90C10 | Integer programming |
[1] | J.P. Arabeyre, J. Fearnley, F. Steiger and W. Teather, ”The airline crew scheduling problem: A survey”,Transportation Science 3 (1969) 140–163. ·doi:10.1287/trsc.3.2.140 |
[2] | E. Balas and M.W. Padberg, ”On the set covering problem”,Operations Research 20 (1972) 1152–1161. ·Zbl 0254.90035 ·doi:10.1287/opre.20.6.1152 |
[3] | E. Balas and M.W. Padberg, ”On the set covering problem II: An algorithm”, Management Sciences Research Report No. 278, GSIA, Carnegie–Mellon University, Pittsburgh, Pa. (presented at the Joint National Meeting of ORSA, TIMS, AIEE, at Atlantic City, November 8–10, 1972). ·Zbl 0254.90035 |
[4] | M.L. Balinski, ”On recent developments in integer programming”, in:Proceedings of the Princeton Symposium on Mathematical Programming, Ed. H.W. Kuhn (Princeton University Press, Princeton, N.J., 1970). ·Zbl 0222.90036 |
[5] | M.L. Balinski, ”On maximum matching, minimum covering and their connections”, in:Proceedings of the Princeton Symposium on Mathematical Programming, Ed. H.W. Kuhn (Princeton University Press, Princeton, N.J., 1970). ·Zbl 0228.05122 |
[6] | L.W. Beineke, ”A Survey of packings and coverings of graphs”, in:The many facets of graph theory, Eds. G. Chartrand and S.F. Kapoor (Springer, Berlin, 1969). ·Zbl 0186.27601 |
[7] | J.Edmonds, ”Covers and packings in a family of sets”,Bulletin of the American Mathematical Society 68 (1962) 494–499. ·Zbl 0106.24201 ·doi:10.1090/S0002-9904-1962-10791-5 |
[8] | J. Edmonds, ”Maximum matching and a polyhedron with 0, 1 vertices”,Journal of Research of the National Bureau of Standards 69B (1965) 125–130. ·Zbl 0141.21802 |
[9] | D.R. Fulkerson, ”Blocking and anti-blocking pairs of polyhedra”,Mathematical Programming 1 (1971) 168–194. ·Zbl 0254.90054 ·doi:10.1007/BF01584085 |
[10] | R. Garfinkel and G.L. Nemhauser, ”The set-partitioning problem: Set covering with equality constraints”,Operations Research 17 (1969) 848–856. ·Zbl 0184.23101 ·doi:10.1287/opre.17.5.848 |
[11] | R.S. Garfinkel and G.L. Nemhauser, ”A survey of integer programming emphasizing computation and relations among models”, Technical Report No. 156, Department of Operations Research, Cornell University, Ithaca, N.Y. (1972). ·Zbl 0271.90028 |
[12] | R.E. Gomory, ”Some polyhedra connected with combinatorial problems”,Linear Algebra 2 (1969) 451–558. ·Zbl 0184.23103 ·doi:10.1016/0024-3795(69)90017-2 |
[13] | D.K. Guha, ”Set covering problem with equality constraints”, The Port of New York Authority, New York (1970). |
[14] | F. Harary,Graph Theory (Addison–Wesley, Reading, Mass., 1969). |
[15] | F. Harary and I.C. Ross, ”A procedure for clique detection using the group matrix”,Sociometry 20 (1957) 205–215. ·doi:10.2307/2785673 |
[16] | R.M. Karp, ”Reducibility and combinatorial problems”, Technical Report 3, Department of Computer Science, University of California, Berkeley, Calif. (1972). ·Zbl 0366.68041 |
[17] | J. Messier and P. Robert, ”Recherche des cliques d’un graphe irreflexif fini”, Publication No. 73, Departement d’Informatique, Université de Montréal (Novembre 1971). |
[18] | O. Ore,Theory of graphs, American Mathematical Society Colloquium Publications 38 (American Mathematical Society, Providence, R.I., 1962). ·Zbl 0105.35401 |
[19] | M.W. Padberg, Essays in integer programming, Ph. D. Thesis, Carnegie–Mellon University, Pittsburgh, Pa. (April 1971), unpublished. |
[20] | M.W. Padberg, ”On the facial structure of set covering problems”, IIM Preprint No. I/72-13, International Institute of Management, Berlin (1972), (presented at the 41st National Meeting of ORSA, New Orleans, La., April 26–28, 1972). |
[21] | J.F. Pierce, ”Application of combinatorial programming to a class of all-zero–one integer programming problems”,Management Science 15 (1968) 191–212. ·doi:10.1287/mnsc.15.3.191 |
[22] | H. Thiriez, Airline crew scheduling, a group theoretic approach, Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., FTL-R69-1 (1969) (published in RIRO 5 (1971) 83–103). ·Zbl 0266.90039 |
[23] | V.A. Trubin, ”On a method of solution of integer linear programming problems of a special kind”,Soviet Mathematics Doklady 10 (1969) 1544–1546. ·Zbl 0209.51201 |
[24] | L.A. Wolsey, ”Extensions of the group theoretic approach in integer programming”,Management Science 18 (1971) 74–83. ·Zbl 0239.90034 ·doi:10.1287/mnsc.18.1.74 |