Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The solution to a generalized Toda lattice and representation theory.(English)Zbl 0433.22008


MSC:

22E30 Analysis on real and complex Lie groups
22E60 Lie algebras of Lie groups
22E70 Applications of Lie groups to the sciences; explicit representations
70F10 \(n\)-body problems
70H99 Hamiltonian and Lagrangian mechanics
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems

Citations:

Zbl 0323.70012

Cite

References:

[1]M. Adler;M. Adler ·Zbl 0414.58020
[2]Auslander, L.; Kostant, B., Polarization and unitary representations of solvable Lie groups, Invent. Math., 14, 255-354 (1971) ·Zbl 0233.22005
[3]Bogoyavlensky, O. I., On perturbations of the periodic Toda lattice, Comm. Math. Phys., 51, 201-209 (1976)
[4]Dixmier, J., Algèbres enveloppantes, (Cahiers scientifiques no. 27 (1974), Gauthier-Villars: Gauthier-Villars Paris) ·Zbl 0422.17003
[5]Dynkin, E. B., The structure of semi-simple Lie algebras, Amer. Math. Soc. Transl. Ser., 1, No. 17 (1950) ·Zbl 0052.26202
[6]Dynkin, E. B., Semi-simple subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 6, 111-244 (1957) ·Zbl 0077.03404
[7]Dynkin, E. B., The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. Ser. 2, 6, 245-378 (1957) ·Zbl 0077.03403
[8]Flaschka, H., On the Toda lattice, II, Progr. Theor. Phys., 51, 703-716 (1974) ·Zbl 0942.37505
[9]Gelfand, I. M.; Kazhdan, D. A., Representations of the group \(Gl (n, K)\) where \(K\) is a local field, (Lie Groups and Their Representations (1975), Wiley: Wiley New York), 95-118 ·Zbl 0348.22011
[10]R. Hermann;R. Hermann ·Zbl 0381.35001
[11]Humphreys, J., Introduction to Lie Algebras and Representation Theory, (Graduate Texts in Mathematics No. 9 (1972), Springer-Verlag: Springer-Verlag New York/Berlin) ·Zbl 0254.17004
[12]Kostant, B., The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81, 973-1032 (1959) ·Zbl 0099.25603
[13]Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., 74, 329-387 (1961) ·Zbl 0134.03501
[14]Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85, 327-404 (1963) ·Zbl 0124.26802
[15]Kostant, B., Quantization and unitary representations, (Lecture Notes in Mathematics No. 170 (1970), Springer-Verlag: Springer-Verlag New York/Berlin), 87-208 ·Zbl 0223.53028
[16]Kostant, B., On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Normale Supérieure, 6, 413-455 (1973) ·Zbl 0293.22019
[17]Kostant, B., On Whittaker vectors and representation theory, Invent. Math., 48, 101-184 (1978) ·Zbl 0405.22013
[18]Kostant, B.; Rallis, S., Orbits and representations associated with symmetric spaces, Amer. J. Math., 93, 753-809 (1971) ·Zbl 0224.22013
[19]Moser, J., Finitely many mass points on the line under the influence of an exponential potential—an integrable system, (Battelle Rencontres Summer Lectures. Battelle Rencontres Summer Lectures, Lecture Notes in Mathematics (1974), Springer-Verlag: Springer-Verlag New York/Berlin), 467-487 ·Zbl 0323.70012
[20]Olshanetzki, M. A.; Perelomov, A. M., Completely integrable Hamiltonian systems connected with semi-simple Lie algebras, Invent. Math., 37, 93-108 (1976) ·Zbl 0342.58017
[21]Pukanszky, L., On the theory of exponential groups, Trans. Amer. Math. Soc., 126, 487-507 (1967) ·Zbl 0207.33605
[22]Shafarevich, I. R., Basic Algebraic Geometry (1977), Springer-Verlag: Springer-Verlag New York/Berlin ·Zbl 0362.14001
[23]Suguira, M., Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J. Math. Soc. Japan, 11, 374-434 (1959) ·Zbl 0204.04201
[24]Toda, M., Studies of a non-linear lattice, Phys. Rep. C, Phys. Lett., 8, 1-125 (1975)
[25]van Moerbeke, P., The spectrum of Jacobi matrices, Invent. Math., 37, 45-81 (1976) ·Zbl 0361.15010
[26]Varadarajan, V. S., Lie Groups, Lie Algebras and Their Representations (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J ·Zbl 0371.22001
[27]Adler, M., On a trace functional for formal pseudodifferential operators and the symplectic structure for the Korteweg-de Vries type equations, Invent. Math., 50, 219-248 (1979) ·Zbl 0393.35058
[28]Olshanetzki, M. A.; Perelomov, M. A., Explicit solution of the classical generalized Toda models (1978), preprint
[29]Leznov, A. N.; Saveliev, M. V., Representation of zero curvature for the system of nonlinear partial differential equations \(xa,zz̄ = exp(kx)a\) and its integrability (1979), Serpurchev, USSR ·Zbl 0415.35017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp