Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A class of simplicial restart fixed point algorithms without an extra dimension.(English)Zbl 0441.90112


MSC:

90C99 Mathematical programming
54H25 Fixed-point and coincidence theorems (topological aspects)
65K05 Numerical mathematical programming methods

Cite

References:

[1]B.C. Eaves, ”Homotopies for computation of fixed points”,Mathematical Programming 3 (1972) 1–22. ·Zbl 0276.55004 ·doi:10.1007/BF01584975
[2]B.C. Eaves and R. Saigal, ”Homotopies for computation of fixed points on unbounded regions”,Mathematical Programming 3 (1972) 225–237. ·Zbl 0258.65060 ·doi:10.1007/BF01584991
[3]W. Forster, ”Fixed point algorithms: background and estimates for implementation on array processors”, Faculty of Mathematical Studies, Preprint Series No. 9, University of Southampton, England (1978).
[4]R. Kellogg, T.-Y. Li and J. Yorke, ”A constructive proof of Brouwer fixed point theorem and computational results”,SIAM Journal on Numerical Mathematics 13 (1976) 473–483. ·Zbl 0355.65037 ·doi:10.1137/0713041
[5]H.W. Kuhn and J.G. MacKinnon, ”Sandwich method for finding fixed points”,Journal of Optimization Theory and Applications 17 (1975) 189–204. ·Zbl 0299.65030 ·doi:10.1007/BF00933874
[6]G. van der Laan, ”Simplicial fixed point algorithms”, Dissertation, Vrije Universiteit, Amsterdam, The Netherlands (1980). ·Zbl 0464.90046
[7]G. van der Laan and A.J.J. Talman, ”A restart algorithm for computing fixed points without an extra dimension”,Mathematical Programming 17 (1979) 74–84. ·Zbl 0411.90061 ·doi:10.1007/BF01588226
[8]G. van der Laan and A.J.J. Talman, ”A restart algorithm without an artificial level for computing fixed points on unbounded regions”, in: H.-O. Peitgen and H.-O. Walther, eds.,Functional differential equations and approximation of fixed points, Lecture Notes in Mathematics 730 (Springer, Berlin, 1979) pp. 247–256. ·Zbl 0447.65019
[9]G. van der Laan and A.J.J. Talman, ”An improvement of fixed point algorithms by using a good triangulation”,Mathematical Programming 18 (1980) 274–285. ·Zbl 0433.90089 ·doi:10.1007/BF01588323
[10]G. van der Laan and A.J.J. Talman, ”On the computation of fixed points in the product space of unit simplices and an application to noncooperativeN person games”, Interfaculteit der Actuariële Wetenschappen en Econometrie, Onderzoekverslag 35, Vrije Universiteit, Amsterdam, The Netherlands (1978).
[11]G. van der Laan and A.J.J. Talman, ”A new subdivision for computing fixed points with a homotopy algorithm”,Mathematical Programming 19 (1980) 78–91. ·Zbl 0438.90104 ·doi:10.1007/BF01581629
[12]G. van der Laan and A.J.J. Talman, ”Interpretation of the variable dimension fixed point algorithm with an artificial level”, Interfaculteit der Actuariële Wetenschappen en Econometrie, Onderzoekverslag 47, Vrije Universiteit, Amsterdam, The Netherlands (1979). ·Zbl 0447.65019
[13]G. van der Laan and A.J.J. Talman, ”Convergence and properties of recent variable dimension algorithms”, in: W. Forster, ed.,Numerical solution of highly nonlinear problems (North-Holland, Amsterdam, 1980) pp. 3–36.
[14]O.H. Merrill, ”Applications and extensions of an algorithm that computes fixed points of certain upper semi-continuous point to set mappings”, Ph.D. Thesis, University of Michigan, Ann Arbor, MI (1972).
[15]P.M. Reiser, ”A modified integer labelling for complementarity algorithms”, Institut für Operations Research, Universität Zürich, Zürich, Switzerland (1978). ·Zbl 0384.68064
[16]P.M. Reiser, ”Ein hybrides Verfahren zur Lösung von nichtlinearen Komplementaritätsproblemen und seine Konvergenzeigenschaften”, Dissertation, Eidgenössischen Technischen Hochschule, Zürich, Switzerland (1978). ·Zbl 0398.90099
[17]R. Saigal, ”On the convergence of algorithms for solving equations that are based on methods of complementary pivoting”,Mathematics of Operations Research 2 (1977) 108–124. ·Zbl 0395.90082 ·doi:10.1287/moor.2.2.108
[18]H.E. Scarf, ”The approximation of fixed points of a continuous mapping”,SIAM Journal on Applied Mathematics 15 (1967) 1328–1343. ·Zbl 0153.49401 ·doi:10.1137/0115116
[19]H.E. Scarf,The computation of economic equilibria (Yale University Press, New Haven, CT, 1973). ·Zbl 0311.90009
[20]A.J.J. Talman, ”Variable dimension fixed point algorithms and triangulations”, Dissertation, Vrije Universiteit, Amsterdam, The Netherlands (1980). ·Zbl 0464.90047
[21]M.J. Todd,The computation of fixed points and applications (Springer, Berlin, 1976). ·Zbl 0332.54003
[22]M.J. Todd, ”Improving the convergence of fixed point algorithms”,Mathematical Programming Study 7 (1978) 151–169. ·Zbl 0399.65034
[23]M.J. Todd, ”Fixed-point algorithms that allow restarting without an extra dimension”, School of Operations Research and Industrial Engineering, Tech. Rept. No. 379, Cornell University Ithaca, NY (1978).
[24]M.J. Todd, ”Global and local convergence and monotonicity results for a recent variabledimension simplicial algorithm”, in: W. Forster, ed.,Numerical solution of highly nonlinear problems (North-Holland, Amsterdam, 1980) pp. 43–70.
[25]M.J. Todd and A.H. Wright, ”A variable-dimension simplicial algorithm for antipodal fixed point theorems”, School of Operations Research and Industrial Engineering, Tech. Rept. No. 417, Cornell University, Ithaca, NY (1979). ·Zbl 0456.65024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp