Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An outer approximations algorithm for computer-aided design problems.(English)Zbl 0387.90094


MSC:

90C30 Nonlinear programming
90C90 Applications of mathematical programming

Cite

References:

[1]Bandler, J. W., Liu, P. C., andChen, J. H.,Worst-Case Network Tolerance Optimization, IEEE Transactions on Microwave Theory and Technology, Vol. MTT-23, pp. 630-641, 1975. ·doi:10.1109/TMTT.1975.1128641
[2]Bandler, J. W.,Optimization of Design Tolerances using Nonlinear Programming, Journal of Optimization Theory and Applications, Vol. 14, pp. 99-114, 1974. ·Zbl 0263.65077 ·doi:10.1007/BF00933176
[3]Bandler, J. W., Liu, P. C., andTromp, H.,A Nonlinear Programming Approach to Optimal Design Centering, Tolerancing, and Tuning, IEEE Transactions on Circuits and Systems, Vol. CAS-23, pp. 155-165, 1976. ·Zbl 0366.90123 ·doi:10.1109/TCS.1976.1084191
[4]Zakian, V., andAl-Naib, U.,Design of Dynamical and Control Systems by the Method of Inequalities, Proceedings of the IEEE, Vol. 120, pp. 1421-1427, 1973.
[5]Polak, E., andTrahan, R.,An Algorithm for Computer-Aided Design Problems, Proceedings of the 1976 IEEE Conference on Decision and Control, Clearwater, Florida, 1976.
[6]Polak, E., andMayne, D. Q.,An Algorithm for Optimization Problems with Functional Inequality Constraints, IEEE Transactions on Automatic Control, Vol. AC-21, pp. 184-193, 1976. ·Zbl 0355.49007 ·doi:10.1109/TAC.1976.1101196
[7]Polak, E., Pister, K. S., andRay, D.,Optimal Design of Framed Structures Subjected to Earthquakes, Engineering Optimization, Vol. 2, pp. 65-71, 1976. ·doi:10.1080/03052157608960598
[8]Ray, D., Pister, K. S., andChopra, A. K.,Optimum Design of Earthquake Resistant Shear Buildings, University of California, Berkeley, California, Earthquake Engineering Research Center, Report No. EERC-74-3, 1974.
[9]Demyanov, V. F.,On the Solution of Certain Min-Max Problems, I, Kibernetika, Vol. 2, pp. 47-53, 1966.
[10]Levitin, E. S., andPolyak, B. T.,Constrained Minimization Methods, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, Vol. 5, pp. 787-823, 1966. ·Zbl 0184.38902
[11]Eaves, B. C., andZangwill, W. I.,Generalized Cutting Plane Algorithms, SIAM Journal of Control, Vol. 9, pp. 529-542, 1971. ·doi:10.1137/0309037
[12]Blankenship, J. W., andFalk, J. E.,Infinitely Constrained Optimization Problems, The George Washington University, Institute for Management Science and Engineering, Serial No. T-301, 1974. ·Zbl 0307.90071
[13]Polak, E.,Computational Methods in Optimization: A Unified Approach, Academic Press, New York, New York, 1971. ·Zbl 0257.90055
[14]John, F.,Extremum Problems with Inequalities as Side Conditions, Studies and Essays: Courant Anniversary Volume, Edited by K. O. Friedrichs, O. W. Neugebauer, and J. J. Stoker, John Wiley and Sons (Interscience Publishers), New York, New York, 1948.
[15]Pironneau, O., andPolak, E.,Rate of Convergence of a Class of Methods of Feasible Directions, SIAM Journal on Numerical Analysis, Vol. 10, pp. 161-174, 1973. ·Zbl 0283.65032 ·doi:10.1137/0710017
[16]Canon, M. D., Cullum, C. D., andPolak, E.,Theory of Optimal Control and Mathematical Programming, McGraw-Hill Book Company, New York, New York, 1970. ·Zbl 0264.49001
[17]Klessig, R.,A General Theory of Convergence for Constrained Optimization Algorithms that Use Anti-Zigzagging Provisions, SIAM Journal on Control, Vol. 12, pp. 598-608, 1974. ·Zbl 0289.90036 ·doi:10.1137/0312044
[18]Chen, C. T.,Analysis and Synthesis of Linear Control Systems, Holt, Rinehart, and Winston, New York, New York, 1975. ·Zbl 0308.93011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp