90C30 | Nonlinear programming |
49K40 | Sensitivity, stability, well-posedness |
93B35 | Sensitivity (robustness) |
[1] | R.L. Armacost and A.V. Fiacco, ”Computational experience in sensitivity analysis for nonlinear programming”,Mathematical Programming 6 (3) (1974) 301–326. ·Zbl 0284.90074 ·doi:10.1007/BF01580247 |
[2] | C. Berge,Topological spaces (The Macmillan Co., New York, 1963). ·Zbl 0114.38602 |
[3] | J.H. Bigelow and N.Z. Shapiro, ”Implicit function theorems for mathematical programming and for systems of inequalities”,Mathematical Programming 6 (2) (1974) 141–156. ·Zbl 0293.90032 ·doi:10.1007/BF01580232 |
[4] | S. Bochner and W.T. Martin,Several complex variables (Princeton University Press, Princeton, N.J., 1948). ·Zbl 0041.05205 |
[5] | J. Bracken and G.P. McCormick,Selected applications of nonlinear programming (Wiley, New York, 1968). |
[6] | J.D. Buys, ”Dual algorithms for constrained optimization problems”, Ph.D. Thesis, University of Leyden, the Netherlands (1972). |
[7] | B. Causey, ”A method for sensitivity of a solution of a nonlinear program”, RAC manuscript (1971), unpublished. ·Zbl 0212.10301 |
[8] | G.B. Dantzig, J. Folkman and N. Shapiro, ”On the continuity of the minimum set of a continuous function”,Journal of Mathematical Analysis and its Applications 17 (1967) 519–548. ·Zbl 0153.49201 ·doi:10.1016/0022-247X(67)90139-4 |
[9] | J.P. Evans and F.J. Gould, ”Stability in nonlinear programming”,Operations Research 18 (1) (1970). ·Zbl 0232.90057 |
[10] | A.V. Fiacco, ”Convergence properties of local solutions of sequences of mathematical programming problems in general spaces”,Journal of Optimization Theory and its Applications 13 (1) (1974). ·Zbl 0255.90047 |
[11] | A.V. Fiacco and G.P. McCormick,Nonlinear programming: Sequential unconstrained minimization techniques (Wiley, New York, 1968). ·Zbl 0193.18805 |
[12] | R.L. Fox,Optimization methods for engineering design (Addison-Wesley, Reading, Mass., 1971). ·Zbl 0232.76058 |
[13] | H.J. Greenberg and W.P. Pierskalla, ”Extensions of the Evans–Gould stability theorems for mathematical programs”,Operations Research 20 (1) (1972). ·Zbl 0244.90037 |
[14] | M.R. Hestenes,Calculus of variations and optimal control theory (Wiley, New York, 1966). |
[15] | F.A. Lootsma (ed.),Numerical methods for non-linear optimization (Academic Press, London, 1972). |
[16] | R. Meyer, ”The validity of a family of optimization methods”,SIAM Journal on Control 3 (1) (1970). ·Zbl 0194.20501 |
[17] | W.C. Mylander, ”Estimating the sensitivity of a solution of a nonlinear program”, RAC manuscript (1971), unplublished. |
[18] | W.C. Mylander and R.L. Armacost, ”A guide to a SUMT-Version 4 computer subroutine for implementing sensitivity analysis in nonlinear programming”, The George Washington University, Technical Paper Serial 287, Program in Logistics (1973). |
[19] | S.M. Robinson, ”Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear-programming algorithms”,Mathematical Programming 7 (1) (1974). ·Zbl 0294.90078 |
[20] | L.A. Schmit, ”A basis for assessing the state-of-the-art”, AGARDograph No. 149, NATO Advisory Group for Aerospace R&D, Neuilly-sur-Seine, France (1971). ·Zbl 0252.73046 |
[21] | W.A. Thornton and L.A. Schmit, ”Structural synthesis of an ablating thermostructural panel”, Preprint No. 68-332, AIAA/ASME 9th Structures, structural dynamics and materials conference, Palm Springs, Calif. (1968). |
[22] | G. Zoutendijk, ”Non-linear programming: a numerical survey”,SIAM Journal on Control 4 (1) (1966). ·Zbl 0146.13303 |