[1] | R.W. Cottle, ”On a problem in linear inequalities,”Journal of the London Mathematical Society 43, 378–384. ·Zbl 0181.04001 |
[2] | R.W. Cottle, ”Nonlinear programs with positively bounded Jacobians,”SIAM Journal of Applied Math. 14, No. 1 (1966) 147–158. ·Zbl 0158.18903 ·doi:10.1137/0114012 |
[3] | R.W. Cottie and G.B. Dantzig. ”Complementary Pivot theory of mathematical programming,”Linear Algebra and its Applications, 1 (1968) pp. 103–125. ·Zbl 0155.28403 ·doi:10.1016/0024-3795(68)90052-9 |
[4] | R.W. Cottle and G.B. Dantzig, ”A generalization of the linear complementarity problem,”Journal of Combinatorial Theory (1969). ·Zbl 0186.23806 |
[5] | R.W. Cottle, A.J. Habetler and C.E. Lemke, ”On classes of copositive matrices,”Linear Algebra and its Applications, to appear. ·Zbl 0196.05602 |
[6] | R.W. Cottle, G.J. Habetler and C.E. Lemke, ”Quadratic forms semidefinite over convex cones,” In:Sixth International Mathematical Programming Symposium. Princeton, 1967 (Princeton University Press, 1971). ·Zbl 0221.15018 |
[7] | G.B. Dantzig and R.W. Cottle, ”Positive (semi) definite programming,” In:Nonlinear programming, Ed. J. Abadie (North-Holland, Amsterdam, 1967). pp. 55–73. ·Zbl 0178.22801 |
[8] | P. DuVal, ”The unloading problem for plane curves,”American Journal of Mathematics, 62 (1940) 307–317. ·JFM 66.0785.03 ·doi:10.2307/2371454 |
[9] | B.C. Eaves, ”The linear complementarity problem in mathematical programming,” Tech. Report No. 69-4, July 1969, O.R. House, Stanford University. |
[10] | M. Fiedler and V. Ptak, ”Some generalizations of positive definiteness and monotonicity,”Numerische Mathematik 9 (1962) 163–172. ·Zbl 0148.25801 ·doi:10.1007/BF02166034 |
[11] | V.M. Fridman and V.S. Chernina, ”An iteration process for the solution of the finitedimensional contact problem,”U.S.S.R. Computational Math. and Math. Physics 7, No. 1 (1967) 210–214. ·Zbl 0191.15901 ·doi:10.1016/0041-5553(67)90071-7 |
[12] | P. Hartman and G. Stampacchia, ”On some nonlinear differential-functional equations,”Acta Math. 115 (1966) 271–310. ·Zbl 0142.38102 ·doi:10.1007/BF02392210 |
[13] | D. Gale and H. Nikaido, ”The Jacobian matrix and global univalence of mappings,”Mathematische Annalen 159 (1965) 81–93. ·Zbl 0158.04903 ·doi:10.1007/BF01360282 |
[14] | A.W. Ingleton, ”A problem in linear inequalities,”Proceedings of the London Mathematical Society, Third Series, 16 (1966) 519–536. ·Zbl 0166.03005 ·doi:10.1112/plms/s3-16.1.519 |
[15] | S. Kakutani, ”A generalization of Brouwer’s fixed point theorem,”Duke Math. Journal 8 (1941) 457–459. ·Zbl 0061.40304 ·doi:10.1215/S0012-7094-41-00838-4 |
[16] | S. Karamardian, ”Duality in mathematical programming,” ORC 66-2, January 1966. University of California, Berkeley. |
[17] | S. Karamardian, ”Existence of solutions of certain systems of nonlinear inequalities,”Numerische Mathematik 12 (1968) 327–334. ·Zbl 0167.48203 ·doi:10.1007/BF02162513 |
[18] | S. Karamardian, ”The nonlinear complementarity problem with applications, Part I.”Journal of Optimization Theory and Applications 4, No. 2 (1969) 87–98. ·Zbl 0169.06901 ·doi:10.1007/BF00927414 |
[19] | S. Karamardian, ”The nonlinear complementarity problem with applications, Part II”Journal of Optimization Theory and Applications 4, No. 3 (1969) 167 181. ·Zbl 0169.51302 |
[20] | C.E. Lemke, ”On complementary Pivot theory,”Math. of the Decision Sciences, American Mathematical Society, Eds. G.B. Dantzig and A.F. Veinott, Jr., (1968). ·Zbl 0208.45502 |
[21] | C.E. Lemke, ”Bimatrix equilibrium points and mathematical programming,”Management Science 11 (1965) 681–689. ·Zbl 0139.13103 ·doi:10.1287/mnsc.11.7.681 |
[22] | C.E. Lemke and J.T. Howson, Jr., ”Equilibrium points of bimatrix games,”SIAM Journal 12, No. 2 (1964) 413–423. ·Zbl 0128.14804 |
[23] | J.L. Lions and G. Stampacchia, ”Variational inequalities,”Communications on Pure and Applied Math, 20, No. 3 (1967) 493–519. ·Zbl 0152.34601 ·doi:10.1002/cpa.3160200302 |
[24] | K.G. Murty, ”On the number of solutions to the complementarity problem and spanning properties of complementary cones,” To appear in theJournal of Linear Algebra and its Applications. ·Zbl 0241.90046 |
[25] | H. Samelson, R.M. Thrall and O. Wesler, ”A partition theorem for Euclideann-space,”AMS Proceedings 9 (1958) 805–807. ·Zbl 0117.37901 |
[26] | H. Scarf, ”An algorithm for a class of nonconvex programming problems,” Cowles foundations discussion paper, No. 211, Yale University (July 1966). |