90C20 | Quadratic programming |
[1] | M. Altman, ”Bilinear programming”,Bullentin de l’Académie Polonaise des Sciences 16 (9) (1968) 741–746. ·Zbl 0213.44902 |
[2] | E. Balas and C.-A. Burdet, ”Maximizing a convex quadratic function subject to linear constraints”, Management Science Research Report No. 299, GSIA, Carnegie-Mellon University, Pittsburgh, Pa. (July 1973). |
[3] | A.V. Cabot and R.L. Francis, ”Solving certain nonconvex quadratic minimization problems by ranking extreme points”,Operations Research 18 (1) (1970) 82–86. ·Zbl 0186.24201 ·doi:10.1287/opre.18.1.82 |
[4] | A. Charnes and W.W. Cooper, ”Nonlinear power of adjacent extreme point methods in linear programming”,Econometrica 25 (1957) 132–153. ·Zbl 0087.16404 ·doi:10.2307/1907747 |
[5] | W. Candler and R.J. Townsley, ”The Maximization of a quadratic function of variables subject to linear inequalities”,Management Science 10 (3) (1964) 515–523. ·doi:10.1287/mnsc.10.3.515 |
[6] | R.W. Cottle and W.C. Mylander, ”Ritter’s cutting plane method for nonconvex quadratic programming”, in: J. Abadie, ed.,Integer and nonlinear programming (North Holland, Amsterdam, 1970). ·Zbl 0332.90033 |
[7] | G.B. Dantzig, ”Reduction of a 0–1 integer program to a bilinear separable program and to a standard complementary problem”, Unpublished Note, July 27, 1971. |
[8] | G.B. Dantzig, ”Solving two-move games with perfect information”, RAND Report P-1459, Santa Monica, Calif. (1958). |
[9] | J. Falk, ”A linear max-min problem”, Mathematical Programming 5 (1973) 169–188. ·Zbl 0276.90053 ·doi:10.1007/BF01580119 |
[10] | G. Gallo and A. Ülkücü, ”Bilinear programming: an exact algorithm”, Paper presented at the 8th International Symposium on Mathematical Programming, Stanford University, Stanford, California, August 1973. |
[11] | K. Konno, ”Maximization of convex quadratic function under linear constraints”,Mathematical Programming 11 (1976) to appear. ·Zbl 0355.90052 |
[12] | H. Konno, ”Bilinear programming part II: applications of bilinear programming”, Tech. Rept. No. 71-10, Department of Operations Research, Stanford University, Stanford, Calif. (August 1971). |
[13] | O.L. Mangasarian, ”Equilibrium points of bimatrix games”,SIAM Journal of Applied Mathematics 12 (4) (1964) 778–780. ·Zbl 0132.14002 ·doi:10.1137/0112064 |
[14] | O.L. Mangasarian and H. Stone, ”Two-person nonzero-sum games and quadratic programming”,Journal of Mathematical Analysis and Applications 9 (1964) 348–355. ·Zbl 0126.36505 ·doi:10.1016/0022-247X(64)90021-6 |
[15] | H. Mills, ”Equilibrium points in finite games”,SIAM Journal of Applied Mathematics 8 (2) (1960) 397–402. ·Zbl 0099.15201 ·doi:10.1137/0108026 |
[16] | W.C. Mylander, ”Nonconvex quadratic programming by a modification of Lemke’s method”, RAC-TP-414, Research Analysis Corporation, McLean, Va. (1971). |
[17] | K. Ritter, ”A method for solving maximum problems with a nonconcave quadratic objective function”,Zeitung für Wahrscheinlichkeitstheorie und verwandte Gebiete 4 (1966) 340–351. ·Zbl 0139.13105 ·doi:10.1007/BF00539118 |
[18] | M. Raghavachari, ”On connections between zero-one integer programming and concave programming under linear constraints”,Operations Research 17 (4) (1969) 680–684. ·Zbl 0176.49805 ·doi:10.1287/opre.17.4.680 |
[19] | H. Tui, ”Concave programming under linear constraints”,Soviet Mathematics (1964) 1537–1440. ·Zbl 0132.40103 |
[20] | P. Zwart, ”Nonlinear programming: counterexamples to two global optimization algorithms”,Operations Research 21 (6) (1973) 1260–1266. ·Zbl 0274.90049 ·doi:10.1287/opre.21.6.1260 |
[21] | P. Zwart, ”Computational aspects of the use of cutting planes in global optimization”, in:Proceedings of the 1971 annual conference of the ACM (1971) pp. 457–465. |