Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A cutting plane algorithm for solving bilinear programs.(English)Zbl 0353.90069


MSC:

90C20 Quadratic programming

Cite

References:

[1]M. Altman, ”Bilinear programming”,Bullentin de l’Académie Polonaise des Sciences 16 (9) (1968) 741–746. ·Zbl 0213.44902
[2]E. Balas and C.-A. Burdet, ”Maximizing a convex quadratic function subject to linear constraints”, Management Science Research Report No. 299, GSIA, Carnegie-Mellon University, Pittsburgh, Pa. (July 1973).
[3]A.V. Cabot and R.L. Francis, ”Solving certain nonconvex quadratic minimization problems by ranking extreme points”,Operations Research 18 (1) (1970) 82–86. ·Zbl 0186.24201 ·doi:10.1287/opre.18.1.82
[4]A. Charnes and W.W. Cooper, ”Nonlinear power of adjacent extreme point methods in linear programming”,Econometrica 25 (1957) 132–153. ·Zbl 0087.16404 ·doi:10.2307/1907747
[5]W. Candler and R.J. Townsley, ”The Maximization of a quadratic function of variables subject to linear inequalities”,Management Science 10 (3) (1964) 515–523. ·doi:10.1287/mnsc.10.3.515
[6]R.W. Cottle and W.C. Mylander, ”Ritter’s cutting plane method for nonconvex quadratic programming”, in: J. Abadie, ed.,Integer and nonlinear programming (North Holland, Amsterdam, 1970). ·Zbl 0332.90033
[7]G.B. Dantzig, ”Reduction of a 0–1 integer program to a bilinear separable program and to a standard complementary problem”, Unpublished Note, July 27, 1971.
[8]G.B. Dantzig, ”Solving two-move games with perfect information”, RAND Report P-1459, Santa Monica, Calif. (1958).
[9]J. Falk, ”A linear max-min problem”, Mathematical Programming 5 (1973) 169–188. ·Zbl 0276.90053 ·doi:10.1007/BF01580119
[10]G. Gallo and A. Ülkücü, ”Bilinear programming: an exact algorithm”, Paper presented at the 8th International Symposium on Mathematical Programming, Stanford University, Stanford, California, August 1973.
[11]K. Konno, ”Maximization of convex quadratic function under linear constraints”,Mathematical Programming 11 (1976) to appear. ·Zbl 0355.90052
[12]H. Konno, ”Bilinear programming part II: applications of bilinear programming”, Tech. Rept. No. 71-10, Department of Operations Research, Stanford University, Stanford, Calif. (August 1971).
[13]O.L. Mangasarian, ”Equilibrium points of bimatrix games”,SIAM Journal of Applied Mathematics 12 (4) (1964) 778–780. ·Zbl 0132.14002 ·doi:10.1137/0112064
[14]O.L. Mangasarian and H. Stone, ”Two-person nonzero-sum games and quadratic programming”,Journal of Mathematical Analysis and Applications 9 (1964) 348–355. ·Zbl 0126.36505 ·doi:10.1016/0022-247X(64)90021-6
[15]H. Mills, ”Equilibrium points in finite games”,SIAM Journal of Applied Mathematics 8 (2) (1960) 397–402. ·Zbl 0099.15201 ·doi:10.1137/0108026
[16]W.C. Mylander, ”Nonconvex quadratic programming by a modification of Lemke’s method”, RAC-TP-414, Research Analysis Corporation, McLean, Va. (1971).
[17]K. Ritter, ”A method for solving maximum problems with a nonconcave quadratic objective function”,Zeitung für Wahrscheinlichkeitstheorie und verwandte Gebiete 4 (1966) 340–351. ·Zbl 0139.13105 ·doi:10.1007/BF00539118
[18]M. Raghavachari, ”On connections between zero-one integer programming and concave programming under linear constraints”,Operations Research 17 (4) (1969) 680–684. ·Zbl 0176.49805 ·doi:10.1287/opre.17.4.680
[19]H. Tui, ”Concave programming under linear constraints”,Soviet Mathematics (1964) 1537–1440. ·Zbl 0132.40103
[20]P. Zwart, ”Nonlinear programming: counterexamples to two global optimization algorithms”,Operations Research 21 (6) (1973) 1260–1266. ·Zbl 0274.90049 ·doi:10.1287/opre.21.6.1260
[21]P. Zwart, ”Computational aspects of the use of cutting planes in global optimization”, in:Proceedings of the 1971 annual conference of the ACM (1971) pp. 457–465.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp