Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Sensitivity analysis for nonlinear programming using penalty methods.(English)Zbl 0357.90064


MSC:

90C30 Nonlinear programming
49K40 Sensitivity, stability, well-posedness
93B35 Sensitivity (robustness)

Cite

References:

[1]R.L. Armacost and A.V. Fiacco, ”Computational experience in sensitivity analysis for nonlinear programming”,Mathematical Programming 6 (3) (1974) 301–326. ·Zbl 0284.90074 ·doi:10.1007/BF01580247
[2]C. Berge,Topological spaces (The Macmillan Co., New York, 1963). ·Zbl 0114.38602
[3]J.H. Bigelow and N.Z. Shapiro, ”Implicit function theorems for mathematical programming and for systems of inequalities”,Mathematical Programming 6 (2) (1974) 141–156. ·Zbl 0293.90032 ·doi:10.1007/BF01580232
[4]S. Bochner and W.T. Martin,Several complex variables (Princeton University Press, Princeton, N.J., 1948). ·Zbl 0041.05205
[5]J. Bracken and G.P. McCormick,Selected applications of nonlinear programming (Wiley, New York, 1968).
[6]J.D. Buys, ”Dual algorithms for constrained optimization problems”, Ph.D. Thesis, University of Leyden, the Netherlands (1972).
[7]B. Causey, ”A method for sensitivity of a solution of a nonlinear program”, RAC manuscript (1971), unpublished. ·Zbl 0212.10301
[8]G.B. Dantzig, J. Folkman and N. Shapiro, ”On the continuity of the minimum set of a continuous function”,Journal of Mathematical Analysis and its Applications 17 (1967) 519–548. ·Zbl 0153.49201 ·doi:10.1016/0022-247X(67)90139-4
[9]J.P. Evans and F.J. Gould, ”Stability in nonlinear programming”,Operations Research 18 (1) (1970). ·Zbl 0232.90057
[10]A.V. Fiacco, ”Convergence properties of local solutions of sequences of mathematical programming problems in general spaces”,Journal of Optimization Theory and its Applications 13 (1) (1974). ·Zbl 0255.90047
[11]A.V. Fiacco and G.P. McCormick,Nonlinear programming: Sequential unconstrained minimization techniques (Wiley, New York, 1968). ·Zbl 0193.18805
[12]R.L. Fox,Optimization methods for engineering design (Addison-Wesley, Reading, Mass., 1971). ·Zbl 0232.76058
[13]H.J. Greenberg and W.P. Pierskalla, ”Extensions of the Evans–Gould stability theorems for mathematical programs”,Operations Research 20 (1) (1972). ·Zbl 0244.90037
[14]M.R. Hestenes,Calculus of variations and optimal control theory (Wiley, New York, 1966).
[15]F.A. Lootsma (ed.),Numerical methods for non-linear optimization (Academic Press, London, 1972).
[16]R. Meyer, ”The validity of a family of optimization methods”,SIAM Journal on Control 3 (1) (1970). ·Zbl 0194.20501
[17]W.C. Mylander, ”Estimating the sensitivity of a solution of a nonlinear program”, RAC manuscript (1971), unplublished.
[18]W.C. Mylander and R.L. Armacost, ”A guide to a SUMT-Version 4 computer subroutine for implementing sensitivity analysis in nonlinear programming”, The George Washington University, Technical Paper Serial 287, Program in Logistics (1973).
[19]S.M. Robinson, ”Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-programming algorithms”,Mathematical Programming 7 (1) (1974). ·Zbl 0294.90078
[20]L.A. Schmit, ”A basis for assessing the state-of-the-art”, AGARDograph No. 149, NATO Advisory Group for Aerospace R&D, Neuilly-sur-Seine, France (1971). ·Zbl 0252.73046
[21]W.A. Thornton and L.A. Schmit, ”Structural synthesis of an ablating thermostructural panel”, Preprint No. 68-332, AIAA/ASME 9th Structures, structural dynamics and materials conference, Palm Springs, Calif. (1968).
[22]G. Zoutendijk, ”Non-linear programming: a numerical survey”,SIAM Journal on Control 4 (1) (1966). ·Zbl 0146.13303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp