Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the symmetric travelling salesman problem I: inequalities.(English)Zbl 0413.90048


MSC:

90C10 Integer programming
52Bxx Polytopes and polyhedra
52A40 Inequalities and extremum problems involving convexity in convex geometry

Cite

References:

[1]C. Berge,Graphs et hypergraphs (Dunod, Paris, 1970). ·Zbl 0334.05117
[2]V. Chvátal, ”Edmonds polytopes and weakly Hamiltonian graphs”,Mathematical Programming 5 (1973) 29–40. ·Zbl 0267.05118 ·doi:10.1007/BF01580109
[3]G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, ”Solution of a large-scale travelling salesman problem”,Operations Research 2 (1954) 393–410. ·doi:10.1287/opre.2.4.393
[4]J. Edmonds, ”Maximum matching and a polyhedron with 0, 1 vertices”,Journal of Research of the National Buruea of Standards Sect. B 69 (1965) 125–130. ·Zbl 0141.21802
[5]J. Edmonds and E.L. Johnson, ”Matching: A well-solved class of integer linear programs”, in R.K. Guy, H. Hanani, N. Sauer and J. Schonheim, eds.,Combinatorial structure and their applications (Gordon and Breach, New York, 1970) pp. 89–92. ·Zbl 0258.90032
[6]R. Garfinkel and G.L. Nemhauser,Integer programming (Wiley, New York, 1972). ·Zbl 0259.90022
[7]R.E. Gomory, ”The travelling salesman problem”, in:Proceedings of the IBM Scientific Computing Symposium on Combinatorial Problems, IBM Data Processing Division (White Plains, NY, 1964). ·Zbl 0116.25001
[8]M. Grötschel, ”Polyedrische Charakterisierungen kombinatorischer Optimierungsprobleme”, Dissertation, Universität Bonn, 1977 (Verlag A. Hain, Meisenheim, 1977). ·Zbl 0392.90045
[9]M. Grötschel, ”Further results on the facial structure of the travelling salesman polytope”, IX International Symposium on Mathematical Programming (Budapest, August 1976).
[10]M. Grötschel and M.W. Padberg, ”Linear characterizations of travelling salesman problems”, EURO-I, First European Congress on Operations Research (Brussels, January 1975). ·Zbl 0348.90146
[11]M. Grötschel and M.W. Padberg, ”Zur Oberflächenstruktur des Travelling Salesman Polytopen”, in: H.J. Zimmermann, A. Schub, H. Späth and J. Stoer, eds.,Proceedings in Operations Research, 4 (Physica-Verlag, Würzburg, 1974) pp. 207–211. ·Zbl 0314.90061
[12]M. Grötschel and M.W. Padberg: ”On the travelling salesman problem”, Joint National Meeting of ORSA and TIMS (Las Vegas, November 1975). ·Zbl 0348.90146
[13]M. Grötschel and M.W. Padberg, ”Lineare Charakterisierungen von Travelling Salesman Problemen”,Zeitschrift für Operations Research 21 (1977) 33–64. ·Zbl 0348.90147 ·doi:10.1007/BF01918456
[14]M. Grötschel and M.W. Padberg, ”Partial linear characterizations of the asymmetric travelling salesman polytope”,Mathematical Programming 8 (1975) 378–381. ·Zbl 0348.90146 ·doi:10.1007/BF01580454
[15]M. Grötschel and M.W. Padberg, ”On the symmetric travelling salesman problem”, Report No. 7536-OR, Inst. für Ökonometrie und Operations Research, Universität Bonn (Bonn, 1975). ·Zbl 0348.90146
[16]M. Grötschel and M.W. Padberg, ”On the symmetric travelling salesman problem II: Lifting theorems and facets”,Mathematical Programming 16 (1979) 281–302 (this issue). ·Zbl 0413.90049 ·doi:10.1007/BF01582117
[17]F. Harary,Graph theory (Addison-Wesley, Reading, MA, 1972). ·Zbl 0235.05105
[18]I. Heller, ”On the problem of shortest paths between point”, I and II (Abstract),Bulletin of the American Mathematical Society 59 (1953) 551–552.
[19]I. Heller, ”Neighbor relations on the convex of cyclic permutations”,Pacific Journal of Mathematics (1956) 467–477. ·Zbl 0074.38204
[20]S. Hong, ”A linear programming approach for the travelling salesman problem”, Ph.D. Thesis, The Johns Hopkins University (Baltimore, 1971).
[21]R.M. Karp, ”Reducibility among combinatorial problems”, in: R.E. Miller and J.W. Thatcher, eds.,Complexity of computer computations (Plenum Press, New York, 1972) pp. 83–103.
[22]H.W. Kuhn, ”On certain convex polyhedra” (Abstract),Bulletin of the American Mathematical Society 61 (1955) 557–558.
[23]J.F. Maurras, ”Polytopes à sommets dans [0, 1] n ”, Thèse, University of Paris (Paris, 1976).
[24]K. Menger, ”Botenproblem”, in: K. Menger, ed.,Ergebnisse eines mathematischen Kolloquiums (Wien 1930), Heft 2 (Leipzig, 1932) pp. 11–12.
[25]E. Netto,Lehrbuch der Combinatorik (Chelsea Publishing Company, New York). ·JFM 53.0073.09
[26]R.Z. Norman, ”On the convex polyhedra of the symmetric travelling salesman problem” (Abstract),Bulletin of the American Mathematical Society 61 (1955) 559.
[27]M.W. Padberg and S. Hong, ”On the symmetric travelling salesman problem: A computational study”, T.J. Watson Research Report, IBM Research (Yorktown Heights, 1977). ·Zbl 0388.90054
[28]M.W. Padberg and M.R. Rao, ”The travelling salesman problem and a class of polyhedra of diameter two”,Mathematical Programming 7 (1974) 32–45. ·Zbl 0318.90042 ·doi:10.1007/BF01585502
[29]J. Stoer and Ch. Witzgall,Convexity and optimization in finite dimensions I (Springer, Berlin 1970). ·Zbl 0203.52203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp