Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Linear complementarity problems solvable by a single linear program.(English)Zbl 0355.90040

The principal result of this paper is, that the linear complementarity problem in \(\mathbb R^n\):\[Mz+q\geq 0,\;z\geq 0,\;z^T(Mz+q)=0\tag{1}\] has a solution, which can be obtained by solving the linear program \[\{p^Tz\mid Mz+q\geq 0,\;z\geq 0,\;p=r+M^Ts\}=\min! \tag{2}\] where \(M\) satisfies \(MZ_1=Z_2\), \(r^TZ_1+s^TZ_2>0\) and \(Z_1,Z_2\) are \((n,n)\)-matrices of Z-type (real square matrix with non-positive off-diagonal elements). Some earlier papers in this direction with smaller classes of matrices are reviewed, further hints are given, that a number of free boundary problems of fluid mechanics can be solved by solving a problem like (1) with \(M\) a Z-matrix. The paper concludes with two corollaries on finding the least element of a polyhedral set and solving certain quadratic programming problems (in connection with problems of type (1) and (2)).
Reviewer: W. Göpfert

MSC:

90C05 Linear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Cite

References:

[1]L.M. Bregman, ”The method of successive projection for finding a common point of convex sets”,Soviet Mathematics Doklady (transl.) 6 (1965) 688–692. ·Zbl 0142.16804
[2]L.M. Bregman, ”The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming”,USSR Computational Mathematics and Mathematical Physics (transl.) 7 (1967) 200–217. ·Zbl 0186.23807 ·doi:10.1016/0041-5553(67)90040-7
[3]R. Chandrasekaran, ”A special case of the complementary pivot problem”,Opsearch 7 (1970) 263–268.
[4]R.W. Cottle, Private communication (April 8, 1975).
[5]R.W. Cottle and R.S. Sacher, ”On the solution of large, structured linear complementarity problems: I”, Tech. Rept. 73-4, Department of Operations Research, Stanford University (1973). ·Zbl 0375.90048
[6]R.W. Cottle, G.H. Golub and R.S. Sacher, ”On the solution of large, structured linear complementarity problems: III”, Tech. Rept. 74-439, Computer Science Department, Stanford University (1974). ·Zbl 0391.90087
[7]R.W. Cottle and G.B. Dantzig, ”Complementary pivot theory of mathematical programming”,Linear Algebra and its Applications 1 (1968) 103–125. ·Zbl 0155.28403 ·doi:10.1016/0024-3795(68)90052-9
[8]R.W. Cottle and A.F. Veinott, ”Polyhedral sets having a least element”,Mathematical Programming 3 (1969) 238–249. ·Zbl 0245.90015 ·doi:10.1007/BF01584992
[9]C.W. Cryer, ”The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences”,Mathematics Computation 25 (1971) 435–443. ·Zbl 0223.65044 ·doi:10.1090/S0025-5718-1971-0298961-7
[10]C.W. Cryer, ”The solution of a quadratic programming problem using systematic overrelaxation”,SIAM Journal on Control 9 (1971) 385–392. ·Zbl 0216.54603 ·doi:10.1137/0309028
[11]C.W. Cryer,Free boundary problems, to appear. ·Zbl 0454.65050
[12]G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, N.J., 1963). ·Zbl 0108.33103
[13]I.I. Eremin, ”The relaxation method of solving systems of inequalities with convex functions on the left sides”,Soviet Mathematics Doklady (transl.) 6 (1965) 219–222. ·Zbl 0144.30601
[14]M. Fiedler and V. Pták, ”On matrices with nonpositive off-diagonal elements and positive principal minors”, CzechoslovakMathematical Journal 12 (1962) 382–400. ·Zbl 0131.24806
[15]C.E. Lemke, ”Recent results on complementarity problems”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear Programming (Academic Press, New York, 1970) pp. 349–384. ·Zbl 0227.90043
[16]O.L. Mangasarian,Nonlinear Programming (McGraw-Hill, New York, 1969).
[17]T.S. Motzkin and I.J. Schoenberg, ”The relaxation method for linear inequalities”,Canadian Journal on Math. 6 (1954) 393–404. ·Zbl 0055.35002 ·doi:10.4153/CJM-1954-038-x
[18]K.G. Murty, ”On the number of solutions to the complementarity problems and spanning properties of complementary cones”,Linear Algebra and its Applications 5 (1972) 65–108. ·Zbl 0241.90046 ·doi:10.1016/0024-3795(72)90019-5
[19]R. Sacher, ”On the solution of large, structured linear complementarity problems: II”, Tech. Rept. 73-5. Department of Operations Research, Stanford University (1973).
[20]R. Saigal, ”A note on a special linear complementarity problem”,Opsearch 7 (1970) 175–183.
[21]R. Saigal, ”Lemke’s algorithm and a special linear complementarity problem”,Opsearch 8 (1971) 201–208.
[22]R. Saigal, ”On the class of complementary cones and Lemke’s algorithm”,SIAM Journal on Applied Mathematics 23 (1972) 46–60. ·Zbl 0237.90040 ·doi:10.1137/0123006
[23]A. Tamir, ”Minimality and complementarity properties associated with Z-functions”,Mathematical Programming 7 (1974) 17–31. ·Zbl 0291.90057 ·doi:10.1007/BF01585501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp