90C30 | Nonlinear programming |
90C25 | Convex programming |
65K05 | Numerical mathematical programming methods |
[1] | R. Chandrasekaran, ”A special case of the complementarity pivot problem”,Operations Research 7 (1970) 263–268. |
[2] | R.W. Cottle, ”Note on a fundamental theorem in quadratic programming”,SIAM Journal on Applied Mathematics 12 (1964) 663–665. ·Zbl 0128.39701 ·doi:10.1137/0112056 |
[3] | R.W. Cottle, ”Nonlinear programs with positively bounded Jacobians”,SIAM Journal on Applied Mathematics 14 (1966) 147–157. ·Zbl 0158.18903 ·doi:10.1137/0114012 |
[4] | R.W. Cottle and G.B. Dantzig, ”Positive (semi-) definite programming”, in:Nonlinear programming, Ed. J. Abadie (North-Holland, Amsterdam, 1967). ·Zbl 0178.22801 |
[5] | C.W. Cryer, ”The solution of a quadratic programming problem using systematic overrelaxation”,SIAM Journal on Control 9 (1971) 385–392. ·Zbl 0216.54603 ·doi:10.1137/0309028 |
[6] | C.W. Cryer, ”The method of Christopherson for solving free boundary problems for infinite journal bearings by means of finite differences”,Mathematics of Computation 25 (1971) 435–443. ·Zbl 0223.65044 ·doi:10.1090/S0025-5718-1971-0298961-7 |
[7] | B.C. Eaves, ”The linear complementarity problem”,Management Science 17 (1971) 68–75. ·Zbl 0227.90044 |
[8] | M. Edelstein, ”On fixed and periodic points under contractive mappings”,Journal of the London Mathematical Society 37 (1962) 74–79. ·Zbl 0113.16503 ·doi:10.1112/jlms/s1-37.1.74 |
[9] | M. Fiedler and V. Pták, ”On matrices with non-positive off-diagonal elements and positive principal minors”,Czechoslovak Mathematical Journal 12 (1962) 382–400. ·Zbl 0131.24806 |
[10] | C.B. Garcia, ”Some classes of matrices in linear complementarity theory”, Mathematical Programming 5 (1973) 299–310. ·Zbl 0284.90048 ·doi:10.1007/BF01580135 |
[11] | A.W. Ingleton, ”A problem in linear inequalities”,Proceedings of the London Mathematical Society 16 (1966) 519–536. ·Zbl 0166.03005 ·doi:10.1112/plms/s3-16.1.519 |
[12] | S. Karamardian, ”Existence of solutions of certain systems of nonlinear inequalities”,Numerische Mathematik 12 (1968) 327–334. ·Zbl 0167.48203 ·doi:10.1007/BF02162513 |
[13] | C.E. Lemke, ”Recent results on complementarity problems”, in:Nonlinear programming, Eds. J.B. Rosen, O.L. Mangasarian and K. Ritter (Academic Press, New York, 1970). ·Zbl 0227.90043 |
[14] | G.P. McCormick and R.A. Tapia, ”The gradient projection method under mild differentiability conditions”,SIAM Journal on Control 10 (1972) 93–98. ·Zbl 0237.49019 ·doi:10.1137/0310009 |
[15] | G. Minty, ”Monotone (nonlinear) operators in Hilbert space”,Duke Mathematical Journal 29 (1962) 341–346. ·Zbl 0111.31202 ·doi:10.1215/S0012-7094-62-02933-2 |
[16] | J.J. Moré, ”Nonlinear generalizations of matrix diagonal dominance with application to Gauss–Seidel iterations”,SIAM Journal on Numerical Analysis 9 (1972) 357–378. ·Zbl 0243.65023 ·doi:10.1137/0709035 |
[17] | J.J. Moré, ”Coercivity conditions in nonlinear complementarity problems”,SIAM Review 16 (1974). |
[18] | J.J. Moré and W.C. Rheinboldt, ”On P- and S-functions and related classes ofn-dimensional nonlinear mappings”,Linear Algebra and Its Applications 6 (1973) 45–68. ·Zbl 0247.65038 ·doi:10.1016/0024-3795(73)90006-2 |
[19] | W.C. Rheinboldt, ”On M-functions and their application to nonlinear Gauss–Seidel iterations, and network flows”,Journal of Mathematical Analysis and Applications 32 (1971) 274–307. ·Zbl 0206.46504 ·doi:10.1016/0022-247X(70)90298-2 |
[20] | A. Tamir, ”The complementarity problem of mathematical programming”, Ph. D. thesis, Case Western Reserve University, Cleveland, Ohio (1973). ·Zbl 0277.15008 |