Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Matrix conditioning and nonlinear optimization.(English)Zbl 0371.90109


MSC:

90C30 Nonlinear programming

Cite

References:

[1]C.G. Broyden, ”Quasi-Newton methods and their application to functional minimization”,Mathematics of Computation 21 (1967) 368–381. ·Zbl 0155.46704 ·doi:10.1090/S0025-5718-1967-0224273-2
[2]C.G. Broyden, ”The convergence of a class of double rank minimization algorithms. 2. The new algorithm”,Journal of the Institute of Mathematics and its Applications 6 (1970) 222–231. ·Zbl 0207.17401 ·doi:10.1093/imamat/6.3.222
[3]W.C. Davidon, ”Optimally conditioned optimization algorithms without line searches”,Mathematical Programming 9 (1975) 1–30. ·Zbl 0328.90055 ·doi:10.1007/BF01681328
[4]J.E. Dennis and J. More, ”Quasi-Newton methods, motivation and theory”, Computer Science Report TR74-217, Cornell University (1974).
[5]R. Fletcher, ”A new approach to variable metric algorithms”,The Computer Journal 13 (1970) 317–322. ·Zbl 0207.17402 ·doi:10.1093/comjnl/13.3.317
[6]D. Goldfarb, ”A family of variable-metric method derived by variational means”,Mathematics of Computation 24 (1970) 23–26. ·Zbl 0196.18002 ·doi:10.1090/S0025-5718-1970-0258249-6
[7]D.H. Jacobson and W. Oksman, ”An algorithm that minimizes homogeneous functions ofn variables inN + 2 iterations and rapidly minimizes general functions”, Technical Report 618, Division of Engineering and Applied Physics, Harvard University, Cambridge, MA, (1970). ·Zbl 0202.16501
[8]G.P. McCormick and K. Ritter, ”Methods of conjugate directions versus quasi-Newton methods”,Mathematical Programming 3 (1972) 101–116. ·Zbl 0247.90055 ·doi:10.1007/BF01584978
[9]S.S. Oren, ”Self-scaling variable metric algorithm. Part II”,Management Science 20 (1974) 863–874. ·Zbl 0316.90065 ·doi:10.1287/mnsc.20.5.863
[10]S.S. Oren, ”On the selection of parameters in self-scaling variable metric algorithms”,Mathematical Programming 3 (1974) 351–367. ·Zbl 0297.90084 ·doi:10.1007/BF01585530
[11]S.S. Oren and D.G. Luenberger, ”Self-scaling variable metric algorithm. Part I”,Management Science 20 (1974) 845–862. ·Zbl 0316.90064 ·doi:10.1287/mnsc.20.5.845
[12]S.S. Oren and E. Spedicato, ”Optimal conditioning of self-scaling variable metric algorithms”,Mathematical Programming 10 (1976) 70–90. ·Zbl 0342.90045 ·doi:10.1007/BF01580654
[13]D.F. Shanno, ”Conditioning of quasi-Newton methods for function minimization”,Mathematics of Computation 24 (1970) 647–656. ·Zbl 0225.65073 ·doi:10.1090/S0025-5718-1970-0274029-X
[14]D.F. Shanno and K.H. Phua, ”Minimization of unconstrained multivariate functions”,TOMS 2 (1976) 87–94. ·Zbl 0319.65042 ·doi:10.1145/355666.355673
[15]E. Spedicato, ”Computational experience with quasi-Newton algorithms for minimization problems of moderately large size”, Report CISE-N-175, CISE Documentation Service, Segrate (Milano) (1975). ·Zbl 0397.90088
[16]D.F. Shanno and K.H. Phua, ”Numerical comparison of several variable metric algorithms”, MIS Tech. Rept 21, University of Arizona (1977).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp