Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the facial structure of set packing polyhedra.(English)Zbl 0272.90041


MSC:

90C10 Integer programming

Cite

References:

[1]J.P. Arabeyre, J. Fearnley, F. Steiger and W. Teather, ”The airline crew scheduling problem: A survey”,Transportation Science 3 (1969) 140–163. ·doi:10.1287/trsc.3.2.140
[2]E. Balas and M.W. Padberg, ”On the set covering problem”,Operations Research 20 (1972) 1152–1161. ·Zbl 0254.90035 ·doi:10.1287/opre.20.6.1152
[3]E. Balas and M.W. Padberg, ”On the set covering problem II: An algorithm”, Management Sciences Research Report No. 278, GSIA, Carnegie–Mellon University, Pittsburgh, Pa. (presented at the Joint National Meeting of ORSA, TIMS, AIEE, at Atlantic City, November 8–10, 1972). ·Zbl 0254.90035
[4]M.L. Balinski, ”On recent developments in integer programming”, in:Proceedings of the Princeton Symposium on Mathematical Programming, Ed. H.W. Kuhn (Princeton University Press, Princeton, N.J., 1970). ·Zbl 0222.90036
[5]M.L. Balinski, ”On maximum matching, minimum covering and their connections”, in:Proceedings of the Princeton Symposium on Mathematical Programming, Ed. H.W. Kuhn (Princeton University Press, Princeton, N.J., 1970). ·Zbl 0228.05122
[6]L.W. Beineke, ”A Survey of packings and coverings of graphs”, in:The many facets of graph theory, Eds. G. Chartrand and S.F. Kapoor (Springer, Berlin, 1969). ·Zbl 0186.27601
[7]J.Edmonds, ”Covers and packings in a family of sets”,Bulletin of the American Mathematical Society 68 (1962) 494–499. ·Zbl 0106.24201 ·doi:10.1090/S0002-9904-1962-10791-5
[8]J. Edmonds, ”Maximum matching and a polyhedron with 0, 1 vertices”,Journal of Research of the National Bureau of Standards 69B (1965) 125–130. ·Zbl 0141.21802
[9]D.R. Fulkerson, ”Blocking and anti-blocking pairs of polyhedra”,Mathematical Programming 1 (1971) 168–194. ·Zbl 0254.90054 ·doi:10.1007/BF01584085
[10]R. Garfinkel and G.L. Nemhauser, ”The set-partitioning problem: Set covering with equality constraints”,Operations Research 17 (1969) 848–856. ·Zbl 0184.23101 ·doi:10.1287/opre.17.5.848
[11]R.S. Garfinkel and G.L. Nemhauser, ”A survey of integer programming emphasizing computation and relations among models”, Technical Report No. 156, Department of Operations Research, Cornell University, Ithaca, N.Y. (1972). ·Zbl 0271.90028
[12]R.E. Gomory, ”Some polyhedra connected with combinatorial problems”,Linear Algebra 2 (1969) 451–558. ·Zbl 0184.23103 ·doi:10.1016/0024-3795(69)90017-2
[13]D.K. Guha, ”Set covering problem with equality constraints”, The Port of New York Authority, New York (1970).
[14]F. Harary,Graph Theory (Addison–Wesley, Reading, Mass., 1969).
[15]F. Harary and I.C. Ross, ”A procedure for clique detection using the group matrix”,Sociometry 20 (1957) 205–215. ·doi:10.2307/2785673
[16]R.M. Karp, ”Reducibility and combinatorial problems”, Technical Report 3, Department of Computer Science, University of California, Berkeley, Calif. (1972). ·Zbl 0366.68041
[17]J. Messier and P. Robert, ”Recherche des cliques d’un graphe irreflexif fini”, Publication No. 73, Departement d’Informatique, Université de Montréal (Novembre 1971).
[18]O. Ore,Theory of graphs, American Mathematical Society Colloquium Publications 38 (American Mathematical Society, Providence, R.I., 1962). ·Zbl 0105.35401
[19]M.W. Padberg, Essays in integer programming, Ph. D. Thesis, Carnegie–Mellon University, Pittsburgh, Pa. (April 1971), unpublished.
[20]M.W. Padberg, ”On the facial structure of set covering problems”, IIM Preprint No. I/72-13, International Institute of Management, Berlin (1972), (presented at the 41st National Meeting of ORSA, New Orleans, La., April 26–28, 1972).
[21]J.F. Pierce, ”Application of combinatorial programming to a class of all-zero–one integer programming problems”,Management Science 15 (1968) 191–212. ·doi:10.1287/mnsc.15.3.191
[22]H. Thiriez, Airline crew scheduling, a group theoretic approach, Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., FTL-R69-1 (1969) (published in RIRO 5 (1971) 83–103). ·Zbl 0266.90039
[23]V.A. Trubin, ”On a method of solution of integer linear programming problems of a special kind”,Soviet Mathematics Doklady 10 (1969) 1544–1546. ·Zbl 0209.51201
[24]L.A. Wolsey, ”Extensions of the group theoretic approach in integer programming”,Management Science 18 (1971) 74–83. ·Zbl 0239.90034 ·doi:10.1287/mnsc.18.1.74
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp