Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Zum Khintchineschen ”Übertragungssatz”.(German)Zbl 0019.10602

Trav. Inst. Math. Tbilissi 3, 193-212 (1938).

MSC:

11H99 Geometry of numbers
11J13 Simultaneous homogeneous approximation, linear forms

Cite



Zum Khintchineschen “Übertragungssatz”.(German)JFM 64.0145.01

Trav. Inst. Math. Tbilissi 3, 193-216 (1938).
\(\vartheta_1, \dots, \vartheta_s\) sei ein eigentliches System reeller Zahlen, d. h. es bestehe keine Relation \(x_0 + x_1\vartheta_1 + \cdots +x_s\vartheta_s = 0\) mit ganzen, nicht sämtlich verschwindenden \(x_i\). Setzt man dann \begin{align*} \mathop{\operatorname{Min}}\limits_{|x_i|\le \tau} |x_1\vartheta_1 + \cdots +x_s\vartheta_s+y|=\psi_1(\tau; \vartheta_1, \ldots, \vartheta_s)&=\psi_1(\tau)\\ \mathop{\operatorname{Min}}\limits_{0<q\leqq \tau} (\mathop{\operatorname{Max}}\limits_{1\leqq i \leqq s} |q\vartheta_i-p_i|)=\psi_2(\tau;\vartheta_1, \ldots, \vartheta_s)&=\psi_2(\tau) \quad (p_i, q \text{ ganz)}, \end{align*} so ist bekanntlich \[ 0 < \psi_1(\tau)\cdot \tau^s < 1, \quad 0 < \psi_2(\tau)\cdot \sqrt[s] {\tau} < 1. \] Verf. bezeichnet nun mit \[ \gamma_1 = \gamma_1(\vartheta_1, \ldots, \vartheta_s) \quad \text{bzw.} \quad \gamma_2=\gamma_2(\vartheta_1, \ldots, \vartheta_s) \] die obere Grenze derjenigen Zahlen \(\lambda\), für welche \(\varlimsup\limits_{\tau \to \infty}\psi_1(\tau) \cdot \tau^{s+\lambda}\) endlich bzw. \(\varlimsup\limits_{\tau \to \infty}\psi_2(\tau)\cdot \left(\sqrt[s] {\tau}\right)^{1+\lambda}\) endlich ist. Die analogen Bildungen mit \(\varliminf\) an Stelle von \(\varlimsup\) hat Khintchine mit \(\beta_1\), \(\beta_2\) bezeichnet und für sie die Ungleichungen bewiesen: \[ \beta_1 \ge \beta_2 \ge \frac {\beta_1}{(s-1)\beta_1+s^2} \tag{1} \][Rend. Circ. Mat. Palermo 50, 170–195 (1926;JFM 52.0183.01)]. Verf. beweist nun die analogen Ungleichungen : \[ \gamma_1 \ge \gamma_2 \ge \frac {\gamma_1}{(s-1)\gamma_1+s^2}. \tag{2} \] Für \(s > 2\) sind diese Grenzen bis zu gewissem Grad scharf, indem im Fall \(\gamma_1=\infty\) die durch (2) bestimmten äußersten Grenzen \(\gamma_2 = \infty\) und \(\gamma_2=\frac 1{s-1}\) tatsächlich für gewisse Systeme \(\vartheta_1, \dots, \vartheta_s\) vorkommen. Für \(s=2\) wird dagegen die schärfere Beziehung \(\gamma_2=\gamma_1(\gamma_1 + 2)^{-1}\) bewiesen.

MSC:

11H60 Mean value and transfer theorems

Citations:

JFM 52.0183.01

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp