Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Nonlinear maximal monotone operators in Banach space.(English)Zbl 0159.43901


Cite

References:

[1]Aggeri, J. C., etC. Lescarret: Sur une application de la théorie de la sous-differentiabilité à des fonctions convexes duales associés à un couple d’ensembles mutuellement polaires. (Mimeographed manuscript.) Montpellier 1965.
[2]Asplund, E.: Positivity of duality mappings. Bull Am. Math. Soc.73, 200-203 (1967). ·Zbl 0149.36202 ·doi:10.1090/S0002-9904-1967-11678-1
[3]Beurling, A., andA. E. Livingston: A theorem on duality mappings in Banach spaces. Ark. Math.4, 405-411 (1961). ·Zbl 0105.09301 ·doi:10.1007/BF02591622
[4]Bronsted, A., andR. T. Rockafellar: On the subdifferentiability of convex functions. Proc. Am. Math. Soc.16, 605-611 (1965). ·Zbl 0141.11801
[5]Browder, F. E.: Nonlinear elliptic boundary value problems. Bull. Am. Math. Soc.69, 862-874 (1963). ·Zbl 0127.31901 ·doi:10.1090/S0002-9904-1963-11068-X
[6]??: Nonlinear elliptic problems, II. Bull. Am. Math. Soc.70, 299-302 (1964). ·Zbl 0127.31902 ·doi:10.1090/S0002-9904-1964-11134-4
[7]?? Strongly nonlinear parabolic boundary value problems. Am. J. Math.86, 339-357 (1964). ·Zbl 0143.33501 ·doi:10.2307/2373169
[8]?? Nonlinear elliptic boundary value problems, II. Trans. Am. Math. Soc.117, 530-550 (1965). ·Zbl 0127.31903 ·doi:10.1090/S0002-9947-1965-0173846-9
[9]?? Nonlinear equations of evolution. Ann. Math.80, 485-523 (1964). ·Zbl 0127.33602 ·doi:10.2307/1970660
[10]?? On a theorem of Beurling and Livingston. Canad. J. Math.17, 367-372 (1965). ·Zbl 0132.10602 ·doi:10.4153/CJM-1965-037-2
[11]?? Multivalued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc.118, 338-351 (1965). ·Zbl 0138.39903 ·doi:10.1090/S0002-9947-1965-0180884-9
[12]?? Continuity properties of monotone nonlinear operators in Banach spaces. Bull. Am. Math. Soc.70, 551-553 (1964). ·Zbl 0123.10702 ·doi:10.1090/S0002-9904-1964-11196-4
[13]?? Nonlinear initial value problems. Ann. Math.82, 51-87 (1965). ·Zbl 0131.13502 ·doi:10.2307/1970562
[14]?? Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Soc.71, 780-785 (1965). ·Zbl 0138.39902 ·doi:10.1090/S0002-9904-1965-11391-X
[15]?? Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proc. Symposia on Appl. Math., Am. Math. Soc.17, 24-49 (1965).
[16]?? Mapping theorems for noncompact nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.54, 337-342 (1965). ·Zbl 0133.08101 ·doi:10.1073/pnas.54.2.337
[17]?? Nonlinear functional equations in nonreflexive Banach spaces. Bull. Am. Math. Soc.72, 89-95 (1966). ·Zbl 0135.17602 ·doi:10.1090/S0002-9904-1966-11432-5
[18]– Problèmes nonlinéaires. 153 pp. Univ. of Montreal Press 1966.
[19]?? On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.56, 419-425 (1966). ·Zbl 0143.36902 ·doi:10.1073/pnas.56.2.419
[20]?? Existence and approximation of solutions of nonlinear variational inequalities. Proc. Nat. Acad. Sci. U.S.56, 1080-1086 (1966). ·Zbl 0148.13502 ·doi:10.1073/pnas.56.4.1080
[21]Hartman, P., andG. Stampacchia: On some nonlinear elliptic functional differential equations. Acta. Math.115, 271-310 (1966). ·Zbl 0142.38102 ·doi:10.1007/BF02392210
[22]Kacurovski, R. I.: On monotone operators and convex functionals. Usp. Mat. Nauk.15, 213-215 (1960).
[23]Kato, T.: Demicontinuity, hemicontinuity, and monotonicity. Bull. Am. Math. Soc.70, 548-550 (1964). ·Zbl 0123.10701 ·doi:10.1090/S0002-9904-1964-11194-0
[24]?? Nonlinear equations of evolution in Banach spaces. Symposia on Appl. Math., Am. Math. Soc.17, 50-67 (1965).
[25]Leray, J., etJ. L. Lions: Quelques resultats de Visik sur les problemes elliptiques nonlinéaires par les methodes de Minty-Browder. Bull. soc. math. France93, 97-107 (1965).
[26]Lescarret, C.: Cas d’addition des applications monotones maximales dans un espace de Hilbert. Compt. Rend.261, 1160-1163 (1965). ·Zbl 0138.08204
[27]Lions, J. L., etG. Stampacchia: Inequations variationelles noncoercives. Compt. Rend.261, 25-27 (1965).
[28]– Variational inequalities. (To appear.)
[29]Minty, G. J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J.29, 341-346 (1962). ·Zbl 0111.31202 ·doi:10.1215/S0012-7094-62-02933-2
[30]??: On the monotonicity of the gradient of a convex function. Pacific. J. Math.14, 243-247 (1964). ·Zbl 0123.10601
[31]?? On a ?monotonicity? method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci. U.S.50, 1038-1041 (1963). ·Zbl 0124.07303 ·doi:10.1073/pnas.50.6.1038
[32]?? A theorem on maximal monotonic sets in Hilbert spaces. J. Math. Anal. and Appl.11, 434-439 (1965). ·Zbl 0132.10603 ·doi:10.1016/0022-247X(65)90095-8
[33]?? On the generalization of the direct method of the calculus of variations. Bull. Am. Math. Soc.73, 315-321 (1967). ·Zbl 0157.19103 ·doi:10.1090/S0002-9904-1967-11732-4
[34]Moreau, J. J.: Fonctionelles sous-differentiables. Compt. Rend.257, 4117-4119 (1963). ·Zbl 0137.31401
[35]?? Proximité et dualité dans un éspace hilbertien. Bull. soc. math. France93, 273-299 (1965).
[36]Rockafellar, R. T.: Characterization of the subdifferentials of convex functions. Pacific J. Math.17, 497-510 (1966). ·Zbl 0145.15901
[37]Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. Comt. Rend.258, 4413-4416 (1964). ·Zbl 0124.06401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp