Acolor-coded version of this document showing changes made since the previous version is also available.
This document is also available in these non-normative formats:PDF version.
Copyright © 2012W3C® (MIT,ERCIM,Keio), All Rights Reserved. W3Cliability,trademark anddocument use rules apply.
The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. The OWL 2Document Overview describes the overall state of OWL 2, and should be read before other OWL 2 documents.
This document specifies a syntax and semantics for incorporating linear equations with rational coefficients solved in the reals in OWL 2.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in theW3C technical reports index at http://www.w3.org/TR/.
Please send any comments topublic-owl-comments@w3.org (public archive). Although work on this document by theOWL Working Group is complete, comments may be addressed in theerrata or in future revisions. Open discussion among developers is welcome atpublic-owl-dev@w3.org (public archive).
Publication as a Working Group Note does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the5 February 2004 W3C Patent Policy. The group does not expect this document to become a W3C Recommendation. W3C maintains apublic list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes containsEssential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
Table of Contents |
OWL 2 has a sophisticated set of built-in numeric dataranges andrather expressive constructors for building new dataranges out of the basic dataranges. A major restriction on the sort of data ranges that can be built with existing constructors (i.e., datatype facets) is that onlyunary dataranges can be defined --- i.e., only datatypes may be defined. One can say that the value of a data property has to be an integer greater than 5, but one cannot say that the value of one data property is greater than that of another data property. Furthermore, one might wish to relate the values of two properties by more complex equations than mere comparisons.
This document defines an extension to OWL for defining dataranges in terms of linear (in)equalites with rational coefficients solved over the algebraic reals. These dataranges can be used in OWL axioms to, for example, define classes in terms of a constraint on the relationships between values of distinct data properties.
This extension is restricted in two respects for the sake of reasonable implementability:
These restrictions may be lifted, to various degrees, in future versions of this specification.
Consider the relation between the boiling point and the melting point of a substance. For example, for water (at 1 atmosphere) the boiling point is 100C and the melting point 0C. This can be represented in plain OWL quite easily:
ClassAssertion(DataHasValue(melting_point "0"^^xsd:decimal) water)ClassAssertion(DataHasValue(boiling_point "100"^^xsd:decimal) water)
From these assertions it follows that the boiling point of water is greater than its melting point. This is, in fact, a general principle for substances: the boiling point of a normal physical substance is greater or equal to its melting point. This physical law can be expressed with a datarange with two free variables x and y, representing the melting and boiling point, respectively.:
EquivalentClasses(NormalSubstance DataAllValuesFrom(melting_point boiling_point DataComparison(Arguments(x y) leq( x y ))))
With this definition (and given thatmelting_point andboiling_point are functional), one can infer:
ClassAssertion(NormalSubstance water)
When administering drugs, there are many factors that go into determining the maximum safe dose. Often, the maximum the maximum single dose of a drug is computed in terms of milligram of drug per kilogram of body weight.
EquivalentClasses(SafelyDosedPatient DataAllValuesFrom(tookDrugInAmount weight DataComparison(Arguments(totalDoseInMg weightinKg) leq(totalDoseInMg times(2, weightInKg)))))
This axiom states that the safe dose is 2 milligrams per kilogram, and thus that a safe dose (in milligrams) for a person of a given weight must be less than 2 times the weight (in kilograms) of the patient.
As safe doses vary with age and other factors, one could define a number of such classes with varying constraints on the safety of the dose.
As with built-in OWL 2 data ranges, linear (in)equations may be used to form universal, existential, and quantified restrictions on (sets of) data properties.
ComparisonRelation :=
'gt' |
'lt' |
'geq' |
'leq' |
'eq' |
'neq'
Variable :=NCName
Rational := Integer / NonZeroInteger
Term := 'times' '(' [Rational ]Variable ')' |Variable
LinearExpression:= 'plus' '('Term {Term } ')' |Term |Variable
Arguments := 'Arguments' '('NCName {NCName } ')'
Comparison := 'DataComparison' '('ArgumentsComparisonRelation'('VariableVariable ')' ')'
ScaledComparison := 'DataComparison' ('ArgumentsComparisonRelation '('TermTerm ')' ')'
LinearComparison := 'DataComparison' '('ArgumentsComparisonRelation '('LinearExpressionLinearExpression ')' ')'
DataComparison :=Comparison |ScaledComparison |LinearComparison
The definition of a DataRange is extended with the various comparisons:
DataRange :=
Datatype |
DataComplementOf |
DataOneOf |
DatatypeRestriction |
DataComparison
It is not currently possible for user defined (in)equations to be named, though it is easy to spec a natural syntax:
In order to retain decidability with naming, there needs to be acyclicity condition akin tothose for datatypes. Furthermore, since there areDataComparisons which are equivalent to datatypes, the datatype and data comparison conditions must appropriately interact.
(In)equations in RDF are expressed using MathML as below. The equations are serialized asrdf:XMLLiterals. The content of those literals must conform to the "owl-linear-comparisons-mathml.xsd".
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >]><rdf:RDF xmlns="http://example.org/#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:owl="http://www.w3.org/2002/07/owl#"> <owl:Ontology rdf:about="http://example.org/"/> <owl:DatatypeProperty rdf:about="#boiling_point"/> <owl:DatatypeProperty rdf:about="#melting_point"/> <owl:Class rdf:about="#NormalSubstance"> <owl:equivalentClass> <owl:Restriction> <owl:onProperties rdf:parseType="Collection"> <owl:DatatypeProperty rdf:about="#boiling_point"/> <owl:DatatypeProperty rdf:about="#melting_point"/> </owl:onProperties> <owl:allValuesFrom> <owl:DataComparison> <rdf:value rdf:parseType="Literal"> <lambda xmlns="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.w3.org/1998/Math/MathML owl-linear-comparisons-mathml.xsd"> <bvar> <ci>x</ci> </bvar> <bvar> <ci>y</ci> </bvar> <apply> <leq/> <ci>x</ci> <ci>y</ci> </apply> </lambda> </rdf:value> </owl:DataComparison> </owl:allValuesFrom> </owl:Restriction> </owl:equivalentClass> </owl:Class> <rdf:Description rdf:about="#water"> <rdf:type> <owl:Restriction> <owl:onProperty rdf:resource="#boiling_point"/> <owl:hasValue rdf:datatype="&xsd;integer">100</owl:hasValue> </owl:Restriction> </rdf:type> <rdf:type> <owl:Restriction> <owl:onProperty rdf:resource="#melting_point"/> <owl:hasValue rdf:datatype="&xsd;integer">0</owl:hasValue> </owl:Restriction> </rdf:type> </rdf:Description> </rdf:RDF>
For the XML syntax, the terminals of the functional syntax are mapped into corresponding MathML elements. Consider the water example:
<Ontology xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.w3.org/2002/07/owl# owlxml-datarange.xsd" xmlns="http://www.w3.org/2002/07/owl#" ontologyIRI="http://example.org/"> <ClassAssertion> <DataHasValue> <DataProperty IRI="melting_point"/> <Literal datatypeIRI="xsd:decimal">0</Literal> </DataHasValue> <NamedIndividual IRI="water"/> </ClassAssertion> <ClassAssertion> <DataHasValue> <DataProperty IRI="boiling_point"/> <Literal datatypeIRI="xsd:decimal">100</Literal> </DataHasValue> <NamedIndividual IRI="water"/> </ClassAssertion> <EquivalentClasses> <Class IRI="NormalSubstance"/> <DataAllValuesFrom> <DataProperty IRI="melting_point"/> <DataProperty IRI="boiling_point"/> <DataComparison> <lambda xmlns="http://www.w3.org/1998/Math/MathML"> <bvar> <ci>x</ci> </bvar> <bvar> <ci>y</ci> </bvar> <apply> <leq/> <ci>x</ci> <ci>y</ci> </apply> </lambda> </DataComparison> </DataAllValuesFrom> </EquivalentClasses></Ontology>
In order to validate, one must use an extended version of the XML Schema. See Appendix A for the schema.
The semantics of all constructs where data ranges can occur (DataSomeValuesFrom, DataAllValuesFrom, DataMinCardinality, DataExactCardinality, DataMaxCardinality, DataComplementOf) is defined in Section 2 of theSemantics. This section defines the meaning of DataComparisons.
As explained in theSemantics document, this is accomplished by extending the datatype interpretation function⋅ DT toDataComparison. First some notation: for an expressionexp, a variabley and a valuev,exp[y -> v] is the expression obtained by replacing all occurrences ofy inexp withv.
Next, on the value space ofowl:real, the equality= and ordering< are defined as usual, and the operators+ and* are the usual addition and multiplication operators on the real numbers.
The value of terms is then defined as follows:
Intuitively, in order to find out whether a pair(5,60) of numbers is in, say,DataComparison(Arguments(y1 y2) lt (times("4"^^owl:real y1) times("1"^^owl:real y1)))DT, one replaces all occurrences ofy1 in bothtimes(...) terms with5, all occurrences ofy2 in both terms with60, computes the value of bothtimes(...) terms (the first giving 20, the second giving 60), and then checks whetherlt holds between them. Since this is indeed the case, the pair(5,60) is inDataComparison(...).
In what follows,y1 andy2 refer to variables,t1 andt2 to terms, andL1 andL2 to linear expressions.
There is a rich literature on implementing linear solvers. The key papers for the integration between OWL and a linear solver are:
This schema is named "owlxml-with-linear-comparisons.xsd".
<?xml version="1.0" encoding="UTF-8"?><xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.w3.org/2002/07/owl#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:m="http://www.w3.org/1998/Math/MathML"> <xsd:import namespace="http://www.w3.org/1998/Math/MathML" schemaLocation="owl-comparisons-mathml.xsd"/> <xsd:redefine schemaLocation="http://www.w3.org/2009/09/owl2-xml.xsd"> <xsd:group name="DataRange"> <xsd:choice> <xsd:group ref="owl:DataRange"/> <xsd:element ref="owl:DataComparison"/> </xsd:choice> </xsd:group> </xsd:redefine> <xsd:complexType name="DataComparison"> <xsd:complexContent> <xsd:extension base="owl:DataRange"> <xsd:sequence> <xsd:element ref="m:lambda" minOccurs="1" maxOccurs="1"/> </xsd:sequence> </xsd:extension> </xsd:complexContent> </xsd:complexType> <xsd:element name="DataComparison" type="owl:DataComparison"/></xsd:schema>
This schema is named "owl-linear-comparisons-mathml.xsd".
<?xml version="1.0" encoding="UTF-8"?><xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.w3.org/1998/Math/MathML" xmlns="http://www.w3.org/1998/Math/MathML" xmlns:m="http://www.w3.org/1998/Math/MathML" elementFormDefault="qualified"> <xsd:element name="gt"/> <xsd:element name="lt"/> <xsd:element name="geq"/> <xsd:element name="leq"/> <xsd:element name="eq"/> <xsd:element name="neq"/> <xsd:element name="ci" type="xsd:NCName"/> <xsd:element name="sep"/> <xsd:element name="cn"> <xsd:complexType mixed="true"> <xsd:sequence> <xsd:element ref="sep" maxOccurs="1"/> </xsd:sequence> <xsd:attribute name="type"> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:pattern value="real|rational"/> </xsd:restriction> </xsd:simpleType> </xsd:attribute> </xsd:complexType> </xsd:element> <xsd:element name="bvar"> <xsd:complexType> <xsd:sequence> <xsd:element ref="m:ci" minOccurs="1" maxOccurs="1"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="times"> <xsd:complexType> <xsd:sequence> <xsd:element ref="m:cn"/> <xsd:element ref="m:ci" maxOccurs="1" minOccurs="1"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="plus"> <xsd:complexType> <xsd:sequence> <xsd:element ref="m:times" minOccurs="1"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="apply"> <xsd:complexType> <xsd:sequence> <xsd:choice minOccurs="1" maxOccurs="1"> <xsd:element ref="m:gt"/> <xsd:element ref="m:lt"/> <xsd:element ref="m:geq"/> <xsd:element ref="m:leq"/> <xsd:element ref="m:eq"/> <xsd:element ref="m:neq"/> </xsd:choice> <xsd:choice minOccurs="2" maxOccurs="2"> <xsd:element ref="m:ci"/> <xsd:element ref="m:times"/> <xsd:element ref="m:plus"/> </xsd:choice> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="lambda"> <xsd:complexType> <xsd:sequence> <xsd:element ref="m:bvar" minOccurs="1" maxOccurs="unbounded"/> <xsd:element ref="m:apply"/> </xsd:sequence> </xsd:complexType> </xsd:element></xsd:schema>
This section summarizes the changes to this document since theWorking Group Note of 27 October, 2009.