Krypton is present in the air at about 1 ppm. The atmosphere of Mars contains a little (about 0.3 ppm) of krypton. It is characterised by its brilliant green and orange spectral lines. The spectral lines of krypton are easily produced and some are very sharp. In 1960 it was internationally agreed that the fundamental unit of length, the metre, should be defined as 1 m = 1,650,763.73 wavelengths (in vacuo) of the orange-red line of Kr-33.
Under normal conditions krypton is colourless, odourless, fairly expensive gas. Solid krypton is a white crystalline substance with a face-centered cubic structure which is common to all the "rare gases". Krypton difluoride, KrF2, has been prepared in gram quantities and can be made by several methods.
Image adapted with permission fromProf James Marshall's (U. North Texas, USA)Walking Tour of the elements CD.
Krypton wasdiscovered by Sir William Ramsay, Morris W. Travers in 1898 at Great Britain.Origin of name: from the Greek word "kryptos" meaning "hidden".
Isotope abundances of krypton with the most intense signal set to 100%.
Krypton isotopes are used in various medical and scientific applications. Kr-82 is used for the production of Rb-81/Kr-81m generators. Many of the stable isotopes of Krypton are used in the study of the pulmonary system. Kr-78 can be used for the production of Br-75 although production of Br-75 via Se-76 is more common. Kr-86 has been used to define the standard measure of length: 1 meter is exactly 1,650,763.73 wavelengths of this isotope.
Isolation: krypton is present to a small extent (about 1 ppm by volume) in the atmosphere and is obtained as a byproduct from the liquefaction and separation of air. This would not normally be carried out in the laboratory and krypton is available commercially in cylinders at high pressure.