Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Newton-type methods for unconstrained and linearly constrained optimization.(English)Zbl 0297.90082


MSC:

90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
49M15 Newton-type methods

Cite

References:

[1]R.H. Bartels, G.H. Golub and M.A. Saunders, ”Numerical techniques in mathematical programming”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 123–176. ·Zbl 0228.90030
[2]K.M. Brown and J.E. Dennis, Jr., ”Derivative-free analogues of the Levenberg–Marquardt and Gauss algorithms for non-linear least squares approximation”,Numerische Mathematik 18 (1972) 289–297. ·Zbl 0235.65043 ·doi:10.1007/BF01404679
[3]P. Businger and G.H. Golub, ”Linear least squares solutions by Householder transformations”,Numerische Mathematik 7 (1965) 269–276. ·Zbl 0142.11503 ·doi:10.1007/BF01436084
[4]A.R. Curtis, M.J.D. Powell and J.K. Reid, ”On the estimation of sparse Jacobian matrices”,Journal of the Institute of Mathematics and its Applications 13 (1974) 117–119. ·Zbl 0273.65036
[5]A.V. Fiacco and G.P. McCormick,Nonlinear programming: sequential unconstrained minimization techniques (Wiley, New York, 1968). ·Zbl 0193.18805
[6]P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, ”Methods for modifying matrix factorizations”,Mathematics of Computation 28 (1974) 505–535. ·Zbl 0289.65021 ·doi:10.1090/S0025-5718-1974-0343558-6
[7]P.E. Gill and W. Murray, ”Quasi-Newton methods for unconstrained optimization”,Journal of the Institute of Mathematics and its Applications 9 (1972) 91–108. ·Zbl 0264.49026 ·doi:10.1093/imamat/9.1.91
[8]P.E. Gill and W. Murray, ”A numerically stable form of the simplex algorithm”,Linear Algebra and its Applications 7 (1973) 99–138. ·Zbl 0255.65029 ·doi:10.1016/0024-3795(73)90047-5
[9]P.E. Gill and W. Murray, ”The numerical solution of a problem in the calculus of variations”, in: D.J. Bell, ed.,Recent mathematical developments in control (Academic Press, New York, 1973) pp. 97–122.
[10]P.E. Gill and W. Murray, ”Quasi-Newton methods for linearly constrained optimization”, National Physical Laboratory Rept. NAC 32 (1973).
[11]P.E. Gill and W. Murray, ”Safeguarded steplength algorithms for optimization using descent methods”, National Physical Laboratory Rept. NAC 37 (1974).
[12]P.E. Gill, W. Murray and S.M. Picken, ”The implementation of two modified Newton algorithms for unconstrained optimization”, National Physical Laboratory Rept. NAC 24 (1972).
[13]P.E. Gill, W. Murray and S.M. Picken, ”The implementation of two modified Newton algorithms for linearly constrained optimization”, to appear.
[14]P.E. Gill, W. Murray and R.A. Pitfield, ”The implementation of two revised quasi-Newton algorithms for unconstrained optimization”, National Physical Laboratory Rept. NAC 11 (1972).
[15]A. Goldstein and J. Price, ”An effective algorithm for minimization”,Numerische Mathematik 10 (1967) 184–189. ·Zbl 0161.35402 ·doi:10.1007/BF02162162
[16]J. Greenstadt, ”On the relative efficiencies of gradient methods”,Mathematics of Computation 21 (1967) 360–367. ·Zbl 0159.20305 ·doi:10.1090/S0025-5718-1967-0223073-7
[17]R.S. Martin, G. Peters and J.H. Wilkinson, ”Symmetric decomposition of a positive-definite matrix”,Numerische Mathematik 7 (1965) 362–383. ·Zbl 0135.37402 ·doi:10.1007/BF01436249
[18]A. Matthews and D. Davies, ”A comparison of modified Newton methods for unconstrained optimization”,Computer Journal 14 (1971) 213–294. ·Zbl 0224.65020 ·doi:10.1093/comjnl/14.3.293
[19]G.P. McCormick, ”A second-order method for the linearly constrained non-linear programming problem”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 207–243.
[20]W. Murray, ”An algorithm for finding a local minimum of an indefinite quadratic program” National Physical Laboratory Rept. NAC 1 (1971).
[21]W. Murray, ”Second derivative methods”, in: W. Murray, ed.,Numerical methods for unconstrained optimization (Academic Press, New York, 1972) pp. 107–122.
[22]J.M. Ortega and W.C. Rheinboldt,Iterative solution of non-linear equations in several variables (Academic Press, New York, 1970). ·Zbl 0241.65046
[23]J. Stoer, ”On the numerical solution of constrained least square problems”,SIAM Journal on Numerical Analysis 8 (1971) 382–411. ·Zbl 0219.90039 ·doi:10.1137/0708038
[24]G. Zoutendijk,Methods of feasible directions (Elsevier, Amsterdam, 1960). ·Zbl 0097.35408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp