dembo and T. Steihaug, ”Truncated-Newton algorithms for large-scale unconstrained optimization”, School of Organization and Management, Yale University Preliminary Draft (September 1980). ·Zbl 0523.90078 |
[29] | P.E. Gill, W. Murray and S.G. Nash, ”Newton-type minimization using the linear conjugate gradient method”, Draft, Department of Operations Research, Stanford University (October 1980). |