Python Package Introduction

This document gives a basic walkthrough of the xgboost package for Python. The Pythonpackage is consisted of 3 different interfaces, including native interface, scikit-learninterface and dask interface. For introduction to dask interface please seeDistributed XGBoost with Dask.

List of other Helpful Links

Contents

Install XGBoost

To install XGBoost, follow instructions inInstallation Guide.

To verify your installation, run the following in Python:

importxgboostasxgb

Data Interface

The XGBoost Python module is able to load data from many different types of data format including both CPU and GPU data structures. For a complete list of supported data types, please reference theSupported data structures for various XGBoost functions. For a detailed description of text input formats, please visitText Input Format of DMatrix.

The input data is stored in aDMatrix object. For the sklearn estimator interface, aDMatrix or aQuantileDMatrix is created depending on the chosen algorithm and the input, see the sklearn API reference for details. We will illustrate some of the basic input types with theDMatrix here.

  • To load a NumPy array intoDMatrix:

    data=np.random.rand(5,10)# 5 entities, each contains 10 featureslabel=np.random.randint(2,size=5)# binary targetdtrain=xgb.DMatrix(data,label=label)
  • To load ascipy.sparse array intoDMatrix:

    csr=scipy.sparse.csr_matrix((dat,(row,col)))dtrain=xgb.DMatrix(csr)
  • To load a Pandas data frame intoDMatrix:

    data=pandas.DataFrame(np.arange(12).reshape((4,3)),columns=['a','b','c'])label=pandas.DataFrame(np.random.randint(2,size=4))dtrain=xgb.DMatrix(data,label=label)
  • SavingDMatrix into a XGBoost binary file will make loading faster:

    dtrain=xgb.DMatrix('train.svm.txt?format=libsvm')dtrain.save_binary('train.buffer')
  • Missing values can be replaced by a default value in theDMatrix constructor:

    dtrain=xgb.DMatrix(data,label=label,missing=np.NaN)
  • Weights can be set when needed:

    w=np.random.rand(5,1)dtrain=xgb.DMatrix(data,label=label,missing=np.NaN,weight=w)

When performing ranking tasks, the number of weights should be equalto number of groups.

  • To load a LIBSVM text file or a XGBoost binary file intoDMatrix:

    dtrain=xgb.DMatrix('train.svm.txt?format=libsvm')dtest=xgb.DMatrix('test.svm.buffer')

    The parser in XGBoost has limited functionality. When using Python interface, it’srecommended to use sklearnload_svmlight_file or other similar utilites thanXGBoost’s builtin parser.

  • To load a CSV file intoDMatrix:

    # label_column specifies the index of the column containing the true labeldtrain=xgb.DMatrix('train.csv?format=csv&label_column=0')dtest=xgb.DMatrix('test.csv?format=csv&label_column=0')

    The parser in XGBoost has limited functionality. When using Python interface, it’srecommended to use pandasread_csv or other similar utilites than XGBoost’s builtinparser.

Supported data structures for various XGBoost functions

Markers

  • T: Supported.

  • F: Not supported.

  • NE: Invalid type for the use case. For instance,pd.Series can not be multi-target label.

  • NPA: Support with the help of numpy array.

  • AT: Support with the help of arrow table.

  • CPA: Support with the help of cupy array.

  • SciCSR: Support with the help of scripy sparse CSR. The conversion to scipy CSR may or may not be possible. Raise a type error if conversion fails.

  • FF: We can look forward to having its support in recent future if requested.

  • empty: To be filled in.

Table Header

  • X means predictor matrix.

  • Meta info: label, weight, etc.

  • Multi Label: 2-dim label for multi-target.

  • Others: Anything else that we don’t list here explicitly including formats likelil,dia,bsr. XGBoost will try to convert it into scipy csr.

Support Matrix

Name

DMatrix X

QuantileDMatrix X

Sklearn X

Meta Info

Inplace prediction

Multi Label

numpy.ndarray

T

T

T

T

T

T

scipy.sparse.csr

T

T

T

NE

T

F

scipy.sparse.csc

T

F

T

NE

F

F

scipy.sparse.coo

SciCSR

F

SciCSR

NE

F

F

uri

T

F

F

F

NE

F

list

NPA

NPA

NPA

NPA

NPA

T

tuple

NPA

NPA

NPA

NPA

NPA

T

pandas.DataFrame

NPA

NPA

NPA

NPA

NPA

NPA

pandas.Series

NPA

NPA

NPA

NPA

NPA

NE

cudf.DataFrame

T

T

T

T

T

T

cudf.Series

T

T

T

T

FF

NE

cupy.ndarray

T

T

T

T

T

T

torch.Tensor

T

T

T

T

T

T

dlpack

CPA

CPA

CPA

FF

FF

modin.DataFrame

NPA

FF

NPA

NPA

FF

modin.Series

NPA

FF

NPA

NPA

FF

pyarrow.Table

T

T

T

T

T

T

polars.DataFrame

AT

AT

AT

AT

AT

AT

polars.LazyFrame (WARN)

AT

AT

AT

AT

AT

AT

polars.Series

AT

AT

AT

AT

AT

NE

__array__

NPA

F

NPA

NPA

H

Others

SciCSR

F

F

F

The polarsLazyFrame.collect supports many configurations, ranging from the choice ofquery engine to type coercion. XGBoost simply uses the default parameter. Please runcollect to obtain theDataFrame before passing it into XGBoost for finer controlover the behaviour.

Setting Parameters

XGBoost can use either a list of pairs or a dictionary to setparameters. For instance:

  • Booster parameters

    param={'max_depth':2,'eta':1,'objective':'binary:logistic'}param['nthread']=4param['eval_metric']='auc'
  • You can also specify multiple eval metrics:

    param['eval_metric']=['auc','ams@0']# alternatively:# plst = param.items()# plst += [('eval_metric', 'ams@0')]
  • Specify validations set to watch performance

    evallist=[(dtrain,'train'),(dtest,'eval')]

Training

Training a model requires a parameter list and data set.

num_round=10bst=xgb.train(param,dtrain,num_round,evallist)

After training, the model can be saved.

bst.save_model('0001.model')

The model and its feature map can also be dumped to a text file.

# dump modelbst.dump_model('dump.raw.txt')# dump model with feature mapbst.dump_model('dump.raw.txt','featmap.txt')

A saved model can be loaded as follows:

bst=xgb.Booster({'nthread':4})# init modelbst.load_model('model.bin')# load model data

Methods includingupdate andboost fromxgboost.Booster are designed forinternal usage only. The wrapper functionxgboost.train does somepre-configuration including setting up caches and some other parameters.

Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds.Early stopping requires at least one set inevals. If there’s more than one, it will use the last.

train(...,evals=evals,early_stopping_rounds=10)

The model will train until the validation score stops improving. Validation error needs to decrease at least everyearly_stopping_rounds to continue training.

If early stopping occurs, the model will have two additional fields:bst.best_score,bst.best_iteration. Note thatxgboost.train() will return a model from the last iteration, not the best one.

This works with both metrics to minimize (RMSE, log loss, etc.) and to maximize (MAP, NDCG, AUC). Note that if you specify more than one evaluation metric the last one inparam['eval_metric'] is used for early stopping.

Prediction

A model that has been trained or loaded can perform predictions on data sets.

# 7 entities, each contains 10 featuresdata=np.random.rand(7,10)dtest=xgb.DMatrix(data)ypred=bst.predict(dtest)

If early stopping is enabled during training, you can get predictions from the best iteration withbst.best_iteration:

ypred=bst.predict(dtest,iteration_range=(0,bst.best_iteration+1))

Plotting

You can use plotting module to plot importance and output tree.

To plot importance, usexgboost.plot_importance(). This function requiresmatplotlib to be installed.

xgb.plot_importance(bst)

To plot the output tree viamatplotlib, usexgboost.plot_tree(), specifying the ordinal number of the target tree. This function requiresgraphviz andmatplotlib.

xgb.plot_tree(bst,num_trees=2)

When you useIPython, you can use thexgboost.to_graphviz() function, which converts the target tree to agraphviz instance. Thegraphviz instance is automatically rendered inIPython.

xgb.to_graphviz(bst,num_trees=2)

Scikit-Learn interface

XGBoost provides an easy to use scikit-learn interface for some pre-defined modelsincluding regression, classification and ranking. SeeUsing the Scikit-Learn Estimator Interfacefor more info.

# Use "hist" for training the model.reg=xgb.XGBRegressor(tree_method="hist",device="cuda")# Fit the model using predictor X and response y.reg.fit(X,y)# Save model into JSON format.reg.save_model("regressor.json")

User can still access the underlying booster model when needed:

booster:xgb.Booster=reg.get_booster()