[1] | Altman, A.; Kleiman, S., Introduction to Grothendieck Duality Theory, (Lecture Notes in Mathematics, No. 146 (1970), Springer: Springer New York) ·Zbl 0215.37201 |
[2] | corrections. corrections, Ann. of Math., 70, 395-397 (1959) |
[3] | Barger, S. F., Generic perfection and theory of grade, (Thesis. Thesis, Proc. Amer. Math. Soc., 36 (1972), University of Minnesota, 1970), 365-368, see also ·Zbl 0265.13007 |
[4] | Barshay, J., On the zeta function of biprojective complete intersections, Trans. Amer. Math. Soc., 135, 447-458 (1969) ·Zbl 0174.24302 |
[5] | Barshay, J., Graded algebras of powers of ideals generated by \(A\)-sequences, J. Algebra, 25, 90-99 (1973) ·Zbl 0256.13017 |
[6] | Barshay, J., Determinantal varieties, monomial semigroups, and algebras associated with ideals, (Proc. Amer. Math. Soc., 40 (1973)), 16-22 ·Zbl 0273.14021 |
[7] | Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28 (1963) ·Zbl 0112.26604 |
[8] | Bertin, M.-J, Anneaux d’invariants d’anneaux de polynomes, en caractéristique \(p\), C.R. Acad. Sci. Paris Sér. A, 264, 653-656 (1967) ·Zbl 0147.29503 |
[9] | Borel, A., Linear Algebraic Groups (1969), Benjamin: Benjamin New York ·Zbl 0186.33201 |
[10] | Brugesser, H.; Mani, P., Shellable decompositions of cells and spheres, Math. Scand., 29, 197-205 (1971) ·Zbl 0251.52013 |
[11] | Buchsbaum, D. A.; Eisenbud, D., What makes a complex exact?, J. Algebra, 25, 259-268 (1973) ·Zbl 0264.13007 |
[12] | Buchsbaum, D. A.; Rim, D. S., A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc., 111, 197-224 (1964) ·Zbl 0131.27802 |
[13] | Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math., 77, 778-782 (1955) ·Zbl 0065.26103 |
[14] | Chow, W. L., On unmixedness theorem, Amer. J. Math., 86, 799-822 (1964) ·Zbl 0146.17203 |
[15] | Cohen, I. S., On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59, 54-106 (1946) ·Zbl 0060.07001 |
[16] | Dieudonné, J. A., Algebraic geometry, Advances in Math., 3, 233-321 (1969) ·Zbl 0185.49102 |
[17] | Dieudonné, J. A.; Carrell, J. B., Invariant Theory, Old and New (1971), Academic Press: Academic Press New York ·Zbl 0258.14011 |
[18] | Eagon, J. A., Ideals generated by the subdeterminants of a matrix, (Thesis (1961), University of Chicago) ·Zbl 0167.31202 |
[19] | Eagon, J. A., Examples of Cohen-Macaulay rings which are not Gorenstein, Math. Z., 109, 109-111 (1969) ·Zbl 0184.29201 |
[20] | Eagon, J. A.; Hochster, M., \(R\)-sequences and indeterminates, Quart. J. Math. Oxford Ser., 25, 2, 61-71 (1974) ·Zbl 0278.13008 |
[21] | Eagon, J. A.; Northcott, D. G., Ideals defined by matrices and a certain complex associated with them, (Proc. Roy. Soc. London Ser. A, 269 (1962)), 188-204 ·Zbl 0106.25603 |
[22] | Eagon, J. A.; Northcott, D. G., Generically acyclic complexes and generically perfect ideals, (Proc. Roy. Soc. London Ser. A, 299 (1967)), 147-172 ·Zbl 0225.13004 |
[23] | Fogarty, J., Invariant Theory (1969), Benjamin: Benjamin New York ·Zbl 0191.51701 |
[24] | Grothendieck, A., Éléments de géométrie algébrique, Chap. III, part 1, Inst. Hautes Études Sci. Publ. Math., 11 (1961) |
[25] | Inst. Hautes Études Sci. Publ. Math., 24 (1965) ·Zbl 0135.39701 |
[26] | Grothendieck, A., Local Cohomology, (Lecture Notes in Mathematics, No. 41 (1967), Springer: Springer New York), (Notes by R. Hartshorne) ·Zbl 0185.49202 |
[27] | Gulliksen, T. H.; Negard, O. G., Un complexe résolvent pour certains idéaux déterminantiels, C.R. Acad. Sci. Paris Sér. A, 274, 16-19 (1972) ·Zbl 0238.13015 |
[28] | Hochster, M., Generically perfect modules are strongly generically perfect, Proc. London Math. Soc., 23, 3, 477-488 (1971) ·Zbl 0232.13014 |
[29] | Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math., 96, 318-337 (1972) ·Zbl 0233.14010 |
[30] | Hochster, M., Grassmannians and their Schubert subvarieties are arithemtically Cohen-Macaulay, J. Algebra, 25, 40-57 (1973) ·Zbl 0256.14024 |
[31] | Hochster, M., Expanded radical ideals and semiregular ideals, Pacific J. Math., 44, 553-568 (1973) ·Zbl 0257.13001 |
[32] | M. HochsterProc. London Math. Soc.;M. HochsterProc. London Math. Soc. ·Zbl 0289.13006 |
[33] | Hochster, M., Criteria for equality of ordinary and symbolic powers of primes, Math. Z., 133, 53-66 (1973) ·Zbl 0251.13012 |
[34] | Hochster, M.; Eagon, J. A., A class of perfect determinantal ideals, Bull. Amer. Math. Soc., 76, 1026-1029 (1970) ·Zbl 0201.37201 |
[35] | Hochster, M.; Eagon, J. A., Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math., 93, 1020-1058 (1971) ·Zbl 0244.13012 |
[36] | Hochster, M.; Ratliff, L. J., Five theorems on Macaulay rings, Pacific J. Math., 44, 147-172 (1973) ·Zbl 0239.13016 |
[37] | Hodge, W. V.D; Pedoe, D., (Methods of Algebraic Geometry, Vols. I and II (1947 and 1952), Cambridge University Press) |
[38] | Igusa, J., On the arithmetic normality of the Grassmann variety, (Proc. Nat. Acad. Sci. U.S.A., 40 (1954)), 309-313 ·Zbl 0055.39002 |
[39] | Kaplansky, I., Commutative Rings (1970), Allyn and Bacon: Allyn and Bacon Boston ·Zbl 0203.34601 |
[40] | Kempf, G., Schubert Methods with an Application to Algebraic Curves, Lecture Notes (1971), Amsterdam ·Zbl 0223.14018 |
[41] | Kempf, G.; Knudsen, F.; Mumford, D.; St. Donat, B., Toroidal Embeddings I, (Lecture Notes in Mathematics, No. 339 (1973), Springer: Springer New York) ·Zbl 0271.14017 |
[42] | Kleiman, S. L.; Landolfi, J., Geometry and deformation of special Schubert varieties, Compositio Math., 23, 407-434 (1971) ·Zbl 0238.14006 |
[43] | Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85, 327-404 (1963) ·Zbl 0124.26802 |
[44] | Kunz, E., Characterization of regular local rings of characteristic \(p\), Amer. J. Math., 91, 772-784 (1969) ·Zbl 0188.33702 |
[45] | Kutz, R. E., Cohen-Macaulay rings and ideal theory in rings of invariants of algebriac groups, (Thesis (1971), University of Minnesota) ·Zbl 0288.13004 |
[46] | Laksov, D., The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math., 129, 1-9 (1972) ·Zbl 0233.14012 |
[47] | Macaulay, F. S., The Algebraic Theory of Modular Systems, Cambridge Tracts, Vol. 19 (1916) ·Zbl 0802.13001 |
[48] | Macdonald, I. G., Algebraic Geometry: Introduction to Schemes (1968), Benjamin: Benjamin New York ·Zbl 0172.22401 |
[49] | Matijevic, J. R., Some topics in graded rings, (Thesis (1973), University of Chicago) |
[50] | J. R. Matijevic and P. Roberts;J. R. Matijevic and P. Roberts ·Zbl 0278.13013 |
[51] | Matlis, E., Injective modules over Noetherian rings, Pacific J. Math., 8, 511-528 (1958) ·Zbl 0084.26601 |
[52] | Matsumurá, H., Commutative Algebra (1970), Benjamin: Benjamin New York ·Zbl 0211.06501 |
[53] | Mount, K. R., A remark on determinantal loci, J. London Math. Soc., 42, 595-598 (1967) ·Zbl 0171.00401 |
[54] | Mumford, D., Geometric Invariant Theory (1965), Springer: Springer New York ·Zbl 0147.39304 |
[55] | Mumford, D., Lectures on Curves on an Algebraic Surface, Annals of Mathematics Studies No. 59 (1966) ·Zbl 0187.42701 |
[56] | Murthy, M. P., A note on factorial rings, Arch. Math. (Basel), 15, 418-420 (1964) ·Zbl 0123.03401 |
[57] | Musili, C., Postulation formula for Schubert varieties, J. Indian Math. Soc., 36, 143-171 (1972) ·Zbl 0277.14021 |
[58] | C. Musili;C. Musili ·Zbl 0351.14028 |
[59] | Nagata, M., Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ., 1, 87-99 (1961) ·Zbl 0106.25201 |
[60] | Nagata, M., Local Rings (1962), Interscience: Interscience New York ·Zbl 0123.03402 |
[61] | Nagata, M., Invariants of a group in an affine ring, J. Math. Kyoto Univ., 3, 369-377 (1963/1964) ·Zbl 0146.04501 |
[62] | Nagata, M., Lectures on the fourteenth problem of Hilbert, (Lecture Notes in Mathematics, No. 31 (1965), Tata Institute: Tata Institute Bombay) ·Zbl 0182.54101 |
[63] | Northcott, D. G., Semi-regular rings and semi-regular ideals, Quart. J. Math. Oxford Ser., 11, 2, 81-104 (1960) ·Zbl 0112.03001 |
[64] | Northcott, D. G., Some remarks on the theory of ideals defined by matrices, Quart. J. Math. Oxford Ser., 14, 2, 193-204 (1963) ·Zbl 0116.02504 |
[65] | Northcott, D. G., Additional properties of generically acyclic projective complexes, Quart. J. Math. Oxford Ser., 20, 2, 65-80 (1969) ·Zbl 0203.05301 |
[66] | Northcott, D. G., Grade sensitivity and generic perfection, Proc. London Math. Soc., 20, 3, 597-618 (1970) ·Zbl 0196.06701 |
[67] | Peskine, C.; Szpiro, L., Dimension projective finie et cohomologie locale, Inst. Hautes Études Sci. Publ. Math., 42, 47-119 (1973) ·Zbl 0268.13008 |
[68] | Poon, K. Y., A resolution of certain perfect ideals defined by some matrices, (Thesis (1973), University of Minnesota) |
[69] | Rees, D., The grade of an ideal or module, (Proc. Cambridge Philos. Soc., 53 (1957)), 28-42 ·Zbl 0079.26602 |
[70] | Room, T. G., The Geometry of Determinantal Loci (1938), Cambridge University Press ·Zbl 0020.05402 |
[71] | Samuel, P., Lectures on Unique Factorization Domains, (Lecture Notes in Mathematics, No. 30 (1964), Tata Institue: Tata Institue Bombay) ·Zbl 0184.06601 |
[72] | Serre, J.-P, Faisceaux algébriques cohérents, Ann. of Math., 61, 197-278 (1955) ·Zbl 0067.16201 |
[73] | Serre, J.-P, Sur la topologie des variétés algébriques en caractéristique \(p\), (International symposium on algebraic topology (1958), Universidad Nacional Autónoma de México and UNESCO: Universidad Nacional Autónoma de México and UNESCO Mexico City) ·Zbl 0098.13103 |
[74] | Serre, J.-P, On the fundamental group of a unirational variety, J. London Math. Soc., 34, 481-484 (1959) ·Zbl 0097.36301 |
[75] | Serre, J.-P, Algèbre Locale-Multiplicités, (Lecture Notes in Mathematics, No. 11 (1965), Springer: Springer New York) ·Zbl 0091.03701 |
[76] | Sharp, R. Y., Local cohomology theory in commutative algebra, Quart. J. Math. Oxford Ser., 21, 2, 425-434 (1970) ·Zbl 0204.06003 |
[77] | Sharpe, D. W., On certain polynomial ideals defined by matrices, Quart. J. Math. Oxford Ser., 15, 2, 155-175 (1964) ·Zbl 0119.03601 |
[78] | Sharpe, D. W., The syzygies and semi-regularity of certain ideals defined by matrices, Proc. London Math. Soc., 15, 3, 645-679 (1965) ·Zbl 0136.31803 |
[79] | T. Svanes;T. Svanes ·Zbl 0308.14008 |
[80] | Taylor, D., Ideals generated by monomials in an \(R\)-sequence, (Thesis (1966), University of Chicago) |
[81] | Weyl, H., The Classical Groups (1946), Princeton University Press ·JFM 65.0058.02 |
[82] | Zariski, O.; Samuel, P., (Commutative Algebra, vol. II (1960), D. van Nostrand: D. van Nostrand Princeton, NJ) ·Zbl 0121.27801 |
[83] | Mumford, D., Introduction to Algebraic Geometry, (Lecture notes (1966), Harvard University) ·Zbl 0114.13106 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.