90C30 | Nonlinear programming |
65K05 | Numerical mathematical programming methods |
49M30 | Other numerical methods in calculus of variations (MSC2010) |
[1] | K.J. Arrow and R.M. Solow, ”Gradient methods for constrained maxima with weakened assumptions”, in: K.J. Arrow, L. Hurwicz and H. Uzawa, eds.,Studies in linear and nonlinear programming (Stanford University Press, Stanford, Calif., 1958) pp. 166–176. |
[2] | D.P. Bertsekas, ”Combined primal-dual and penalty methods for constrained minimization”,SIAM Journal on Control, to appear. ·Zbl 0269.90044 |
[3] | D.P. Bertsekas, ”On penalty and multiplier methods for constrained minimization”,SIAM Journal on Control, to appear. ·Zbl 0324.49029 |
[4] | J.D. Buys, ”Dual algorithm for constrained optimization problems”, Doctoral Dissertation, University of Leiden (June 1972). |
[5] | R. Fletcher, ”A class of methods for nonlinear programming with termination and convergence properties”, in: J. Abadie, ed.,Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 157–175. ·Zbl 0332.90039 |
[6] | R. Fletcher and S. Lill, ”A class of methods for nonlinear programming II: computational experience”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1971). ·Zbl 0258.90044 |
[7] | R. Fletcher, ”A class of methods for nonlinear programming III: rate of convergence”, in: F.A. Lootsma, ed.,Numerical methods for nonlinear optimization (Academic Press, New York, 1972). ·Zbl 0277.90066 |
[8] | P.C. Haarhoff and J.D. Buys, ”A new method for the optimization of a nonlinear function subject to nonlinear constraints”,The Computer Journal 13 (1970) 178–184. ·Zbl 0195.17403 ·doi:10.1093/comjnl/13.2.178 |
[9] | M.R. Hestenes, ”The Weierstrass E-function in the calculus of variations”,Transactions of the American Mathematical Society 60 (1946) 51–71. ·Zbl 0063.02001 |
[10] | M.R. Hestenes, ”Multiplier and gradient methods”,Journal of Optimization Theory and Applications 4 (1969) 303–320. ·Zbl 0174.20705 ·doi:10.1007/BF00927673 |
[11] | K. Levenberg, ”A method for the solution of certain nonlinear problems in least squares”,Quarterly of Applied Mathematics 2 (1944) 164–168. ·Zbl 0063.03501 |
[12] | D. Marquardt, ”An algorithm for least squares estimation of nonlinear parameters”,SIAM Journal on Applied Mathematics 11 (1963) 431–441. ·Zbl 0112.10505 ·doi:10.1137/0111030 |
[13] | K. Mârtensson, ”A new approach to constrained function optimization”,Journal of Optimization Theory and Applications 12 (1973) 531–554. ·Zbl 0253.49024 ·doi:10.1007/BF00934776 |
[14] | A. Miele, P.E. Moseley and E.E. Cragg, ”Numerical experiments on Hestenes’ method of multipliers for mathematical programming problems”, Aero-Astronautics Rept. No. 85, Rice University, Houston, Texas (1971). ·Zbl 0232.90056 |
[15] | A. Miele, P.E. Moseley and E.E. Cragg, ”A modification of the method of multipliers for mathematical programming problems”, in: A.V. Balakrishnan, ed.,Techniques of optimization (Academic Press, New York, 1972). ·Zbl 0269.49042 |
[16] | E. Polak, R.W.H. Sargent and D.J. Sebastian, ”On the convergence of sequential minimization algorithms”,Journal of Optimization Theory and Applications 14 (1974) 439–442. ·Zbl 0281.65044 ·doi:10.1007/BF00933310 |
[17] | M.J.D. Powell, ”A method for nonlinear constraints in minimization problems”, in: R. Fletcher, ed.,Optimization (Academic Press, New York, 1969). ·Zbl 0194.47701 |