Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A quadratically convergent primal-dual algorithm with global convergence properties for solving optimization problems with equality constraints.(English)Zbl 0351.90065


MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
49M30 Other numerical methods in calculus of variations (MSC2010)

Cite

References:

[1]K.J. Arrow and R.M. Solow, ”Gradient methods for constrained maxima with weakened assumptions”, in: K.J. Arrow, L. Hurwicz and H. Uzawa, eds.,Studies in linear and nonlinear programming (Stanford University Press, Stanford, Calif., 1958) pp. 166–176.
[2]D.P. Bertsekas, ”Combined primal-dual and penalty methods for constrained minimization”,SIAM Journal on Control, to appear. ·Zbl 0269.90044
[3]D.P. Bertsekas, ”On penalty and multiplier methods for constrained minimization”,SIAM Journal on Control, to appear. ·Zbl 0324.49029
[4]J.D. Buys, ”Dual algorithm for constrained optimization problems”, Doctoral Dissertation, University of Leiden (June 1972).
[5]R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties”, in: J. Abadie, ed.,Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 157–175. ·Zbl 0332.90039
[6]R. Fletcher and S. Lill, ”A class of methods for nonlinear programming II: computational experience”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1971). ·Zbl 0258.90044
[7]R. Fletcher, ”A class of methods for nonlinear programming III: rate of convergence”, in: F.A. Lootsma, ed.,Numerical methods for nonlinear optimization (Academic Press, New York, 1972). ·Zbl 0277.90066
[8]P.C. Haarhoff and J.D. Buys, ”A new method for the optimization of a nonlinear function subject to nonlinear constraints”,The Computer Journal 13 (1970) 178–184. ·Zbl 0195.17403 ·doi:10.1093/comjnl/13.2.178
[9]M.R. Hestenes, ”The Weierstrass E-function in the calculus of variations”,Transactions of the American Mathematical Society 60 (1946) 51–71. ·Zbl 0063.02001
[10]M.R. Hestenes, ”Multiplier and gradient methods”,Journal of Optimization Theory and Applications 4 (1969) 303–320. ·Zbl 0174.20705 ·doi:10.1007/BF00927673
[11]K. Levenberg, ”A method for the solution of certain nonlinear problems in least squares”,Quarterly of Applied Mathematics 2 (1944) 164–168. ·Zbl 0063.03501
[12]D. Marquardt, ”An algorithm for least squares estimation of nonlinear parameters”,SIAM Journal on Applied Mathematics 11 (1963) 431–441. ·Zbl 0112.10505 ·doi:10.1137/0111030
[13]K. Mârtensson, ”A new approach to constrained function optimization”,Journal of Optimization Theory and Applications 12 (1973) 531–554. ·Zbl 0253.49024 ·doi:10.1007/BF00934776
[14]A. Miele, P.E. Moseley and E.E. Cragg, ”Numerical experiments on Hestenes’ method of multipliers for mathematical programming problems”, Aero-Astronautics Rept. No. 85, Rice University, Houston, Texas (1971). ·Zbl 0232.90056
[15]A. Miele, P.E. Moseley and E.E. Cragg, ”A modification of the method of multipliers for mathematical programming problems”, in: A.V. Balakrishnan, ed.,Techniques of optimization (Academic Press, New York, 1972). ·Zbl 0269.49042
[16]E. Polak, R.W.H. Sargent and D.J. Sebastian, ”On the convergence of sequential minimization algorithms”,Journal of Optimization Theory and Applications 14 (1974) 439–442. ·Zbl 0281.65044 ·doi:10.1007/BF00933310
[17]M.J.D. Powell, ”A method for nonlinear constraints in minimization problems”, in: R. Fletcher, ed.,Optimization (Academic Press, New York, 1969). ·Zbl 0194.47701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp