90C05 | Linear programming |
90C33 | Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) |
[1] | L.M. Bregman, ”The method of successive projection for finding a common point of convex sets”,Soviet Mathematics Doklady (transl.) 6 (1965) 688–692. ·Zbl 0142.16804 |
[2] | L.M. Bregman, ”The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming”,USSR Computational Mathematics and Mathematical Physics (transl.) 7 (1967) 200–217. ·Zbl 0186.23807 ·doi:10.1016/0041-5553(67)90040-7 |
[3] | R. Chandrasekaran, ”A special case of the complementary pivot problem”,Opsearch 7 (1970) 263–268. |
[4] | R.W. Cottle, Private communication (April 8, 1975). |
[5] | R.W. Cottle and R.S. Sacher, ”On the solution of large, structured linear complementarity problems: I”, Tech. Rept. 73-4, Department of Operations Research, Stanford University (1973). ·Zbl 0375.90048 |
[6] | R.W. Cottle, G.H. Golub and R.S. Sacher, ”On the solution of large, structured linear complementarity problems: III”, Tech. Rept. 74-439, Computer Science Department, Stanford University (1974). ·Zbl 0391.90087 |
[7] | R.W. Cottle and G.B. Dantzig, ”Complementary pivot theory of mathematical programming”,Linear Algebra and its Applications 1 (1968) 103–125. ·Zbl 0155.28403 ·doi:10.1016/0024-3795(68)90052-9 |
[8] | R.W. Cottle and A.F. Veinott, ”Polyhedral sets having a least element”,Mathematical Programming 3 (1969) 238–249. ·Zbl 0245.90015 ·doi:10.1007/BF01584992 |
[9] | C.W. Cryer, ”The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences”,Mathematics Computation 25 (1971) 435–443. ·Zbl 0223.65044 ·doi:10.1090/S0025-5718-1971-0298961-7 |
[10] | C.W. Cryer, ”The solution of a quadratic programming problem using systematic overrelaxation”,SIAM Journal on Control 9 (1971) 385–392. ·Zbl 0216.54603 ·doi:10.1137/0309028 |
[11] | C.W. Cryer,Free boundary problems, to appear. ·Zbl 0454.65050 |
[12] | G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, N.J., 1963). ·Zbl 0108.33103 |
[13] | I.I. Eremin, ”The relaxation method of solving systems of inequalities with convex functions on the left sides”,Soviet Mathematics Doklady (transl.) 6 (1965) 219–222. ·Zbl 0144.30601 |
[14] | M. Fiedler and V. Pták, ”On matrices with nonpositive off-diagonal elements and positive principal minors”, CzechoslovakMathematical Journal 12 (1962) 382–400. ·Zbl 0131.24806 |
[15] | C.E. Lemke, ”Recent results on complementarity problems”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear Programming (Academic Press, New York, 1970) pp. 349–384. ·Zbl 0227.90043 |
[16] | O.L. Mangasarian,Nonlinear Programming (McGraw-Hill, New York, 1969). |
[17] | T.S. Motzkin and I.J. Schoenberg, ”The relaxation method for linear inequalities”,Canadian Journal on Math. 6 (1954) 393–404. ·Zbl 0055.35002 ·doi:10.4153/CJM-1954-038-x |
[18] | K.G. Murty, ”On the number of solutions to the complementarity problems and spanning properties of complementary cones”,Linear Algebra and its Applications 5 (1972) 65–108. ·Zbl 0241.90046 ·doi:10.1016/0024-3795(72)90019-5 |
[19] | R. Sacher, ”On the solution of large, structured linear complementarity problems: II”, Tech. Rept. 73-5. Department of Operations Research, Stanford University (1973). |
[20] | R. Saigal, ”A note on a special linear complementarity problem”,Opsearch 7 (1970) 175–183. |
[21] | R. Saigal, ”Lemke’s algorithm and a special linear complementarity problem”,Opsearch 8 (1971) 201–208. |
[22] | R. Saigal, ”On the class of complementary cones and Lemke’s algorithm”,SIAM Journal on Applied Mathematics 23 (1972) 46–60. ·Zbl 0237.90040 ·doi:10.1137/0123006 |
[23] | A. Tamir, ”Minimality and complementarity properties associated with Z-functions”,Mathematical Programming 7 (1974) 17–31. ·Zbl 0291.90057 ·doi:10.1007/BF01585501 |