90C30 | Nonlinear programming |
[1] | D.P. Bertsekas, ”Convergence rate of penalty and multiplier methods”,Proceedings of the 1973 IEEE Conference on Decision and Control (1973) 260–264. |
[2] | D.P. Bertsekas, ”Combined primal-dual and penalty methods for constrained minimization”,SIAM Journal on Control 13 (1975) 521–544. ·doi:10.1137/0313030 |
[3] | D.P. Bertsekas, ”Multiplier methods: a survey”,Automatica 12 (1976) 133–145. ·Zbl 0321.49027 ·doi:10.1016/0005-1098(76)90077-7 |
[4] | M.C. Biggs, ”Constrained minimization using recursive quadratic programming”, in: L.C.W. Dixon and G.P. Szegö, eds.,Towards global optimization (North-Holland, Amsterdam, 1975) pp. 341–349. |
[5] | C.G. Broyden, ”The convergence of a class of double-rank minimization algorithms 2. The new algorithm”,Journal of the Institute of Mathematics and its Applications 6 (1970) 222–231. ·Zbl 0207.17401 ·doi:10.1093/imamat/6.3.222 |
[6] | A.G. Buckley, ”An alternate implementation of Goldfarb’s minimization algorithm”,Mathematical Programming 8 (1975) 207–231. ·Zbl 0309.90047 ·doi:10.1007/BF01580443 |
[7] | J.D. Buys, ”Dual algorithms for constrained optimization”, Ph.D. thesis, University of Leiden (Bronder-Offset, Rotterdam, 1972). |
[8] | J.E. Dennis and J.J. Moré, ”Quasi-Newton methods, motivation and theory”,SIAM Review 19 (1977) 46–89. ·Zbl 0356.65041 ·doi:10.1137/1019005 |
[9] | R. Fletcher, ”A new approach to variable metric algorithms”,The Computer Journal 13 (1970) 317–322. ·Zbl 0207.17402 ·doi:10.1093/comjnl/13.3.317 |
[10] | R. Fletcher, ”Methods related to Lagrangian functions”, in: P.E. Gill and W. Murray, eds.,Numerical methods for constrained optimization (Academic Press, London, 1974) pp. 219–239. |
[11] | R. Fletcher, ”An ideal penalty function for constrained optimization”,Journal of the Institute of Mathematics and its Applications 15 (1975) 319–342. ·Zbl 0325.90056 ·doi:10.1093/imamat/15.3.319 |
[12] | R. Fletcher, ”The quest for a natural metric”, presented at the ninth international symposium on mathematical programming, (Budapest, 1976). |
[13] | U.M. Garcia-Palomares and O.L. Mangasarian, ”Superlinearly convergent quasi-Newton algorithms for nonlinearly constrained optimization problems”,Mathematical Programming 11 (1976) 1–13. ·Zbl 0362.90103 ·doi:10.1007/BF01580366 |
[14] | S-P. Han, ”Penalty Lagrangian methods in a quasi-Newton approach”, Report TR 75-252, Computer Science, Cornell University (Ithaca, 1975). |
[15] | S-P. Han, ”A globally convergent method for nonlinear programming”, Report TR 75-257, Computer Science, Cornell University (Ithaca, 1975). |
[16] | S-P. Han, ”Superlinearly convergent variable metric algorithms for general nonlinear programming problems”,Mathematical Programming 11 (1976) 263–282. ·Zbl 0364.90097 ·doi:10.1007/BF01580395 |
[17] | M.R. Hestenes, ”Multiplier and gradient methods”,Journal of Optimization Theory and its Applications 4 (1969) 303–320. ·Zbl 0174.20705 ·doi:10.1007/BF00927673 |
[18] | G.P. McCormick, ”Second order convergence using a modified Armijo step-size rule for function minimization”, presented at the ninth international symposium on mathematical programming (Budapest, 1976). |
[19] | J.M. Ortega and W.C. Rheinboldt,Iterative solution of nonlinear equations in several variables (Academic Press, New York, 1970). ·Zbl 0241.65046 |
[20] | M.J.D. Powell, ”A method for nonlinear constraints in minimization problems”, in: R. Fletcher, ed.,Optimization (Academic Press, London, 1969) pp. 283–298. ·Zbl 0194.47701 |
[21] | S.M. Robinson, ”A quadratically convergent algorithm for general nonlinear programming problems”,Mathematical Programming 3 (1972) 145–156. ·Zbl 0264.90041 ·doi:10.1007/BF01584986 |
[22] | R.T. Rockafellar, ”New applications of duality in convex programming”, presented at the seventh international symposium on mathematical programming (The Hague, 1970). |
[23] | R.T. Rockafellar, ”A dual approach to solving nonlinear programming problems by unconstrained optimization”,Mathematical Programming 5 (1973) 354–373. ·Zbl 0279.90035 ·doi:10.1007/BF01580138 |
[24] | J.B. Rosen and J. Kreuser, ”A gradient projection algorithm for nonlinear constraints”, in: F.A. Lootsma, ed.,Numerical methods for nonlinear optimization (Academic Press, London, 1972) pp. 297–300. ·Zbl 0267.90077 |
[25] | D.M. Ryan, ”Penalty and barrier functions”, in: P.E. Gill and W. Murray, eds.,Numerical methods for constrained optimization (Academic Press, London, 1974) pp. 175–190. |
[26] | R.W.H. Sargent, ”Reduced-gradient and projection methods for nonlinear programming”, in: P.E. Gill and W. Murray, eds.,Numerical methods for constrained optimization (Academic Press, London, 1974) pp. 149–174. |
[27] | R.A. Tapia, ”Diagonalized multiplier methods and quasi-Newton methods for constrained optimization”, manuscript (Rice University, Houstoń, 1976). ·Zbl 0336.65034 |
[28] | R.B. Wilson, ”A simplical method for convex programming”, Ph.D. thesis, Harvard University (Cambridge, MA, 1963). |