Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Dual variational methods in critical point theory and applications.(English)Zbl 0273.49063

Consider the nonlinear elliptic partial differential equation
\[ L(u) \equiv -\sum_{i,j=1}^n (a_{ij}(x)u_{x_i})_{x_j} + c(x)u = p(x,u),\quad x\in\Omega,\ u = 0,\ x \in\partial\Omega, \tag{*}\]
where \(\Omega\subset\mathbb R^n\) is a smooth bounded domain. Formally, the critical points of the functional
\[ I(u) = \int_\Omega \left[ \frac12 \sum_{i,j=1}^n (a_{ij}(x)u_{x_i})_{x_j} + c(x)u^2 - P(x,u(x))\right] \,dx, \]
where \(P(x,u)\) is a primitive of \(p(x,u)\), are solutions of (*). The authors construct dual variational methods to enable them to prove the existence and estimate the number of critical points possessed by a real continuously differentiable functional on a real Banach space, and then apply their results to various existence problems for equations of type (*). They also apply them to problems with linear term added, i.e.
\[ L(u) = a(x)u + p(x,u),\quad x\in\Omega;\ u=0,\ x \in\partial\Omega, \]
as well as to nonlinear integral equations of the form
\[ v(x) = \int_\Omega g(x,y)q(y,v(y))\,dy. \]
Reviewer: H. S. P. Grässer

MSC:

58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
35J20 Variational methods for second-order elliptic equations

Cite

References:

[1]Ljusternik, L. A.; Schnirelman, L. G., Methodes topologiques dans les problèmes variationels, Actualites Sci. Ind 188 (1934), Paris ·Zbl 0011.02803
[2]Krasnoselski, M. A., Topological Methods in the Theory of Nonlinear Integral Equations (1964), Macmillan: Macmillan New York ·Zbl 0111.30303
[3]Schwartz, J. T., Generalizing the Lusternik-Schnirelman theory of critical points, Commun. Pure Appl. Math., 17, 307-315 (1964) ·Zbl 0152.40801
[4]Palais, R. S., Lusternik-Schnirelman theory on Banach manifolds, Topology, 5, 115-132 (1966) ·Zbl 0143.35203
[5]Browder, F. E., Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of Math., 82, 459-477 (1965) ·Zbl 0136.12002
[6]Amann, H., Lusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann., 199, 55-72 (1972) ·Zbl 0233.47049
[7]Clark, D. C., A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22, 65-74 (1972) ·Zbl 0228.58006
[8]Coffman, C. V., A minimum-maximum principle for a class of nonlinear integral equations, J. Analyse Math., 22, 391-419 (1969) ·Zbl 0179.15601
[9]Coffman, C. V., On a class of nonlinear elliptic boundary value problems, J. Math. Mech., 19, 351-356 (1970) ·Zbl 0194.42103
[10]Hempel, J. A., Superlinear variational boundary value problems and nonuniqueness, (thesis (1970), University of New England: University of New England Australia)
[11]Hempel, J. A., Multiple solutions for a class of nonlinear boundary value problems, Indiana Univ. Math. J., 20, 983-996 (1971) ·Zbl 0225.35045
[12]Ambrosetti, A., Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fiz. Mat. Natur. Ser. I, 52, 660-667 (1972) ·Zbl 0249.35030
[13]A. AmbrosettiRend. Sem. Mat. Univ. Padova;A. AmbrosettiRend. Sem. Mat. Univ. Padova ·Zbl 0273.35037
[14]P. H. RabinowitzIndiana Univ. Math. J.;P. H. RabinowitzIndiana Univ. Math. J. ·Zbl 0264.35032
[15]P. H. RabinowitzIndiana Univ. Math. J.;P. H. RabinowitzIndiana Univ. Math. J. ·Zbl 0278.35040
[16]Nehari, Z., On a class of nonlinear integral equations, Math. Z., 72, 175-183 (1959) ·Zbl 0092.10903
[17]P. H. RabinowitzRocky Mountain Math. J.;P. H. RabinowitzRocky Mountain Math. J. ·Zbl 0255.47069
[18]Palais, R. S.; Smale, S., A generalized Morse theory, Bull. Amer. Math. Soc., 70, 165-171 (1964) ·Zbl 0119.09201
[19]Rabinowitz, P. H., Nonlinear Sturm-Liouville problems for second order ordinary differential equations, Commun. Pure Appl. Math., 23, 939-961 (1970) ·Zbl 0206.09706
[20]R. E. L. TurnerJ. Diff. Eq.;R. E. L. TurnerJ. Diff. Eq. ·Zbl 0272.34031
[21]Agmon, S., The \(L_p\) approach to the Dirichlet problem, Ann. Scuolu. Norm. Sup. Pisa, 13, 405-448 (1959) ·Zbl 0093.10601
[22]Berger, M. S., Corrections, 22, 351-354 (1968) ·Zbl 0155.16902
[23]Pohozaev, S. I., On the eigenfunctions of quasilinear elliptic problems, Math. USSR-Sb., 11, 171-188 (1970) ·Zbl 0217.13203
[24]Amann, H., Existence theorems for equations of Hammerstein type, Appl. Anal., 1, 385-397 (1972) ·Zbl 0244.47047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp