Movatterモバイル変換


[0]ホーム

URL:


W3C

OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition)

W3C Recommendation 11 December 2012

This version:
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
Latest version (series 2):
http://www.w3.org/TR/owl2-syntax/
Latest Recommendation:
http://www.w3.org/TR/owl-syntax
Previous version:
http://www.w3.org/TR/2012/PER-owl2-syntax-20121018/
Editors:
Boris Motik, University of Oxford
Peter F. Patel-Schneider, Nuance Communications
Bijan Parsia, University of Manchester
Contributors: (in alphabetical order)
Conrad Bock, National Institute of Standards and Technology (NIST)
Achille Fokoue, IBM Corporation
Peter Haase, FZI Research Center for Information Technology
Rinke Hoekstra, University of Amsterdam
Ian Horrocks, University of Oxford
Alan Ruttenberg, Science Commons (Creative Commons)
Uli Sattler, University of Manchester
Michael Smith, Clark & Parsia

Please refer to theerrata for this document, which may include some normative corrections.

Acolor-coded version of this document showing changes made since the previous version is also available.

This document is also available in these non-normative formats:PDF version.

See alsotranslations.

Copyright © 2012W3C® (MIT,ERCIM,Keio), All Rights Reserved. W3Cliability,trademark anddocument use rules apply.


Abstract

The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. The OWL 2Document Overview describes the overall state of OWL 2, and should be read before other OWL 2 documents.

The meaningful constructs provided by OWL 2 are defined in terms of their structure. As well, a functional-style syntax is defined for these constructs, with examples and informal descriptions. One can reason with OWL 2 ontologies under either the RDF-Based Semantics [OWL 2 RDF-Based Semantics] or the Direct Semantics [OWL 2 Direct Semantics]. If certain restrictions on OWL 2 ontologies are satisfied and the ontology is in OWL 2 DL, reasoning under the Direct Semantics can be implemented using techniques well known in the literature.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in theW3C technical reports index at http://www.w3.org/TR/.

Summary of Changes

There have been nosubstantive changes since theprevious version. For details on the minor changes see thechange log andcolor-coded diff.

Please Send Comments

Please send any comments topublic-owl-comments@w3.org (public archive). Although work on this document by theOWL Working Group is complete, comments may be addressed in theerrata or in future revisions. Open discussion among developers is welcome atpublic-owl-dev@w3.org (public archive).

Endorsed By W3C

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the5 February 2004 W3C Patent Policy. W3C maintains apublic list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent.


Table of Contents

1 Introduction

This document defines the OWL 2 language. The core part of this specification — called thestructural specification — is independent of the concrete exchange syntaxes for OWL 2 ontologies. The structural specification describes the conceptual structure of OWL 2 ontologies and thus provides a normative abstract representation for all (normative and nonnormative) syntaxes of OWL 2. This allows for a clear separation of the essential features of the language from issues related to any particular syntax. Furthermore, such a structural specification of OWL 2 provides the foundation for the implementation of OWL 2 tools such as APIs and reasoners. Each OWL 2 ontology represented as an instance of this conceptual structure can be converted into an RDF graph [OWL 2 RDF Mapping]; conversely, most OWL 2 ontologies represented as RDF graphs can be converted into the conceptual structure defined in this document [OWL 2 RDF Mapping].

This document also defines thefunctional-style syntax, which closely follows the structural specification and allows OWL 2 ontologies to be written in a compact form. This syntax is used in the definitions of the semantics of OWL 2 ontologies, the mappings from and into the RDF/XML exchange syntax, and the different profiles of OWL 2. Concrete syntaxes, such as the functional-style syntax, often provide features not found in the structural specification, such as a mechanism for abbreviating IRIs.

Finally, this document defines OWL 2 DL — the subset of OWL 2 with favorable computational properties. Each RDF graph obtained by applying the RDF mapping to an OWL 2 DL ontology can be converted back into the conceptual structure defined in this document by means of the reverse RDF mapping [OWL 2 RDF Mapping].

An OWL 2 ontology is a formal description of a domain of interest. OWL 2 ontologies consist of the following three different syntactic categories:

These three syntactic categories are used to express thelogical part of OWL 2 ontologies — that is, they are interpreted under a precisely defined semantics that allows useful inferences to be drawn. For example, if an individuala:Peter is an instance of the classa:Student, anda:Student is a subclass ofa:Person, then from the OWL 2 semantics one can derive thata:Peter is also an instance ofa:Person.

In addition, entities, axioms, and ontologies can beannotated in OWL 2. For example, a class can be given a human-readable label that provides a more descriptive name for the class. Annotations have no effect on the logical aspects of an ontology — that is, for the purposes of the OWL 2 semantics, annotations are treated as not being present. Instead, the use of annotations is left to the applications that use OWL 2. For example, a graphical user interface might choose to visualize a class using one of its labels.

Finally, OWL 2 provides basic support for ontology modularization. In particular, an OWL 2 ontologyO can import another OWL 2 ontologyO' and thus gain access to all entities, expressions, and axioms inO'.

This document defines the structural specification of OWL 2, the functional syntax for OWL 2, the behavior of datatype maps, and OWL 2 DL. Only the parts of the document related to these three purposes are normative. The examples in this document are informative and any part of the document that is specifically identified as informative is not normative. Further, the informal descriptions of the semantics of OWL 2 constructs in this document are informative; the Direct Semantics [OWL 2 Direct Semantics] and the RDF-Based [OWL 2 RDF-Based Semantics] are precisely specified in separate documents.

The italicized keywordsMUST,MUST NOT,SHOULD,SHOULD NOT, andMAY are used to specify normative features of OWL 2 documents and tools, and are interpreted as specified in RFC 2119 [RFC 2119].

2 Preliminary Definitions

This section presents certain preliminary definitions that are used in the rest of this document.

2.1 Structural Specification

The structural specification of OWL 2 consists of all the figures in this document and the notion of structural equivalence given below. It is used throughout this document to precisely specify the structure of OWL 2 ontologies and the observable behavior of OWL 2 tools. An OWL 2 toolMAY base its APIs and/or internal storage model on the structural specification; however, itMAY also choose a completely different approach as long as its observable behavior conforms to the one specified in this document.

The structural specification is defined using the Unified Modeling Language (UML) [UML], and the notation used is compatible with the Meta-Object Facility (MOF) [MOF]. This document uses only a very simple form of UML class diagrams that are expected to be easily understandable by readers familiar with the basic concepts of object-oriented systems. The following list summarizes the UML notation used in this document.

The narrative in this document often refers to various parts of the structural specification. These references are mainly intended to be informal, but they can often be interpreted as statements about the instances of the UML classes from the structural specification. When precision is required, such statements are captured using the functional-style syntax, which is defined inSection 3.7 and other relevant parts of this document. In order to avoid confusion, the term "UML class" is used to refer to elements of the structural specification of OWL 2, whereas the term "class" is used to refer to OWL 2 classes (seeSection 5.1).

The sentence "The individualI is an instance of the classC" can be understood as a statement thatI is an instance of the UML classIndividual,C is an instance of the UML classClass, and there is an instance of the UML classClassAssertion that connectsI withC. This statement can be captured precisely using the structural specification asClassAssertion( C I ).

Objectso1 ando2 from the structural specification arestructurally equivalent if the following conditions hold:

The notion of structural equivalence is used throughout this specification to define various conditions on the structure of OWL 2 ontologies. Note that this is a syntactic, rather than a semantic notion — that is, it compares structures, rather than their meaning under a formal semantics.

The class expression

Functional-Style Syntax:
ObjectUnionOf(a:Persona:Animal )
RDF:
_:xrdf:typeowl:Class .
_:xowl:unionOf (a:Persona:Animal ) .

is structurally equivalent to the class expression

Functional-Style Syntax:
ObjectUnionOf(a:Animala:Person )
RDF:
_:xrdf:typeowl:Class .
_:xowl:unionOf (a:Animala:Person ) .

because the order of the elements in an unordered association is not important. In contrast, the class expression

Functional-Style Syntax:
ObjectUnionOf(a:Person ObjectComplementOf(a:Person ) )
RDF:
_:xrdf:typeowl:Class .
_:xowl:unionOf (a:Person _:y ) .
_:yrdf:typeowl:Class .
_:yowl:complementOfa:Person .

is not structurally equivalent toowl:Thing even though the two expressions are semantically equivalent.

Sets written in one of the exchange syntaxes (e.g., XML or RDF/XML) are not necessarily expected to be duplicate free. DuplicatesSHOULD be eliminated when ontology documents written in such syntaxes are converted into instances of the UML classes of the structural specification.

An ontology written in functional-style syntax can contain the following class expression:

Functional-Style Syntax:
ObjectUnionOf(a:Persona:Animala:Animal )
RDF:
_:xrdf:typeowl:Class .
_:xowl:unionOf (a:Persona:Animala:Animal ) .

During parsing, this expression should be "flattened" to the following expression:

Functional-Style Syntax:
ObjectUnionOf(a:Persona:Animal )
RDF:
_:xrdf:typeowl:Class .
_:xowl:unionOf (a:Persona:Animal ) .

2.2 BNF Notation

Grammars in this document are written using the BNF notation, summarized in Table 1.

Table 1. The BNF Notation
Construct Syntax Example
terminal symbols enclosed in single quotes'PropertyRange'
a set of terminal symbols described in English italica finite sequence of characters
matching the PNAME_LN production of [SPARQL]
nonterminal symbols boldfaceClassExpression
zero or more curly braces{ClassExpression }
zero or one square brackets[ClassExpression ]
alternative vertical barAssertion |Declaration

The grammar presented in this document uses the following two "special" terminal symbols, which affect the process of transforming an input sequence of characters into a sequence of regular (i.e., not "special") terminal symbols:

The following characters are calleddelimiters:

Given an input sequence of characters, an OWL 2 implementationMUST exhibit the same observable behavior as if it applied the BNF grammar rules to the sequence of terminal symbols obtained from the input as follows.

  1. For each terminal symbol (includingwhitespace andcomment) mentioned in this document, a regular expression is created that can recognize the symbol's characters.
  2. A pointerp is initialized to point to the beginning of input.
  3. All regular expressions are matched to the characters in the input starting fromp. Matches are greedy — that is, if several regular expressions match a portion of the input, a regular expression with the longest match wins. The regular expressions corresponding to terminal symbols in this document ensure that there are no ties (i.e., it is not possible for two regular expressions to match a portion of the input of the same length); thus, at most one regular expression can be matched.
  4. If there is no match, the inputSHOULD be rejected. Otherwise, if the matched regular expression does not correspond to thewhitespace orcomment terminal symbols, the corresponding terminal symbol is emitted to the output. (In other words, the matches ofwhitespace andcomment are ignored.)
  5. Pointerp is moved to the first character after the match.
  6. If the terminal symbol matched in step 3 does not end with a delimiter character andp points to a character that is not a delimiter, then the regular expressions forwhitespace andcomment are matched to the characters in the input starting fromp. If there is no match, the inputSHOULD be rejected; otherwise,p is moved to the first character after the match (and thus the match is discarded).
  7. Ifp does not point past the end of input, the process is repeated from step 3.

Character sequence

" #comment\" " #comment "abc"

should be processed as follows. The first match is for the regular expression for the quoted string terminal symbol, producing a string containing a space, characters#comment", and another space. Next, the regular expression forwhitespace is matched to a single space, and the match is discarded. Finally, thecomment regular expression is matched to characters#comment "abc", and the match is discarded as well.

In similar vein, character sequence

<#comment>

should be recognized as a full IRI with value#comment (i.e., the occurrence of character# in this example must not be understood as a start of a comment).

All regular expressions are matched in step 3 greedily, so character sequence

SubClassOf:ABC

is parsed as abbreviated IRI with valueSubClassOf:ABC. Furthermore, character sequence

pref: ABC

should be rejected: characterspref: are matched as a prefix name, but thenABC cannot be matched by any regular expression corresponding to a terminal symbol.

Character sequence

10abc

should be rejected: characters10 are matched by the regular expression for nonnegative integers; however, since the match does not end with a delimiter anda is not a delimiter either, the match in step 6 fails.

Character sequences

"10" ^^ xsd:integer
"10"^^xsd:integer

are both valid should be parsed as a quoted string, terminal symbol^^, and an abbreviated IRI. In particular, note that the whitespace surrounding^^ in the first line is acceptable. In similar vein, character sequences

"abc" @en
"abc"@en

are both valid and should be parsed as a quoted string and a language tagen. In contrast, character sequence

"abc"@ en

should be rejected: characters@ en do not match the regular expression for language tags.

2.3 Integers, Characters, Strings, Language Tags, and Node IDs

Nonnegative integers are defined as usual.

nonNegativeInteger :=a nonempty finite sequence of digits between 0 and 9

Characters and strings are defined in the same way as in [RDF:PLAINLITERAL]. Acharacter is an atomic unit of communication. The structure of characters is not further specified in this document, other than to note that each character has a Universal Character Set (UCS) code point [ISO/IEC 10646] (or, equivalently, a Unicode code point [UNICODE]). Each characterMUST match theChar production from XML [XML]. Code points are written as U+ followed by the hexadecimal value of the code point. Astring is a finite sequence of characters, and thelength of a string is the number of characters in it. Two strings are identical if and only if they contain exactly the same characters in exactly the same sequence. Strings are written by enclosing them in double quotes (U+22) and using a subset of the N-triples escaping mechanism [RDF Test Cases] to encode strings containing quotes. Note that the definition below allows a string to span several lines of a document.

quotedString :=a finite sequence of characters in which " (U+22) and \ (U+5C) occur only in pairs of the form \" (U+5C, U+22) and \\ (U+5C, U+5C), enclosed in a pair of " (U+22) characters

Language tags are used to identify the language in which a string has been written. They are defined in the same way as in [RDF:PLAINLITERAL], which follows [BCP 47]. Language tags are written by prepending them with the@ (U+40) character.

languageTag :=@ (U+40) followed a nonempty sequence of characters matching the langtag production from [BCP 47]

Node IDs are used to identify anonymous individuals (akablank nodes in RDF [RDF Concepts]).

nodeID :=a finite sequence of characters matching the BLANK_NODE_LABEL production of [SPARQL]

2.4 IRIs

Ontologies and their elements are identified using Internationalized Resource Identifiers (IRIs) [RFC3987]; thus, OWL 2 extends OWL 1, which uses Uniform Resource Identifiers (URIs). Each IRIMUST be absolute (i.e., not relative). In the structural specification, IRIs are represented by theIRI UML class. Two IRIs are structurally equivalent if and only if their string representations are identical.

IRIs can be written as full IRIs by enclosing them in a pair of < (U+3C) and > (U+3E) characters. These characters are not part of the IRI, but are used for quotation purposes to identify an IRI as a full IRI.

Alternatively, IRIs can be abbreviated as in SPARQL [SPARQL]. To this end, one candeclare aprefix namepn: — that is, a possibly empty string followed by the: (U+3A) character — by associating it with aprefix IRIPI; then, an IRII whose string representation consists ofPI followed by the remaining charactersrc can be abbreviated aspn:rc. By a slight abuse of terminology, a prefix name is often used to refer to the prefix IRI that is associated with the prefix name, and phrases such as "an IRI whose string representation starts with the prefix IRI associated with the prefix namepn:" are typically shortened to less verbose phrases such as "an IRI with prefixpn:".

If a concrete syntax uses this IRI abbreviation mechanism, itSHOULD provide a suitable mechanism for declaring prefix names. Furthermore, abbreviated IRIs are not represented in the structural specification of OWL 2, and OWL 2 implementationsMUST exhibit the same observable behavior as if all abbreviated IRIs were expanded into full IRIs during parsing. Concrete syntaxes such as the RDF/XML Syntax [RDF Syntax] allow IRIs to be abbreviated in relation to the IRI of the document they are contained in. If used, such mechanisms are independent from the above described abbreviation mechanism. The abbreviated IRIs have the syntactic form of qualified names from the XML Namespaces specification [XML Namespaces]; therefore, it is common to refer toPI as anamespace andrc as alocal name. This abbreviation mechanism, however, is independent from XML namespaces and can be understood as a simple macro mechanism that expands prefix names with the associated IRIs.

fullIRI :=an IRI as defined in [RFC3987], enclosed in a pair of < (U+3C) and > (U+3E) characters
prefixName :=a finite sequence of characters matching the as PNAME_NS production of [SPARQL]
abbreviatedIRI :=a finite sequence of characters matching the PNAME_LN production of [SPARQL]
IRI :=fullIRI |abbreviatedIRI

Table 2 declares the prefix names that are commonly used throughout this specification.

Table 2. Declarations of the Standard Prefix Names
Prefix name Prefix IRI
rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs:<http://www.w3.org/2000/01/rdf-schema#>
xsd:<http://www.w3.org/2001/XMLSchema#>
owl:<http://www.w3.org/2002/07/owl#>

IRIs with prefixesrdf:,rdfs:,xsd:, andowl: constitute thereserved vocabulary of OWL 2. As described in the following sections, the IRIs from the reserved vocabulary that are listed in Table 3 have special treatment in OWL 2.

Table 3. Reserved Vocabulary of OWL 2 with Special Treatment
owl:backwardCompatibleWithowl:bottomDataPropertyowl:bottomObjectPropertyowl:deprecatedowl:incompatibleWith
owl:Nothingowl:priorVersionowl:rationalowl:realowl:versionInfo
owl:Thingowl:topDataPropertyowl:topObjectPropertyrdf:langRangerdf:PlainLiteral
rdf:XMLLiteralrdfs:commentrdfs:isDefinedByrdfs:labelrdfs:Literal
rdfs:seeAlsoxsd:anyURIxsd:base64Binaryxsd:booleanxsd:byte
xsd:dateTimexsd:dateTimeStampxsd:decimalxsd:doublexsd:float
xsd:hexBinaryxsd:intxsd:integerxsd:languagexsd:length
xsd:longxsd:maxExclusivexsd:maxInclusivexsd:maxLengthxsd:minExclusive
xsd:minInclusivexsd:minLengthxsd:Namexsd:NCNamexsd:negativeInteger
xsd:NMTOKENxsd:nonNegativeIntegerxsd:nonPositiveIntegerxsd:normalizedStringxsd:pattern
xsd:positiveIntegerxsd:shortxsd:stringxsd:tokenxsd:unsignedByte
xsd:unsignedIntxsd:unsignedLongxsd:unsignedShort

3 Ontologies

An OWL 2ontology is an instanceO of theOntology UML class from the structural specification of OWL 2 shown in Figure 1 that satisfies certain conditions given below. The main component of an OWL 2 ontology is its set of axioms, the structure of which is described in more detail inSection 9. Because the association between an ontology and its axioms is a set, an ontology cannot contain two axioms that are structurally equivalent. Apart from axioms, ontologies can also contain ontology annotations (as described in more detail inSection 3.5), and they can also import other ontologies (as described inSection 3.4).

The Structure of OWL 2 Ontologies
Figure 1. The Structure of OWL 2 Ontologies

The following list summarizes all the conditions thatO is required to satisfy to be an OWL 2 ontology.

The following list summarizes all the conditions that an OWL 2 ontologyO is required to satisfy to be an OWL 2 DL ontology.

An instanceO of theOntology UML classMAY have consistent declarations as specified inSection 5.8.2; however, this is not strictly necessary to makeO an OWL 2 ontology.

3.1 Ontology IRI and Version IRI

Each ontologyMAY have anontology IRI, which is used to identify an ontology. If an ontology has an ontology IRI, the ontologyMAY additionally have aversion IRI, which is used to identify the version of the ontology. The version IRIMAY be, but need not be, equal to the ontology IRI. An ontology without an ontology IRIMUST NOT contain a version IRI.

IRIs from the reserved vocabularyMUST NOT be used as an ontology IRI or a version IRI of an OWL 2 DL ontology.

The following list provides conventions for choosing ontology IRIs and version IRIs in OWL 2 ontologies. This specification provides no mechanism for enforcing these constraints across the entire Web; however, OWL 2 toolsSHOULD use them to detect problems in ontologies they process.

The ontology IRI and the version IRI together identify a particular version from anontology series — the set of all the versions of a particular ontology identified using a common ontology IRI. In each ontology series, exactly one ontology version is regarded as thecurrent one. Structurally, a version of a particular ontology is an instance of theOntology UML class from the structural specification. Ontology series are not represented explicitly in the structural specification of OWL 2: they exist only as a side effect of the naming conventions described in this and the following sections.

3.2 Ontology Documents

An OWL 2 ontology is an abstract notion defined in terms of the structural specification. Each ontology is associated with anontology document, which physically contains the ontology stored in a particular way. The name "ontology document" reflects the expectation that a large number of ontologies will be stored in physical text documents written in one of the syntaxes of OWL 2. OWL 2 tools, however, are free to devise other types of ontology documents — that is, to introduce other ways of physically storing ontologies.

Ontology documents are not represented in the structural specification of OWL 2, and the specification of OWL 2 makes only the following two assumptions about their nature:

An OWL 2 tool might publish an ontology as a text document written in the functional-style syntax (seeSection 3.7) and accessible via the IRI<http://www.example.com/ontology>. An OWL 2 tool could also devise a scheme for storing OWL 2 ontologies in a relational database. In such a case, each subset of the database representing the information about one ontology corresponds to one ontology document. To provide a mechanism for accessing these ontology documents, the OWL 2 tool should identify different database subsets with distinct IRIs.

The ontology document of an ontologyOSHOULD be accessible via the IRIs determined by the following rules:

Thus, the document containing the current version of an ontology series with some IRIOISHOULD be accessible viaOI. To access a particular version ofOI, one needs to know that version's version IRIVI; the ontology document of the versionSHOULD then be accessible viaVI.

An ontology document of an ontology that contains an ontology IRI<http://www.example.com/my> but no version IRI should be accessible via the IRI<http://www.example.com/my>. In contrast, an ontology document of an ontology that contains an ontology IRI<http://www.example.com/my> and a version IRI<http://www.example.com/my/2.0> should be accessible via the IRI<http://www.example.com/my/2.0>. In both cases, the ontology document should be accessible via the respective IRIs using the HTTP protocol.

OWL 2 tools will often need to implement functionality such as caching or off-line processing, where ontology documents may be stored at addresses different from the ones dictated by their ontology IRIs and version IRIs. OWL 2 toolsMAY implement aredirection mechanism: when a tool is used to access an ontology document at IRII, the toolMAY redirectI to a different IRIDI and access the ontology document viaDI instead. The result of accessing the ontology document viaDIMUST be the same as if the ontology were accessed viaI. Furthermore, once the ontology document is converted into an ontology, the ontologySHOULD satisfy the three conditions from the beginning of this section in the same way as if it the ontology document were accessed viaI. No particular redirection mechanism is specified — this is assumed to be implementation dependent.

To enable off-line processing, an ontology document that — according to the above rules — should be accessible via<http://www.example.com/my> might be stored in a file accessible via<file:///usr/local/ontologies/example.owl>. To access this ontology document, an OWL 2 tool might redirect the IRI<http://www.example.com/my> and actually access the ontology document via<file:///usr/local/ontologies/example.owl>. The ontology obtained after accessing the ontology document should satisfy the usual accessibility constraints: if the ontology contains only the ontology IRI, then the ontology IRI should be equal to<http://www.example.com/my>, and if the ontology contains both the ontology IRI and the version IRI, then one of them should be equal to<http://www.example.com/my>.

3.3 Versioning of OWL 2 Ontologies

The conventions fromSection 3.2 provide a simple mechanism for versioning OWL 2 ontologies. An ontology series is identified using an ontology IRI, and each version in the series is assigned a different version IRI. The ontology document of the ontology representing the current version of the seriesSHOULD be accessible via the ontology IRI and, if present, via its version IRI as well; the ontology documents of the previous versionsSHOULD be accessible solely via their respective version IRIs. When a new versionO in the ontology series is created, the ontology document ofOSHOULD replace the one accessible via the ontology IRI (and itSHOULD also be accessible via its version IRI).

The ontology document containing the current version of an ontology series might be accessible via the IRI<http://www.example.com/my>, as well as via the version-specific IRI<http://www.example.com/my/2.0>. When a new version is created, the ontology document of the previous version should remain accessible via<http://www.example.com/my/2.0>; the ontology document of the new version, called, say,<http://www.example.com/my/3.0>, should be made accessible via both<http://www.example.com/my> and<http://www.example.com/my/3.0>.

3.4 Imports

An OWL 2 ontology can import other ontologies in order to gain access to their entities, expressions, and axioms, thus providing the basic facility for ontology modularization.

Assume that one wants to describe research projects about diseases. Managing information about the projects and the diseases in the same ontology might be cumbersome. Therefore, one might create a separate ontologyO about diseases and a separate ontologyO' about projects. The ontologyO' would importO in order to gain access to the classes representing diseases; this allows one to use the diseases fromO when writing the axioms ofO'.

From a physical point of view, an ontology contains a set of IRIs, shown in Figure 1 as thedirectlyImportsDocuments association; these IRIs identify the ontology documents of the directly imported ontologies as specified inSection 3.2. The logicaldirectly imports relation between ontologies, shown in Figure 1 as thedirectlyImports association, is obtained by accessing the directly imported ontology documents and converting them into OWL 2 ontologies. The logicalimports relation between ontologies, shown in Figure 1 as theimports association, is the transitive closure of directly imports. In Figure 1, associationsdirectlyImports andimports are shown as derived associations, since their values are derived from the value of thedirectlyImportsDocuments association. Ontology documents usually store thedirectlyImportsDocuments association. In contrast, thedirectlyImports andimports associations are typically not stored in ontology documents, but are determined during parsing as specified inSection 3.6.

The following ontology document contains an ontology that directly imports an ontology contained in the ontology document accessible via the IRI<http://www.example.com/my/2.0>.

Functional-Style Syntax:
Ontology(<http://www.example.com/importing-ontology>
    Import(<http://www.example.com/my/2.0> )

...
)
RDF:
<http://www.example.com/importing-ontology>rdf:typeowl:Ontology .
<http://www.example.com/importing-ontology>owl:imports<http://www.example.com/my/2.0> .
...

The IRIs identifying the ontology documents of the directly imported ontologies can be redirected as described inSection 3.2. For example, in order to access the above mentioned ontology document from a local cache, the IRI<http://www.example.com/my/2.0> might be redirected to<file:///usr/local/ontologies/imported.v20.owl>. Note that this can be done without changing the ontology document of the importing ontology.

Theimport closure of an ontologyO is a set containingO and all the ontologies thatO imports. The import closure ofOSHOULD NOT contain ontologiesO1 andO2 such that

Theaxiom closure of an ontologyO is the smallest set that contains all the axioms from each ontologyO' in the import closure ofO with all anonymous individualsstandardized apart — that is, the anonymous individuals from different ontologies in the import closure ofO are treated as being different; seeSection 5.6.2 for further details.

3.5 Ontology Annotations

An OWL 2 ontology contains a set of annotations. These can be used to associate information with an ontology — for example the ontology creator's name. As discussed in more detail inSection 10, each annotation consists of an annotation property and an annotation value, and the latter can be a literal, an IRI, or an anonymous individual.

ontologyAnnotations := {Annotation }

OWL 2 provides several built-in annotation properties for ontology annotations. The usage of these annotation properties on entities other than ontologies is discouraged.

3.6 Canonical Parsing of OWL 2 Ontologies

Many OWL 2 tools need to supportontology parsing — the process of converting an ontology document written in a particular syntax into an OWL 2 ontology. Depending on the syntax used, the ontology parser may need to know which IRIs are used in the ontology as entities of which type. This typing information is extracted from declarations — axioms that associate IRIs with entity types. Please refer toSection 5.8 for more information about declarations.

An ontology parser for the ontology documents written in the RDF syntax might encounter the following triples:

a:Fatherrdfs:subClassOf _:x .
_:xowl:someValuesFroma:Child .
_:xowl:onPropertya:parentOf.

From this axiom alone, it is not clear whethera:parentOf is an object or a data property, and whethera:Child is a class or a datatype. In order to disambiguate the types of these IRIs, the parser needs to look at the declarations in the ontology document being parsed, as well as those in the directly or indirectly imported ontology documents.

In OWL 2 there is no requirement for a declaration of an entity to physically precede the entity's usage in ontology documents; furthermore, declarations for entities can be placed in imported ontology documents and imports are allowed to be cyclic. In order to precisely define the result of ontology parsing, this specification defines the notion ofcanonical parsing. An OWL 2 parserMAY implement parsing in any way it chooses, as long as it produces a result that is structurally equivalent to the result of canonical parsing.

An OWL 2 ontology corresponding to an ontology documentDGI accessible via a given IRIGI can be obtained using the followingcanonical parsing process. All steps of this processMUST be successfully completed.

CP 1 MakeAllDoc andProcessed equal to the empty set, and makeToProcess equal to the set containing only the IRIGI.
CP 2 WhileToProcess is not empty, remove an arbitrary IRII from it and, ifI is not contained inProcessed, perform the following steps:
CP 2.1 Retrieve the ontology documentDI fromI as specified inSection 3.2.
CP 2.2 Using the rules of the relevant syntax, analyzeDI and compute the setDecl(DI) of declarations explicitly present inDI and the setImp(DI) of IRIs of ontology documents directly imported inDI.
CP 2.3 AddDI toAllDoc, addI toProcessed, and add each IRI fromImp(DI) toToProcess.
CP 3 For each ontology documentD inAllDoc, perform the following steps:
CP 3.1 Compute the setAllDecl(D) as the union of the setDecl(D), the setsDecl(D') for each ontology documentD' that is (directly or indirectly) imported intoD, and the set of all declarations listed in Table 5. For an OWL 2 DL ontology, the setAllDecl(D)MUST satisfy the typing constraints fromSection 5.8.1.
CP 3.2 Create an instanceOD of theOntology UML class from the structural specification.
CP 3.3 Using the rules of the relevant syntax, analyzeD and populateOD by instantiating appropriate classes from the structural specification. Use the declarations inAllDecl(D) to disambiguate IRIs if needed; itMUST be possible to disambiguate all IRIs.
CP 4 For each pair of ontology documentsDS andDT inAllDoc such that the latter is directly imported into the former, addODT to thedirectlyImports association ofODS.
CP 5 For each ontology documentD inAllDoc, set theimports association ofOD to the transitive closure of thedirectlyImports association ofOD.
CP 6 For each ontology documentD inAllDoc, ensure thatOD is an OWL 2 ontology — that is,ODMUST satisfy all the restrictions listed inSection 3.

It is important to understand that canonical parsing merely defines the result of the parsing process, and that an implementation of OWL 2MAY optimize this process in numerous ways. In order to enable efficient parsing, OWL 2 implementations are encouraged to write ontologies into documents by placing all IRI declarations before the axioms that use these IRIs; however, this is not required for conformance.

3.7 Functional-Style Syntax

Afunctional-style syntax ontology document is a sequence of Unicode characters [UNICODE] accessible via some IRI by means of the standard protocols such that its text matches theontologyDocument production of the grammar defined in this specification document, and it can be converted into an ontology by means of the canonical parsing process described inSection 3.6 and other parts of this specification document. A functional-style syntax ontology documentSHOULD use the UTF-8 encoding [RFC 3629].

ontologyDocument := {prefixDeclaration }Ontology
prefixDeclaration := 'Prefix' '('prefixName '='fullIRI ')'
Ontology :=
    'Ontology' '(' [ontologyIRI [versionIRI ] ]
      directlyImportsDocuments
      ontologyAnnotations
      axioms
    ')'
ontologyIRI :=IRI
versionIRI :=IRI
directlyImportsDocuments := { 'Import' '('IRI ')' }
axioms := {Axiom }

Each part of the ontology document matching theprefixDeclaration production declares a prefix name and associates it with a prefix IRI. An ontology documentMUST contain at most one such declaration per prefix name, and itMUST NOT declare a prefix name listed in Table 2. Prefix declarations are used during parsing to expand abbreviated IRIs in the ontology document — that is, parts of the ontology document matching theabbreviatedIRI production — into full IRIs. This is done as follows:

The following is a functional-style syntax ontology document containing an ontology with the ontology IRI<http://www.example.com/ontology1>. The IRI<http://www.example.com/ontology1#> is associated with the prefix name: (that is, the prefix name consisting only of a colon character); this prefix is often called "empty" or "default". This ontology imports an ontology whose ontology document should be accessed via<http://www.example.com/ontology2>, and it contains an ontology annotation providing a label for the ontology and a single subclass axiom. The abbreviated IRI:Child is expanded into the full IRI<http://www.example.com/ontology1#Child> during parsing. The prefix nameowl: occurs in Table 2 and therefore does not need to be explicitly declared in the ontology document.

Prefix(:=<http://www.example.com/ontology1#>)
Ontology(<http://www.example.com/ontology1>
    Import(<http://www.example.com/ontology2> )
    Annotation(rdfs:label "An example" )

    SubClassOf(:Childowl:Thing )
)

4 Datatype Maps

OWL 2 ontologies can refer to data values such as strings or integers. Each kind of such values is called adatatype. Datatypes can be used in OWL 2 ontologies as described inSection 5.2. Each datatype is identified by an IRI and is defined by the following components:

A set of datatypes supported by a reasoner is called adatatype map. This is not a syntactic construct — that is, it is not used directly to construct OWL 2 ontologies in a way that, say, classes and datatypes are. Because of that, a datatype map is not represented in the structural specification of OWL 2.

The rest of this section defines a particular datatype map called theOWL 2 datatype map, which lists the datatypes that can be used in OWL 2 ontologies. Most datatypes are taken from the set of XML Schema Datatypes [XML Schema Datatypes], the RDF specification [RDF Concepts], or the specification for plain literals [RDF:PLAINLITERAL]. The normative definitions of these datatypes are provided by the respective specifications, and this document merely provides guidance on how to interpret these definitions properly in the context of OWL 2. For all these datatypes, this section lists thenormative constraining facets that OWL 2 implementationsMUST support. This section also contains the complete normative definitions of the datatypesowl:real andowl:rational, as these datatypes have not been taken from other specifications.

4.1 Real Numbers, Decimal Numbers, and Integers

The OWL 2 datatype map provides the following datatypes for the representation of real numbers, decimal numbers, and integers:

For each datatype from the above list that is identified by an IRI with thexsd: prefix, the definitions of the value space, the lexical space, and the facet space are provided by XML Schema [XML Schema Datatypes]; furthermore, the normative constraining facets for the datatype arexsd:minInclusive,xsd:maxInclusive,xsd:minExclusive, andxsd:maxExclusive. An OWL 2 implementationMAY support all lexical forms of these datatypes; however, itMUST support at least the lexical forms listed in Section 5.4 of XML Schema Datatypes [XML Schema Datatypes], which can be mapped to the primitive values commonly found in modern implementation platforms.

The datatypesowl:real andowl:rational are defined as follows.

Value Spaces.

Lexical Spaces.

Facet Spaces. The facet spaces ofowl:real andowl:rational are defined in Table 4.

Table 4. The Facet Spaces ofowl:real andowl:rational
Each pair of the form... ...is mapped to...
(xsd:minInclusive ,v )
wherev is from the value space ofowl:real
the set of all numbersx from the value space ofDT such thatx =v orx >v
(xsd:maxInclusive ,v )
wherev is from the value space ofowl:real
the set of all numbersx from the value space ofDT such thatx =v orx <v
(xsd:minExclusive ,v )
wherev is from the value space ofowl:real
the set of all numbersx from the value space ofDT such thatx >v
(xsd:maxExclusive ,v )
wherev is from the value space ofowl:real
the set of all numbersx from the value space ofDT such thatx <v
Note.DT is eitherowl:real orowl:rational.

4.2 Floating-Point Numbers

The OWL 2 datatype map supports the following datatypes for the representation of floating-point numbers:

As specified in XML Schema [XML Schema Datatypes], the value spaces ofxsd:double,xsd:float, andxsd:decimal are pairwise disjoint. In accordance with this principle, the value space ofowl:real is defined as being disjoint with the value spaces ofxsd:double andxsd:float as well. The normative constraining facets for these datatypes arexsd:minInclusive,xsd:maxInclusive,xsd:minExclusive, andxsd:maxExclusive.

Although floating-point values are numbers, they are not contained in the value space ofowl:real. Thus, the value spaces ofxsd:double andxsd:float can be understood as containing "fresh copies" of the appropriate subsets of the value space ofowl:real. To understand how this impacts the consequences of OWL 2 ontologies, consider the following example.

Functional-Style Syntax:
DataPropertyRange(a:hasAgexsd:integer ) The range of thea:hasAge property isxsd:integer.
DataPropertyAssertion(a:hasAgea:Meg "17"^^xsd:double ) Meg is seventeen years old.
RDF:
a:hasAgerdfs:rangexsd:integer . The range of thea:hasAge property isxsd:integer.
a:Mega:hasAge "17"^^xsd:double . Meg is seventeen years old.

The first axiom states that all values of thea:hasAge property must be in the value space ofxsd:integer, but the second axiom provides a value fora:hasAge that is equal to the floating-point number 17. Since floating-point numbers are not contained in the value space ofxsd:integer, the mentioned ontology is inconsistent.

According to XML Schema, the value spaces ofxsd:double andxsd:float contain positive and negative zeros. These two objects are equal, but not identical. To understand this distinction, consider the following example ontology:

Functional-Style Syntax:
DataPropertyAssertion(a:numberOfChildrena:Meg "+0"^^xsd:float ) The value ofa:numberOfChildren fora:Meg is+0.
DataPropertyAssertion(a:numberOfChildrena:Meg "-0"^^xsd:float ) The value ofa:numberOfChildren fora:Meg is-0.
FunctionalDataProperty(a:numberOfChildren ) An individual can have at most one value fora:numberOfChildren.
RDF:
a:Mega:numberOfChildren "+0"^^xsd:float . The value ofa:numberOfChildren fora:Meg is+0.
a:Mega:numberOfChildren "-0"^^xsd:float . The value ofa:numberOfChildren fora:Meg is-0.
a:numberOfChildrenrdf:typeowl:FunctionalProperty . An individual can have at most one value fora:numberOfChildren.

The last axiom states that no individual should have more than one distinct value fora:numberOfChildren. Since positive and negative zero are not identical, the first two axioms violate the restriction of the last axiom, which makes the ontology inconsistent. In other words, equality of values from the value space ofxsd:double andxsd:float has no effect on the semantics of cardinality restrictions of OWL 2; in fact, equality is used only in the definition of facets.

According to XML Schema, the semantics of facets is defined with respect to equality, and positive and negative zeros are equal. Therefore, the subset of the value space ofxsd:double between-1.0 and1.0 contains both+0 and-0.

4.3 Strings

The OWL 2 datatype map provides therdf:PlainLiteral datatype for the representation of strings in a particular language. The definitions of the value space, the lexical space, the facet space, and the necessary mappings are given in [RDF:PLAINLITERAL]. The normative constraining facets forrdf:PlainLiteral arexsd:length,xsd:minLength,xsd:maxLength,xsd:pattern, andrdf:langRange; furthermore, onlybasic language ranges [BCP 47] are supported in therdf:langRange constraining facet.

In addition, OWL 2 supports the following datatypes defined in XML Schema [XML Schema Datatypes]:

As explained in [RDF:PLAINLITERAL], the value spaces of all of these datatypes are contained in the value space ofrdf:PlainLiteral. Furthermore, for each datatype from the above list, the normative constraining facets arexsd:length,xsd:minLength,xsd:maxLength, andxsd:pattern.

4.4 Boolean Values

The OWL 2 datatype map provides thexsd:boolean XML Schema datatype [XML Schema Datatypes] for the representation of Boolean values. No constraining facet is normative for this datatype.

4.5 Binary Data

The OWL 2 datatype map provides the following XML Schema datatypes [XML Schema Datatypes] for the representation of binary data:

As specified in XML Schema [XML Schema Datatypes], the value spaces of these two datatypes are disjoint. For each datatype from the above list, the normative constraining facets arexsd:minLength,xsd:maxLength, andxsd:length.

According to XML Schema, the value spaces ofxsd:hexBinary andxsd:base64Binary are isomorphic copies of the set of all finite sequences ofoctets — integers between 0 and 255, inclusive. To understand the effect that the disjointness requirement has on the semantics of OWL 2, consider the following example ontology:

Functional-Style Syntax:
DataPropertyRange(a:personIDxsd:base64Binary ) The range of thea:personID property isxsd:base64Binary.
DataPropertyAssertion(a:personIDa:Meg "0203"^^xsd:hexBinary ) The ID of Meg is the octet sequence consisting of the octets 2 and 3.
RDF:
a:personIDrdfs:rangexsd:base64Binary . The range of thea:personID property isxsd:base64Binary.
a:Mega:personID "0203"^^xsd:hexBinary . The ID of Meg is the octet sequence consisting of the octets 2 and 3.

The first axiom states that all values of thea:personID property must be in the value space ofxsd:base64Binary, but the second axiom provides a value fora:personID that is in the value space ofxsd:hexBinary. Since the value spaces ofxsd:hexBinary andxsd:base64Binary are disjoint, the above ontology is inconsistent.

4.6 IRIs

The OWL 2 datatype map provides thexsd:anyURI XML Schema datatype [XML Schema Datatypes] for the representation of IRIs. As specified in XML Schema [XML Schema Datatypes], the value spaces ofxsd:anyURI andxsd:string are disjoint. The normative constraining facets arexsd:minLength,xsd:maxLength,xsd:length, andxsd:pattern.

According to XML Schema, the value space ofxsd:anyURI is the set of all IRIs. Although each IRI has a string representation, IRIs are not strings. The value space ofxsd:anyURI can therefore be seen as an "isomorphic copy" of a subset of the value space ofxsd:string.

The lexical forms ofxsd:anyURI include relative IRIs. If an OWL 2 syntax employs rules for the resolution of relative IRIs (e.g., the OWL 2 XML Syntax [OWL 2 XML Serialization] usesxml:base for that purpose), such rules do not apply toxsd:anyURI lexical forms that represent relative IRIs; that is, the lexical forms representing relative IRIsMUST be parsed as they are.

4.7 Time Instants

The OWL 2 datatype map provides the following XML Schema datatypes [XML Schema Datatypes] for the representation of time instants with and without time zone offsets:

For each datatype from the above list, the normative constraining facets arexsd:minInclusive,xsd:maxInclusive,xsd:minExclusive, andxsd:maxExclusive. An OWL 2 implementationMAY support all lexical forms of these datatypes; however, itMUST support at least the lexical forms listed in Section 5.4 of XML Schema Datatypes [XML Schema Datatypes].

According to XML Schema, twoxsd:dateTime values representing the same time instant but with different time zone offsets are equal, but not identical. The consequences of this definition are demonstrated by the following example ontology:

Functional-Style Syntax:
FunctionalDataProperty(a:birthDate ) Each object can have at most one birth date.
DataPropertyAssertion(a:birthDatea:Peter
    "1956-06-25T04:00:00-05:00"^^xsd:dateTime )
Peter was born on June 25th, 1956, at 4am EST.
DataPropertyAssertion(a:birthDatea:Peter
    "1956-06-25T10:00:00+01:00"^^xsd:dateTime )
Peter was born on June 25th, 1956, at 10am CET.
RDF:
a:birthDaterdf:typeowl:FunctionalProperty . Each object can have at most one birth date.
a:Petera:birthDate "1956-06-25T04:00:00-05:00"^^xsd:dateTime . Peter was born on June 25th, 1956, at 4am EST.
a:Petera:birthDate "1956-06-25T10:00:00+01:00"^^xsd:dateTime . Peter was born on June 25th, 1956, at 10am CET.

June 25th, 1956, 4am EST and June 25th, 1956, 10am CET denote the same time instants, but have different time zone offsets. Consequently, the twoxsd:dateTime literals are mapped to two equal, but nonidentical data values. Consequently,a:Peter is connected by the propertya:birthDate to two distinct data values, which violates the functionality requirement ona:birthDate and makes the ontology inconsistent.

The semantics of constraining facets onxsd:dateTime is defined with respect to equality and ordering on time instants. For example, the following datatype restriction contains all time instants that are larger than or equal to the time instant corresponding to the lexical form"1956-01-01T04:00:00-05:00".

Functional-Style Syntax:
DatatypeRestriction(xsd:dateTimexsd:minInclusive "1956-01-01T04:00:00-05:00"^^xsd:dateTime )
RDF:
_:xrdf:typerdfs:Datatype .
_:xowl:onDatatypexsd:dateTime .
_:xowl:withRestrictions ( _:y ) .
_:yxsd:minInclusive "1956-01-01T04:00:00-05:00"^^xsd:dateTime .

According to XML Schema datatypes [XML Schema Datatypes], time instants are compared with respect to theirtimeOnTimeline value, which roughly corresponds to the number of seconds elapsed from the origin of the proleptic Gregorian calendar. Thus, the above data range contains the time instants corresponding to the lexical forms"1956-06-25T04:00:00-05:00" and"1956-06-25T10:00:00+01:00" despite the fact that the time zone offset of the latter does not match the one used in the datatype restriction.

A time instant might not contain a time zone offset, in which case comparisons are slightly more involved. LetT1 andT2 be time instants with and without time zone offsets, respectively. Then,T1 is not equal toT2, and comparisons are defined as follows:

Thus, forT1 to be smaller thanT2, thetimeOnTimeline value ofT1 should be smaller than thetimeOnTimeline value ofT2 even if we substitute the largest positive time zone offset inT2; the definition of "greater than" is analogous. Note that, for certainT1 andT2, it is possible that neither condition holds, in which caseT1 andT2 are incomparable.

According to this definition, the datatype restriction mentioned earlier in this example contains the time instant corresponding to the lexical form"1956-01-01T10:00:00Z", but not the one corresponding to"1956-01-01T10:00:00"; the latter is the case because the time instant corresponding to"1956-01-01T10:00:00+14:00" is not greater than or equal to the one corresponding to"1956-01-01T04:00:00-05:00".

4.8 XML Literals

The OWL 2 datatype map provides therdf:XMLLiteral datatype for the representation of XML content in OWL 2 ontologies. The datatype is defined in Section 5.1 of the RDF specification [RDF Concepts]. It has no normative constraining facets.

5 Entities, Literals, and Anonymous Individuals

Entities are the fundamental building blocks of OWL 2 ontologies, and they define the vocabulary — the named terms — of an ontology. In logic, the set of entities is usually said to constitute thesignature of an ontology. Apart from entities, OWL 2 ontologies typically also contain literals, such as strings or integers.

The structure of entities and literals in OWL 2 is shown in Figure 2. Classes, datatypes, object properties, data properties, annotation properties, and named individuals are entities, and they are all uniquely identified by an IRI. Classes represent sets of individuals; datatypes are sets of literals such as strings or integers; object and data properties can be used to represent relationships in the domain; annotation properties can be used to associate nonlogical information with ontologies, axioms, and entities; and named individuals can be used to represent actual objects from the domain. Apart from named individuals, OWL 2 also provides for anonymous individuals — that is, individuals that are analogous to blank nodes in RDF [RDF Concepts] and that are accessible only from within the ontology they are used in. Finally, OWL 2 provides for literals, which consist of a string called alexical form and a datatype specifying how to interpret this string.

The Hierarchy of Entities in OWL 2
Figure 2. Entities, Literals, and Anonymous Individuals in OWL 2

5.1 Classes

Classes can be understood as sets of individuals.

Class :=IRI

The classes with the IRIsowl:Thing andowl:Nothing are available in OWL 2 as built-in classes with a predefined semantics:

IRIs from the reserved vocabulary other thanowl:Thing andowl:NothingMUST NOT be used to identify classes in an OWL 2 DL ontology.

Classesa:Child anda:Person can be used to represent the set of all children and persons, respectively, in the application domain, and they can be used in an axiom such as the following one:

Functional-Style Syntax:
SubClassOf(a:Childa:Person ) Each child is a person.
RDF:
a:Childrdfs:subClassOfa:Person . Each child is a person.

5.2 Datatypes

Datatypes are entities that refer to sets of data values. Thus, datatypes are analogous to classes, the main difference being that the former contain data values such as strings and numbers, rather than individuals. Datatypes are a kind of data range, which allows them to be used in restrictions. As explained inSection 7, each data range is associated with an arity; for datatypes, the arity is always one. The built-in datatyperdfs:Literal denotes any set of data values that contains the union of the value spaces of all datatypes.

An IRI used to identify a datatype in an OWL 2 DL ontologyMUST

The conditions from the previous paragraph and the restrictions on datatypes inSection 11.2 require each datatype in an OWL 2 DL ontology to berdfs:Literal, one of the datatypes fromSection 4, or a datatype defined by means of a datatype definition (seeSection 9.4).

Datatype :=IRI

The datatypexsd:integer denotes the set of all integers. It can be used in axioms such as the following one:

Functional-Style Syntax:
DataPropertyRange(a:hasAgexsd:integer ) The range of thea:hasAge data property isxsd:integer.
RDF:
a:hasAgerdfs:rangexsd:integer . The range of thea:hasAge data property isxsd:integer.

5.3 Object Properties

Object properties connect pairs of individuals.

ObjectProperty :=IRI

The object properties with the IRIsowl:topObjectProperty andowl:bottomObjectProperty are available in OWL 2 as built-in object properties with a predefined semantics:

IRIs from the reserved vocabulary other thanowl:topObjectProperty andowl:bottomObjectPropertyMUST NOT be used to identify object properties in an OWL 2 DL ontology.

The object propertya:parentOf can be used to represent the parenthood relationship between individuals. It can be used in axioms such as the following one:

Functional-Style Syntax:
ObjectPropertyAssertion(a:parentOfa:Petera:Chris ) Peter is a parent of Chris.
RDF:
a:Petera:parentOfa:Chris . Peter is a parent of Chris.

5.4 Data Properties

Data properties connect individuals with literals. In some knowledge representation systems, functional data properties are calledattributes.

DataProperty :=IRI

The data properties with the IRIsowl:topDataProperty andowl:bottomDataProperty are available in OWL 2 as built-in data properties with a predefined semantics:

IRIs from the reserved vocabulary other thanowl:topDataProperty andowl:bottomDataPropertyMUST NOT be used to identify data properties in an OWL 2 DL ontology.

The data propertya:hasName can be used to associate a name with each person. It can be used in axioms such as the following one:

Functional-Style Syntax:
DataPropertyAssertion(a:hasNamea:Peter "Peter Griffin" )Peter's name is"Peter Griffin".
RDF:
a:Petera:hasName "Peter Griffin" .Peter's name is"Peter Griffin".

5.5 Annotation Properties

Annotation properties can be used to provide an annotation for an ontology, axiom, or an IRI. The structure of annotations is further described inSection 10.

AnnotationProperty :=IRI

The annotation properties with the IRIs listed below are available in OWL 2 as built-in annotation properties with a predefined semantics:

IRIs from the reserved vocabulary other than the ones listed aboveMUST NOT be used to identify annotation properties in an OWL 2 DL ontology.

The comment provided by the following annotation assertion axiom might, for example, be used by an OWL 2 tool to display additional information about the IRIa:Peter.

Functional-Style Syntax:
AnnotationAssertion(rdfs:commenta:Peter "The father of the Griffin family from Quahog." ) This axiom provides a comment for the IRIa:Peter.
RDF:
a:Peterrdfs:comment "The father of the Griffin family from Quahog." . This axiom provides a comment for the IRIa:Peter.

5.6 Individuals

Individuals in the OWL 2 syntax represent actual objects from the domain. There are two types of individuals in the syntax of OWL 2.Named individuals are given an explicit name that can be used in any ontology to refer to the same object.Anonymous individuals do not have a global name and are thus local to the ontology they are contained in.

Individual :=NamedIndividual |AnonymousIndividual

5.6.1 Named Individuals

Named individuals are identified using an IRI. Since they are given an IRI, named individuals are entities.

IRIs from the reserved vocabularyMUST NOT be used to identify named individuals in an OWL 2 DL ontology.

NamedIndividual :=IRI

The individuala:Peter can be used to represent a particular person. It can be used in axioms such as the following one:

Functional-Style Syntax:
ClassAssertion(a:Persona:Peter ) Peter is a person.
RDF:
a:Peterrdf:typea:Person . Peter is a person.

5.6.2 Anonymous Individuals

If an individual is not expected to be used outside a particular ontology, one can use ananonymous individual, which is identified by a local node ID rather than a global IRI. Anonymous individuals are analogous to blank nodes in RDF [RDF Concepts].

AnonymousIndividual :=nodeID

Anonymous individuals can be used, for example, to represent objects whose identity is of no relevance, such as the address of a person.

Functional-Style Syntax:
ObjectPropertyAssertion(a:livesAta:Peter _:a1 ) Peter lives at some (unknown) address.
ObjectPropertyAssertion(a:city _:a1a:Quahog ) This unknown address is in the city of Quahog and...
ObjectPropertyAssertion(a:state _:a1a:RI ) ...in the state of Rhode Island.
RDF:
a:Petera:livesAt _:a1 . Peter lives at some (unknown) address.
_:a1a:citya:Quahog . This unknown address is in the city of Quahog and...
_:a1a:statea:RI . ...in the state of Rhode Island.

Special treatment is required in case anonymous individuals with the same node ID occur in two different ontologies. In particular, these two individuals are structurally equivalent (because they have the same node ID); however, they are not treated as identical in the semantics of OWL 2 (because anonymous individuals are local to an ontology they are used in). The latter is achieved bystandardizing anonymous individuals apart when constructing the axiom closure of an ontologyO: if anonymous individuals with the same node ID occur in two different ontologies in the import closure ofO, then one of these individualsMUST be replaced in the axiom closure ofO with a fresh anonymous individual (i.e., an anonymous individual whose node ID is unique in the import closure ofO).

Assume that ontologiesO1 andO2 both use_:a5, and thatO1 importsO2. Although they both use the same local node ID, the individual_:a5 inO1 may be different from the individual_:a5 inO2.

At the level of the structural specification, individual_:a5 inO1 is structurally equivalent to individual_:a5 inO2. This might be important, for example, for tools that use structural equivalence to define the semantics of axiom retraction.

In order to ensure that these individuals are treated differently by the semantics they are standardized apart when computing the axiom closure ofO1 — either_:a5 inO1 is replaced with a fresh anonymous individual, or this is done for_:a5 inO2.

5.7 Literals

Literals represent data values such as particular strings or integers. They are analogous to typed RDF literals [RDF Concepts] and can also be understood as individuals denoting data values. Each literal consists of a lexical form, which is a string, and a datatype; the datatypes supported in OWL 2 are described in more detail inSection 4. A literal consisting of a lexical form"abc" and a datatype identified by the IRIdatatypeIRI is written as"abc"^^datatypeIRI. Furthermore, literals whose datatype isrdf:PlainLiteral can be abbreviated in functional-style syntax ontology documents as plain RDF literals [RDF Concepts]. These abbreviations are purely syntactic shortcuts and are thus not reflected in the structural specification of OWL 2. The observable behavior of OWL 2 implementationMUST be as if these shortcuts were expanded during parsing.

The lexical form of each literal occurring in an OWL 2 DL ontologyMUST belong to the lexical space of the literal's datatype.

Literal :=typedLiteral |stringLiteralNoLanguage |stringLiteralWithLanguage
typedLiteral :=lexicalForm '^^'Datatype
lexicalForm :=quotedString
stringLiteralNoLanguage :=quotedString
stringLiteralWithLanguage :=quotedStringlanguageTag

"1"^^xsd:integer is a literal that represents the integer 1.

"Family Guy" is an abbreviation for"Family Guy@"^^rdf:PlainLiteral — a literal with the lexical form"Family Guy@" and the datatyperdf:PlainLiteral — which denotes a string"Family Guy" without a language tag.

Furthermore,"Padre de familia"@es is an abbreviation for the literal"Padre de familia@es"^^rdf:PlainLiteral, which denotes a pair consisting of the string"Padre de familia" and the language tages.

Two literals are structurally equivalent if and only if both the lexical form and the datatype are structurally equivalent; that is, literals denoting the same data value are structurally different if either their lexical form or the datatype is different.

Even though literals"1"^^xsd:integer and"+1"^^xsd:integer are interpreted as the integer 1, these two literals are not structurally equivalent because their lexical forms are not identical. Similarly,"1"^^xsd:integer and"1"^^xsd:positiveInteger are not structurally equivalent because their datatypes are not identical.

5.8 Entity Declarations and Typing

Each IRII used in an OWL 2 ontologyO can be, and sometimes even needs to be, declared inO; roughly speaking, this means that the axiom closure ofO must contain an appropriate declaration forI. A declaration forI inO serves two purposes:

An ontology might contain a class declaration for the IRIa:Person. Such a declaration introduces the classa:Person into the ontology, and it states that the IRIa:Person is used to name a class in the ontology. An ontology editor might use declarations to implement functions such as "Add New Class".

In OWL 2, declarations are a type of axiom; thus, to declare an entity in an ontology, one can simply include the appropriate axiom in the ontology. These axioms are nonlogical in the sense that they do not affect the consequences of an OWL 2 ontology. The structure of entity declarations is shown in Figure 3.

Entity Declarations in OWL 2
Figure 3. Entity Declarations in OWL 2

Declaration := 'Declaration' '('axiomAnnotationsEntity ')'
Entity :=
    'Class' '('Class ')' |
    'Datatype' '('Datatype ')' |
    'ObjectProperty' '('ObjectProperty ')' |
    'DataProperty' '('DataProperty ')' |
    'AnnotationProperty' '('AnnotationProperty ')' |
    'NamedIndividual' '('NamedIndividual ')'

The following axioms state that the IRIa:Person is used as a class and that the IRIa:Peter is used as an individual.

Functional-Style Syntax:
Declaration( Class(a:Person ) )
Declaration( NamedIndividual(a:Peter ) )
RDF:
a:Personrdf:typeowl:Class .
a:Peterrdf:typeowl:NamedIndividual .

Declarations for the built-in entities of OWL 2, listed in Table 5, are implicitly present in every OWL 2 ontology.

Table 5. Declarations of Built-In Entities
Declaration( Class(owl:Thing ) )
Declaration( Class(owl:Nothing ) )
Declaration( ObjectProperty(owl:topObjectProperty ) )
Declaration( ObjectProperty(owl:bottomObjectProperty ) )
Declaration( DataProperty(owl:topDataProperty ) )
Declaration( DataProperty(owl:bottomDataProperty ) )
Declaration( Datatype(rdfs:Literal ) )
Declaration( Datatype(I ) ) for each IRII of a datatype in the OWL 2 datatype map (seeSection 4)
Declaration( AnnotationProperty(I ) ) for each IRII of a built-in annotation property listed inSection 5.5

5.8.1 Typing Constraints of OWL 2 DL

LetAx be a set of axioms. An IRII isdeclared to be of typeT inAx if a declaration axiom of typeT forI is contained inAx or in the set of built-in declarations listed in Table 5. The setAx satisfies thetyping constraints of OWL 2 DL if all of the following conditions are satisfied:

The axiom closureAx of each OWL 2 DL ontologyOMUST satisfy the typing constraints of OWL 2 DL.

The typing constraints thus ensure that the sets of IRIs used as object, data, and annotation properties inO are disjoint and that, similarly, the sets of IRIs used as classes and datatypes inO are disjoint as well. These constraints are used for disambiguating the types of IRIs when reading ontologies from external transfer syntaxes. All other declarations are optional.

An IRII can be used as an individual inO even ifI is not declared as an individual inO.

Declarations are often omitted in the examples in this document in cases where the types of entities are clear.

5.8.2 Declaration Consistency

Although declarations are not always required, they can be used to catch obvious errors in ontologies.

The following ontology erroneously refers to the individuala:Petre instead of the individuala:Peter.

Functional-Style Syntax:
Ontology(<http://www.my.example.com/example>
    Declaration( Class(a:Person ) )
    ClassAssertion(a:Persona:Petre )
)
RDF:
<http://www.my.example.com/example>rdf:typeowl:Ontology .
a:Personrdf:typeowl:Class .
a:Petrerdf:typea:Person .

There is no way of telling whethera:Petre was used by mistake. If, in contrast, all individuals in an ontology were by convention required to be declared, this error could be caught by a simple tool.

An ontologyO is said to haveconsistent declarations if each IRII occurring in the axiom closure ofO in position of an entity with a typeT is declared inO as having typeT. OWL 2 ontologies are not required to have consistent declarations: an ontologyMAY be used even if its declarations are not consistent.

The ontology from the previous example fails this check:a:Petre is used as an individual but the ontology does not declarea:Petre to be an individual. In contrast, the following ontology satisfies this condition.

Functional-Style Syntax:
Ontology(<http://www.my.example.com/example>
    Declaration( Class(a:Person ) )
    Declaration( NamedIndividual(a:Peter ) )
    ClassAssertion(a:Persona:Peter )
)
RDF:
<http://www.my.example.com/example>rdf:typeowl:Ontology .
a:Personrdf:typeowl:Class .
a:Peterrdf:typeowl:NamedIndividual .
a:Peterrdf:typea:Person .

5.9 Metamodeling

An IRII can be used in an OWL 2 ontology to refer to more than one type of entity. Such usage ofI is often calledmetamodeling, because it can be used to state facts about classes and properties themselves. In such cases, the entities that share the same IRII should be understood as different "views" of the same underlying notion identified by the IRII.

Consider the following ontology.

Functional-Style Syntax:
ClassAssertion(a:Doga:Brian ) Brian is a dog.
ClassAssertion(a:Speciesa:Dog ) Dog is a species.
RDF:
a:Brianrdf:typea:Dog . Brian is a dog.
a:Dogrdf:typea:Species . Dog is a species.

In the first axiom, the IRIa:Dog is used as a class, while in the second axiom, it is used as an individual; thus, the classa:Species acts as a metaclass for the classa:Dog. The individuala:Dog and the classa:Dog should be understood as two "views" of one and the same IRI —a:Dog. Under the OWL 2 Direct Semantics [OWL 2 Direct Semantics], these two views are interpreted independently: the class view ofa:Dog is interpreted as a unary predicate, while the individual view ofa:Dog is interpreted as a constant.

Both metamodeling and annotations provide means to associate additional information with classes and properties. The following rule-of-the-thumb can be used to determine when to use which construct:

Consider the following ontology.

Functional-Style Syntax:
ClassAssertion(a:Doga:Brian ) Brian is a dog.
ClassAssertion(a:PetAnimalsa:Dog ) Dogs are pet animals.
AnnotationAssertion(a:addedBya:Dog "Seth MacFarlane" ) The IRIa:Dog has been added to the ontology by Seth MacFarlane.
RDF:
a:Brianrdf:typea:Dog . Brian is a dog.
a:Dogrdf:typea:PetAnimals . Dogs are pet animals.
a:Doga:addedBy "Seth MacFarlane" . The IRIa:Dog has been added to the ontology by Seth MacFarlane.

The facts that Brian is a dog and that dogs are pet animals are statements about the domain. Therefore, these facts are represented in the above ontology via metamodeling. In contrast, the information about who added the IRIa:Dog to the ontology does not describe the actual domain, but might be interesting from a management point of view. Therefore, this information is represented using an annotation.

6 Property Expressions

Properties can be used in OWL 2 to form property expressions.

6.1 Object Property Expressions

Object properties can by used in OWL 2 to form object property expressions, which represent relationships between pairs of individuals. They are represented in the structural specification of OWL 2 byObjectPropertyExpression, and their structure is shown in Figure 4.

Object Property Expressions in OWL 2
Figure 4. Object Property Expressions in OWL 2

As one can see from the figure, OWL 2 supports only two kinds of object property expressions. Object properties are the simplest form of object property expressions, and inverse object properties allow for bidirectional navigation in class expressions and axioms.

ObjectPropertyExpression :=ObjectProperty |InverseObjectProperty

6.1.1 Inverse Object Properties

An inverse object property expressionObjectInverseOf( P ) connects an individualI1 withI2 if and only if the object propertyP connectsI2 withI1.

InverseObjectProperty := 'ObjectInverseOf' '('ObjectProperty ')'

Consider the ontology consisting of the following assertion.

Functional-Style Syntax:
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie ) Peter is Stewie's father.
RDF:
a:Petera:fatherOfa:Stewie . Peter is Stewie's father.

This ontology entails thata:Stewie is connected by the following object property expression toa:Peter:

Functional-Style Syntax:
ObjectInverseOf(a:fatherOf )
RDF:
_:x owl:inverseOfa:fatherOf .

6.2 Data Property Expressions

For symmetry with object property expressions, the structural specification of OWL 2 also introduces data property expressions, which represent relationships between an individual and a literal. The structure of data property expressions is shown in Figure 5. The only allowed data property expression is a data property; thus,DataPropertyExpression in the structural specification of OWL 2 can be seen as a place-holder for possible future extensions.

Data Property Expressions in OWL 2
Figure 5. Data Property Expressions in OWL 2

DataPropertyExpression :=DataProperty

7 Data Ranges

Datatypes, such asxsd:string orxsd:integer, and literals such as "1"^^xsd:integer, can be used to express data ranges — sets of tuples of literals, where tuples consisting of only one literal are identified with the literal itself. Each data range is associated with a positive arity, which determines the size of the tuples in the data range. All datatypes have arity one. This specification currently does not define data ranges of arity more than one; however, by allowing forn-ary data ranges, the syntax of OWL 2 provides a "hook" allowing implementations to introduce extensions such as comparisons and arithmetic.

Data ranges can be used in restrictions on data properties, as discussed in Sections8.4 and8.5. The structure of data ranges in OWL 2 is shown in Figure 6. The simplest data ranges are datatypes. TheDataIntersectionOf,DataUnionOf, andDataComplementOf data ranges provide for the standard set-theoretic operations on data ranges; in logical languages these are usually called conjunction, disjunction, and negation, respectively. TheDataOneOf data range consists of exactly the specified set of literals. Finally, theDatatypeRestriction data range restricts the value space of a datatype by a constraining facet.

Data Ranges in OWL 2
Figure 6. Data Ranges in OWL 2

DataRange :=
   Datatype |
   DataIntersectionOf |
   DataUnionOf |
   DataComplementOf |
   DataOneOf |
   DatatypeRestriction

7.1 Intersection of Data Ranges

An intersection data rangeDataIntersectionOf( DR1 ... DRn ) contains all tuples of literals that are contained in each data rangeDRi for 1 ≤ i ≤ n. All data rangesDRiMUST be of the same arity, and the resulting data range is of that arity as well.

DataIntersectionOf := 'DataIntersectionOf' '('DataRangeDataRange {DataRange } ')'

The following data range contains exactly the integer 0:

Functional-Style Syntax:
DataIntersectionOf(xsd:nonNegativeIntegerxsd:nonPositiveInteger )
RDF:
_:xrdf:typerdfs:Datatype .
_:xowl:intersectionOf (xsd:nonNegativeIntegerxsd:nonPositiveInteger ) .

7.2 Union of Data Ranges

A union data rangeDataUnionOf( DR1 ... DRn ) contains all tuples of literals that are contained in the at least one data rangeDRi for 1 ≤ i ≤ n. All data rangesDRiMUST be of the same arity, and the resulting data range is of that arity as well.

DataUnionOf := 'DataUnionOf' '('DataRangeDataRange {DataRange } ')'

The following data range contains all strings and all integers:

Functional-Style Syntax:
DataUnionOf(xsd:stringxsd:integer )
RDF:
_:xrdf:typerdfs:Datatype .
_:xowl:unionOf (xsd:stringxsd:integer ) .

7.3 Complement of Data Ranges

A complement data rangeDataComplementOf( DR ) contains all tuples of literals that are not contained in the data rangeDR. The resulting data range has the arity equal to the arity ofDR.

DataComplementOf := 'DataComplementOf' '('DataRange ')'

The following complement data range contains literals that are not positive integers:

Functional-Style Syntax:
DataComplementOf(xsd:positiveInteger )
RDF:
_:xrdf:typerdfs:Datatype .
_:xowl:complementOfxsd:positiveInteger .

In particular, this data range contains the integer zero and all negative integers; however, it also contains all strings (since strings are not positive integers).

7.4 Enumeration of Literals

An enumeration of literalsDataOneOf( lt1 ... ltn ) contains exactly the explicitly specified literalslti with 1 ≤ i ≤ n. The resulting data range has arity one.

DataOneOf := 'DataOneOf' '('Literal {Literal } ')'

The following data range contains exactly two literals: the string"Peter" and the integer one.

Functional-Style Syntax:
DataOneOf( "Peter" "1"^^xsd:integer )
RDF:
_:xrdf:typerdfs:Datatype .
_:xowl:oneOf ( "Peter" "1"^^xsd:integer ) .

7.5 Datatype Restrictions

A datatype restrictionDatatypeRestriction( DT F1 lt1 ... Fn ltn ) consists of a unary datatypeDT andn pairs( Fi , lti ). The resulting data range is unary and is obtained by restricting the value space ofDT according to the semantics of all( Fi , vi ) (multiple pairs are interpreted conjunctively), wherevi are the data values of the literalslti.

In an OWL 2 DL ontology, each pair( Fi , vi )MUST be contained in the facet space ofDT (seeSection 4).

DatatypeRestriction := 'DatatypeRestriction' '('DatatypeconstrainingFacetrestrictionValue {constrainingFacetrestrictionValue } ')'
constrainingFacet :=IRI
restrictionValue :=Literal

The following data range contains exactly the integers 5, 6, 7, 8, and 9:

Functional-Style Syntax:
DatatypeRestriction(xsd:integerxsd:minInclusive "5"^^xsd:integerxsd:maxExclusive "10"^^xsd:integer )
RDF:
_:xrdf:typerdfs:Datatype .
_:xowl:onDatatypexsd:integer .
_:xowl:withRestrictions ( _:y _:z ) .
_:yxsd:minInclusive "5"^^xsd:integer .
_:zxsd:maxExclusive "10"^^xsd:integer .

8 Class Expressions

In OWL 2, classes and property expressions are used to constructclass expressions, sometimes also calleddescriptions, and, in the description logic literature,complex concepts. Class expressions represent sets of individuals by formally specifying conditions on the individuals' properties; individuals satisfying these conditions are said to beinstances of the respective class expressions. In the structural specification of OWL 2, class expressions are represented byClassExpression.

A class expression can be used to represent the set of "people that have at least one child". If an ontology additionally contains statements that "Peter is a person" and that "Peter has child Chris", then Peter can be classified as an instance of the mentioned class expression.

OWL 2 provides a rich set of primitives that can be used to construct class expressions. In particular, it provides the well known Boolean connectivesand,or, andnot; a restricted form of universal and existential quantification; number restrictions; enumeration of individuals; and a specialself-restriction.

As shown in Figure 2, classes are the simplest form of class expressions. The other, complex, class expressions, are described in the following sections.

ClassExpression :=
   Class |
   ObjectIntersectionOf |ObjectUnionOf |ObjectComplementOf |ObjectOneOf |
   ObjectSomeValuesFrom |ObjectAllValuesFrom |ObjectHasValue |ObjectHasSelf |
   ObjectMinCardinality |ObjectMaxCardinality |ObjectExactCardinality |
   DataSomeValuesFrom |DataAllValuesFrom |DataHasValue |
   DataMinCardinality |DataMaxCardinality |DataExactCardinality

8.1 Propositional Connectives and Enumeration of Individuals

OWL 2 provides for enumeration of individuals and all standard Boolean connectives, as shown in Figure 7. TheObjectIntersectionOf,ObjectUnionOf, andObjectComplementOf class expressions provide for the standard set-theoretic operations on class expressions; in logical languages these are usually called conjunction, disjunction, and negation, respectively. TheObjectOneOf class expression contains exactly the specified individuals.

Propositional Connectives and Enumeration of Individuals in OWL 2
Figure 7. Propositional Connectives and Enumeration of Individuals in OWL 2

8.1.1 Intersection of Class Expressions

An intersection class expressionObjectIntersectionOf( CE1 ... CEn ) contains all individuals that are instances of all class expressionsCEi for 1 ≤ i ≤ n.

ObjectIntersectionOf := 'ObjectIntersectionOf' '('ClassExpressionClassExpression {ClassExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ClassAssertion(a:Doga:Brian ) Brian is a dog.
ClassAssertion(a:CanTalka:Brian ) Brian can talk.
RDF:
a:Brianrdf:typea:Dog . Brian is a dog.
a:Brianrdf:typea:CanTalk . Brian can talk.

The following class expression describes all dogs that can talk; furthermore,a:Brian is classified as its instance.

Functional-Style Syntax:
ObjectIntersectionOf(a:Doga:CanTalk )
RDF:
_:xrdf:typeowl:Class .
_:xowl:intersectionOf (a:Doga:CanTalk ) .

8.1.2 Union of Class Expressions

A union class expressionObjectUnionOf( CE1 ... CEn ) contains all individuals that are instances of at least one class expressionCEi for 1 ≤ i ≤ n.

ObjectUnionOf := 'ObjectUnionOf' '('ClassExpressionClassExpression {ClassExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ClassAssertion(a:Mana:Peter ) Peter is a man.
ClassAssertion(a:Womana:Lois ) Lois is a woman.
RDF:
a:Peterrdf:typea:Man . Peter is a man.
a:Loisrdf:typea:Woman . Lois is a woman.

The following class expression describes all individuals that are instances of eithera:Man ora:Woman; furthermore, botha:Peter anda:Lois are classified as its instances:

Functional-Style Syntax:
ObjectUnionOf(a:Mana:Woman )
RDF:
_:xrdf:typeowl:Class .
_:xowl:unionOf (a:Mana:Woman ) .

8.1.3 Complement of Class Expressions

A complement class expressionObjectComplementOf( CE ) contains all individuals that are not instances of the class expressionCE.

ObjectComplementOf := 'ObjectComplementOf' '('ClassExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DisjointClasses(a:Mana:Woman ) Nothing can be both a man and a woman.
ClassAssertion(a:Womana:Lois ) Lois is a woman.
RDF:
a:Manowl:disjointWitha:Woman . Nothing can be both a man and a woman.
a:Loisrdf:typea:Woman . Lois is a woman.

The following class expression describes all things that are not instances ofa:Man:

Functional-Style Syntax:
ObjectComplementOf(a:Man )
RDF:
_:xrdf:typeowl:Class .
_:xowl:complementOfa:Man .

Sincea:Lois is known to be a woman and nothing can be both a man and a woman, thena:Lois is necessarily not aa:Man; therefore,a:Lois is classified as an instance of this complement class expression.

OWL 2 hasopen-world semantics, so negation in OWL 2 is the same as in classical (first-order) logic. To understand open-world semantics, consider the ontology consisting of the following assertion.

Functional-Style Syntax:
ClassAssertion(a:Doga:Brian ) Brian is a dog.
RDF:
a:Brianrdf:typea:Dog . Brian is a dog.

One might expecta:Brian to be classified as an instance of the following class expression:

Functional-Style Syntax:
ObjectComplementOf(a:Bird )
RDF:
_:xrdf:typeowl:Class .
_:xowl:complementOfa:Bird .

Intuitively, the ontology does not explicitly state thata:Brian is an instance ofa:Bird, so this statement seems to be false. In OWL 2, however, this is not the case: it is true that the ontology does not state thata:Brian is an instance ofa:Bird; however, the ontology does not state the opposite either. In other words, this ontology simply does not contain enough information to answer the question whethera:Brian is an instance ofa:Bird or not: it is perfectly possible that the information to that effect is actually true but it has not been included in the ontology.

The ontology from the previous example (in whicha:Lois has been classified asa:Man), however, contains sufficient information to draw the expected conclusion. In particular, we know for sure thata:Lois is an instance ofa:Woman and thata:Man anda:Woman do not share instances. Therefore, any additional information that does not lead to inconsistency cannot lead to a conclusion thata:Lois is an instance ofa:Man; furthermore, if one were to explicitly state thata:Lois is an instance ofa:Man, the ontology would be inconsistent and, by definition, it then entails all possible conclusions.

8.1.4 Enumeration of Individuals

An enumeration of individualsObjectOneOf( a1 ... an ) contains exactly the individualsai with 1 ≤ i ≤ n.

ObjectOneOf := 'ObjectOneOf' '('Individual {Individual }')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
EquivalentClasses(a:GriffinFamilyMember
    ObjectOneOf(a:Petera:Loisa:Stewiea:Mega:Chrisa:Brian )
)
The Griffin family consists exactly of Peter, Lois, Stewie, Meg, Chris, and Brian.
DifferentIndividuals(a:Quagmirea:Petera:Loisa:Stewiea:Mega:Chrisa:Brian ) Quagmire, Peter, Lois, Stewie, Meg, Chris, and Brian are all different from each other.
RDF:
a:GriffinFamilyMemberowl:equivalentClass _:x .
_:xrdf:typeowl:Class .
_:xowl:oneOf (a:Petera:Loisa:Stewiea:Mega:Chrisa:Brian ) .
The Griffin family consists exactly of Peter, Lois, Stewie, Meg, and Brian.
_:yrdf:typeowl:AllDifferent .
_:yowl:members (a:Quagmirea:Petera:Loisa:Stewiea:Mega:Chrisa:Brian ) .
Quagmire, Peter, Lois, Stewie, Meg, Chris, and Brian are all different from each other.

The classa:GriffinFamilyMember now contains exactly the six explicitly listed individuals. Since we also know thata:Quagmire is different from these six individuals, this individual is classified as an instance of the following class expression:

Functional-Style Syntax:
ObjectComplementOf(a:GriffinFamilyMember )
RDF:
_:zrdf:typeowl:Class .
_:zowl:complementOfa:GriffinFamilyMember .

The last axiom in the ontology is necessary to derive the mentioned conclusion; without it, the open-world semantics of OWL 2 would allow for situations wherea:Quagmire is the same asa:Peter,a:Lois,a:Stewie,a:Meg,a:Chris, ora:Brian.

To understand how the open-world semantics affects enumerations of individuals, consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ClassAssertion(a:GriffinFamilyMembera:Peter ) Peter is a member of the Griffin Family.
ClassAssertion(a:GriffinFamilyMembera:Lois ) Lois is a member of the Griffin Family.
ClassAssertion(a:GriffinFamilyMembera:Stewie ) Stewie is a member of the Griffin Family.
ClassAssertion(a:GriffinFamilyMembera:Meg ) Meg is a member of the Griffin Family.
ClassAssertion(a:GriffinFamilyMembera:Chris ) Chris is a member of the Griffin Family.
ClassAssertion(a:GriffinFamilyMembera:Brian ) Brian is a member of the Griffin Family.
RDF:
a:Peterrdf:typea:GriffinFamilyMember . Peter is a member of the Griffin Family.
a:Loisrdf:typea:GriffinFamilyMember . Lois is a member of the Griffin Family.
a:Stewierdf:typea:GriffinFamilyMember . Stewie is a member of the Griffin Family.
a:Megrdf:typea:GriffinFamilyMember . Meg is a member of the Griffin Family.
a:Chrisrdf:typea:GriffinFamilyMember . Chris is a member of the Griffin Family.
a:Brianrdf:typea:GriffinFamilyMember . Brian is a member of the Griffin Family.

The classa:GriffinFamilyMember now also contains the mentioned six individuals, just as in the previous example. The main difference to the previous example, however, is that the extension ofa:GriffinFamilyMember is not closed: the semantics of OWL 2 assumes that information about a potential instance ofa:GriffinFamilyMember may be missing. Therefore,a:Quagmire is now not classified as an instance of the following class expression, and this does not change even if we add the axiom stating that all of these six individuals are different from each other:

Functional-Style Syntax:
ObjectComplementOf(a:GriffinFamilyMember )
RDF:
_:xrdf:typeowl:Class .
_:xowl:complementOfa:GriffinFamilyMember .

8.2 Object Property Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on object property expressions, as shown in Figure 8. TheObjectSomeValuesFrom class expression allows for existential quantification over an object property expression, and it contains those individuals that are connected through an object property expression to at least one instance of a given class expression. TheObjectAllValuesFrom class expression allows for universal quantification over an object property expression, and it contains those individuals that are connected through an object property expression only to instances of a given class expression. TheObjectHasValue class expression contains those individuals that are connected by an object property expression to a particular individual. Finally, theObjectHasSelf class expression contains those individuals that are connected by an object property expression to themselves.

Restricting Object Property Expressions in OWL 2
Figure 8. Restricting Object Property Expressions in OWL 2

8.2.1 Existential Quantification

An existential class expressionObjectSomeValuesFrom( OPE CE ) consists of an object property expressionOPE and a class expressionCE, and it contains all those individuals that are connected byOPE to an individual that is an instance ofCE. Provided thatOPE issimple according to the definition inSection 11, such a class expression can be seen as a syntactic shortcut for the class expressionObjectMinCardinality( 1 OPE CE ).

ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '('ObjectPropertyExpressionClassExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie ) Peter is Stewie's father.
ClassAssertion(a:Mana:Stewie ) Stewie is a man.
RDF:
a:Petera:fatherOfa:Stewie . Peter is Stewie's father.
a:Stewierdf:typea:Man . Stewie is a man.

The following existential expression contains those individuals that are connected by thea:fatherOf property to individuals that are instances ofa:Man; furthermore,a:Peter is classified as its instance:

Functional-Style Syntax:
ObjectSomeValuesFrom(a:fatherOfa:Man )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:fatherOf .
_:xowl:someValuesFroma:Man .

8.2.2 Universal Quantification

A universal class expressionObjectAllValuesFrom( OPE CE ) consists of an object property expressionOPE and a class expressionCE, and it contains all those individuals that are connected byOPE only to individuals that are instances ofCE. Provided thatOPE issimple according to the definition inSection 11, such a class expression can be seen as a syntactic shortcut for the class expressionObjectMaxCardinality( 0 OPE ObjectComplementOf( CE ) ).

ObjectAllValuesFrom := 'ObjectAllValuesFrom' '('ObjectPropertyExpressionClassExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasPeta:Petera:Brian ) Brian is a pet of Peter.
ClassAssertion(a:Doga:Brian ) Brian is a dog.
ClassAssertion( ObjectMaxCardinality( 1a:hasPet )a:Peter ) Peter has at most one pet.
RDF:
a:Petera:hasPeta:Brian . Brian is a pet of Peter.
a:Brianrdf:typea:Dog . Brian is a dog.
a:Peterrdf:type _:x .
_:xrdf:typeowl:Restriction .
_:xowl:maxCardinality "1"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:hasPet .
Peter has at most one pet.

The following universal expression contains those individuals that are connected through thea:hasPet property only with individuals that are instances ofa:Dog — that is, it contains individuals that have only dogs as pets:

Functional-Style Syntax:
ObjectAllValuesFrom(a:hasPeta:Dog )
RDF:
_:yrdf:typeowl:Restriction .
_:yowl:onPropertya:hasPet .
_:yowl:allValuesFroma:Dog .

The ontology axioms clearly state thata:Peter is connected bya:hasPet only to instances ofa:Dog: it is impossible to connecta:Peter bya:hasPet to an individual different froma:Brian without making the ontology inconsistent. Therefore,a:Peter is classified as an instance of the mentioned class expression.

The last axiom — that is, the one stating thata:Peter has at most one pet — is critical for the inference from the previous paragraph due to the open-world semantics of OWL 2. Without this axiom, the ontology might not have listed all the individuals to whicha:Peter is connected bya:hasPet. In such a casea:Peter would not be classified as an instance of the mentioned class expression.

8.2.3 Individual Value Restriction

A has-value class expressionObjectHasValue( OPE a ) consists of an object property expressionOPE and an individuala, and it contains all those individuals that are connected byOPE toa. Each such class expression can be seen as a syntactic shortcut for the class expressionObjectSomeValuesFrom( OPE ObjectOneOf( a ) ).

ObjectHasValue := 'ObjectHasValue' '('ObjectPropertyExpressionIndividual ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie ) Peter is Stewie's father.
RDF:
a:Petera:fatherOfa:Stewie . Peter is Stewie's father.

The following has-value class expression contains those individuals that are connected through thea:fatherOf property with the individuala:Stewie; furthermore,a:Peter is classified as its instance:

Functional-Style Syntax:
ObjectHasValue(a:fatherOfa:Stewie )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:fatherOf .
_:xowl:hasValuea:Stewie .

8.2.4 Self-Restriction

A self-restrictionObjectHasSelf( OPE ) consists of an object property expressionOPE, and it contains all those individuals that are connected byOPE to themselves.

ObjectHasSelf := 'ObjectHasSelf' '('ObjectPropertyExpression ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
ObjectPropertyAssertion(a:likesa:Petera:Peter ) Peter likes Peter.
RDF:
a:Petera:likesa:Peter . Peter likes Peter.

The following self-restriction contains those individuals that like themselves; furthermore,a:Peter is classified as its instance:

Functional-Style Syntax:
ObjectHasSelf(a:likes )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:likes .
_:xowl:hasSelf "true"^^xsd:boolean .

8.3 Object Property Cardinality Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the cardinality of object property expressions, as shown in Figure 9. All cardinality restrictions can be qualified or unqualified: in the former case, the cardinality restriction only applies to individuals that are connected by the object property expression and are instances of the qualifying class expression; in the latter case the restriction applies to all individuals that are connected by the object property expression (this is equivalent to the qualified case with the qualifying class expression equal toowl:Thing). The class expressionsObjectMinCardinality,ObjectMaxCardinality, andObjectExactCardinality contain those individuals that are connected by an object property expression to at least, at most, and exactly a given number of instances of a specified class expression, respectively.

Restricting the Cardinality of Object Property Expressions in OWL 2
Figure 9. Restricting the Cardinality of Object Property Expressions in OWL 2

8.3.1 Minimum Cardinality

A minimum cardinality expressionObjectMinCardinality( n OPE CE ) consists of a nonnegative integern, an object property expressionOPE, and a class expressionCE, and it contains all those individuals that are connected byOPE to at leastn different individuals that are instances ofCE. IfCE is missing, it is taken to beowl:Thing.

ObjectMinCardinality := 'ObjectMinCardinality' '('nonNegativeIntegerObjectPropertyExpression [ClassExpression ] ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie ) Peter is Stewie's father.
ClassAssertion(a:Mana:Stewie ) Stewie is a man.
ObjectPropertyAssertion(a:fatherOfa:Petera:Chris ) Peter is Chris's father.
ClassAssertion(a:Mana:Chris ) Chris is a man.
DifferentIndividuals(a:Chrisa:Stewie ) Chris and Stewie are different from each other.
RDF:
a:Petera:fatherOfa:Stewie . Peter is Stewie's father.
a:Stewierdf:typea:Man . Stewie is a man.
a:Petera:fatherOfa:Chris . Peter is Chris's father.
a:Chrisrdf:typea:Man . Chris is a man.
a:Chrisowl:differentFroma:Stewie . Chris and Stewie are different from each other.

The following minimum cardinality expression contains those individuals that are connected bya:fatherOf to at least two different instances ofa:Man:

Functional-Style Syntax:
ObjectMinCardinality( 2a:fatherOfa:Man )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:fatherOf .
_:xowl:onClassa:Man .

Sincea:Stewie anda:Chris are both instances ofa:Man and are different from each other,a:Peter is classified as an instance of this class expression.

Due to the open-world semantics, the last axiom — the one stating thata:Chris anda:Stewie are different from each other — is necessary for this inference: without this axiom, it is possible thata:Chris anda:Stewie are actually the same individual.

8.3.2 Maximum Cardinality

A maximum cardinality expressionObjectMaxCardinality( n OPE CE ) consists of a nonnegative integern, an object property expressionOPE, and a class expressionCE, and it contains all those individuals that are connected byOPE to at mostn different individuals that are instances ofCE. IfCE is missing, it is taken to beowl:Thing.

ObjectMaxCardinality := 'ObjectMaxCardinality' '('nonNegativeIntegerObjectPropertyExpression [ClassExpression ] ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasPeta:Petera:Brian ) Brian is a pet of Peter.
ClassAssertion( ObjectMaxCardinality( 1a:hasPet )a:Peter ) Peter has at most one pet.
RDF:
a:Petera:hasPeta:Brian . Brian is a pet of Peter.
a:Peterrdf:type _:x .
_:xrdf:typeowl:Restriction .
_:xowl:maxCardinality "1"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:hasPet .
Peter has at most one pet.

The following maximum cardinality expression contains those individuals that are connected bya:hasPet to at most two individuals:

Functional-Style Syntax:
ObjectMaxCardinality( 2a:hasPet )
RDF:
_:yrdf:typeowl:Restriction .
_:yowl:maxCardinality "2"^^xsd:nonNegativeInteger .
_:yowl:onPropertya:hasPet .

Sincea:Peter is known to be connected bya:hasPet to at most one individual, it is certainly also connected bya:hasPet to at most two individuals so, consequently,a:Peter is classified as an instance of this class expression.

The example ontology explicitly names onlya:Brian as being connected bya:hasPet froma:Peter, so one might expecta:Peter to be classified as an instance of the mentioned class expression even without the second axiom. This, however, is not the case due to the open-world semantics. Without the last axiom, it is possible thata:Peter is connected bya:hasPet to other individuals. The second axiom closes the set of individuals thata:Peter is connected to bya:hasPet.

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasDaughtera:Petera:Meg ) Meg is a daughter of Peter.
ObjectPropertyAssertion(a:hasDaughtera:Petera:Megan ) Megan is a daughter of Peter.
ClassAssertion( ObjectMaxCardinality( 1a:hasDaughter )a:Peter ) Peter has at most one daughter.
RDF:
a:Petera:hasDaughtera:Meg . Meg is a daughter of Peter.
a:Petera:hasDaughtera:Megan . Megan is a daughter of Peter.
a:Peterrdf:type _:x .
_:xrdf:typeowl:Restriction .
_:xowl:maxCardinality "1"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:hasDaughter .
Peter has at most one daughter.

One might expect this ontology to be inconsistent: on the one hand, it says thata:Meg anda:Megan are connected toa:Peter bya:hasDaughter, but, on the other hand, it says thata:Peter is connected bya:hasDaughter to at most one individual. This ontology, however, is not inconsistent because the semantics of OWL 2 does not make theunique name assumption — that is, it does not assume distinct individuals to be necessarily different. For example, the ontology does not explicitly say thata:Meg anda:Megan are different individuals; therefore, sincea:Peter can be connected bya:hasDaughter to at most one distinct individual,a:Meg anda:Megan must be the same. This example ontology thus entails the following assertion:

Functional-Style Syntax:
SameIndividual(a:Mega:Megan )
RDF:
a:Megowl:sameAsa:Megan .

One can axiomatize the unique name assumption in OWL 2 by explicitly stating that all individuals are different from each other. This can be done by adding the following axiom, which makes the example ontology inconsistent.

Functional-Style Syntax:
DifferentIndividuals(a:Petera:Mega:Megan ) Peter, Meg, and Megan are all different from each other.
RDF:
_:yrdf:typeowl:AllDifferent .
_:yowl:members (a:Petera:Mega:Megan ) .
Peter, Meg, and Megan are all different from each other.

8.3.3 Exact Cardinality

An exact cardinality expressionObjectExactCardinality( n OPE CE ) consists of a nonnegative integern, an object property expressionOPE, and a class expressionCE, and it contains all those individuals that are connected byOPE to exactlyn different individuals that are instances ofCE. IfCE is missing, it is taken to beowl:Thing. Such an expression is actually equivalent to the expression

ObjectIntersectionOf( ObjectMinCardinality( n OPE CE ) ObjectMaxCardinality( n OPE CE ) ).

ObjectExactCardinality := 'ObjectExactCardinality' '('nonNegativeIntegerObjectPropertyExpression [ClassExpression ] ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasPeta:Petera:Brian ) Brian is a pet of Peter.
ClassAssertion(a:Doga:Brian ) Brian is a dog.
ClassAssertion(
    ObjectAllValuesFrom(a:hasPet
       ObjectUnionOf(
          ObjectOneOf(a:Brian )
          ObjectComplementOf( a:Dog )
        )
    )
   a:Peter
)
Each pet of Peter is either Brian or it is not a dog.
RDF:
a:Petera:hasPeta:Brian . Brian is a pet of Peter.
a:Brianrdf:typea:Dog . Brian is a dog.
a:Peterrdf:type _:x .
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasPet .
_:xowl:allValuesFrom _:y .
_:yrdf:typeowl:Class .
_:yowl:unionOf ( _:z1 _:z2 ) .
_:z1rdf:typeowl:Class .
_:z1owl:oneOf (a:Brian ) .
_:z2rdf:typeowl:Class .
_:z2owl:complementOfa:Dog .
Each pet of Peter is either Brian or it is not a dog.

The following exact cardinality expression contains those individuals that are connected bya:hasPet to exactly one instance ofa:Dog; furthermore,a:Peter is classified as its instance:

Functional-Style Syntax:
ObjectExactCardinality( 1a:hasPeta:Dog )
RDF:
_:wrdf:typeowl:Restriction .
_:wowl:qualifiedCardinality "1"^^xsd:nonNegativeInteger .
_:wowl:onPropertya:hasPet .
_:wowl:onClassa:Dog .

This is because the first two axioms say thata:Peter is connected toa:Brian bya:hasPet and thata:Brian is an instance ofa:Dog, and the last axiom says that any individual different froma:Brian that is connected toa:Peter bya:hasPet is not an instance ofa:Dog; hence,a:Peter is connected to exactly one instance ofa:Dog bya:hasPet.

8.4 Data Property Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on data property expressions, as shown in Figure 10. These are similar to the restrictions on object property expressions, the main difference being that the expressions for existential and universal quantification allow forn-ary data ranges. All data ranges explicitly supported by this specification are unary; however, the provision ofn-ary data ranges in existential and universal quantification allows OWL 2 tools to support extensions such as value comparisons and, consequently, class expressions such as "individuals whose width is greater than their height". Thus, theDataSomeValuesFrom class expression allows for a restricted existential quantification over a list of data property expressions, and it contains those individuals that are connected through the data property expressions to at least one literal in the given data range. TheDataAllValuesFrom class expression allows for a restricted universal quantification over a list of data property expressions, and it contains those individuals that are connected through the data property expressions only to literals in the given data range. Finally, theDataHasValue class expression contains those individuals that are connected by a data property expression to a particular literal.

Restricting Data Property Expressions in OWL 2
Figure 10. Restricting Data Property Expressions in OWL 2

8.4.1 Existential Quantification

An existential class expressionDataSomeValuesFrom( DPE1 ... DPEn DR ) consists ofn data property expressionsDPEi, 1 ≤ i ≤ n, and a data rangeDR whose arityMUST be n. Such a class expression contains all those individuals that are connected byDPEi to literalslti, 1 ≤ i ≤ n, such that the tuple( lt1 , ..., ltn ) is inDR. A class expression of the formDataSomeValuesFrom( DPE DR ) can be seen as a syntactic shortcut for the class expressionDataMinCardinality( 1 DPE DR ).

DataSomeValuesFrom := 'DataSomeValuesFrom' '('DataPropertyExpression {DataPropertyExpression }DataRange ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
DataPropertyAssertion(a:hasAgea:Meg "17"^^xsd:integer ) Meg is seventeen years old.
RDF:
a:Mega:hasAge "17"^^xsd:integer . Meg is seventeen years old.

The following existential class expression contains all individuals that are connected bya:hasAge to an integer strictly less than 20 so; furthermore,a:Meg is classified as its instance:

Functional-Style Syntax:
DataSomeValuesFrom(a:hasAge DatatypeRestriction(xsd:integerxsd:maxExclusive "20"^^xsd:integer ) )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasAge .
_:xowl:someValuesFrom _:y .
_:y rdf:type rdfs:Datatype .
_:yowl:onDatatypexsd:integer .
_:yowl:withRestrictions ( _:z ) .
_:z xsd:maxExclusive "20"^^xsd:integer .

8.4.2 Universal Quantification

A universal class expressionDataAllValuesFrom( DPE1 ... DPEn DR ) consists ofn data property expressionsDPEi, 1 ≤ i ≤ n, and a data rangeDR whose arityMUST be n. Such a class expression contains all those individuals that are connected byDPEi only to literalslti, 1 ≤ i ≤ n, such that each tuple( lt1 , ..., ltn ) is inDR. A class expression of the formDataAllValuesFrom( DPE DR ) can be seen as a syntactic shortcut for the class expressionDataMaxCardinality( 0 DPE DataComplementOf( DR ) ).

DataAllValuesFrom := 'DataAllValuesFrom' '('DataPropertyExpression {DataPropertyExpression }DataRange ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DataPropertyAssertion(a:hasZIP _:a1 "02903"^^xsd:integer ) The ZIP code of _:a1 is the integer 02903.
FunctionalDataProperty(a:hasZIP ) Each object can have at most one ZIP code.
RDF:
_:a1a:hasZIP "02903"^^xsd:integer The ZIP code of _:a1 is the integer 02903.
a:hasZIPrdf:typeowl:FunctionalProperty . Each object can have at most one ZIP code.

In United Kingdom and Canada, ZIP codes are strings (i.e., they can contain characters and not just numbers). Hence, one might use the following universal expression to identify those individuals that have only integer ZIP codes (and therefore have non-UK and non-Canadian addresses):

Functional-Style Syntax:
DataAllValuesFrom(a:hasZIPxsd:integer )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasZIP .
_:xowl:allValuesFromxsd:integer .

The anonymous individual _:a1 is by the first axiom connected bya:hasZIP to an integer, and the second axiom ensures that _:a1 is not connected bya:hasZIP to other literals; therefore, _:a1 is classified as an instance of the mentioned class expression.

The last axiom — the one stating thata:hasZIP is functional — is critical for the inference from the previous paragraph due to the open-world semantics of OWL 2. Without this axiom, the ontology is not guaranteed to list all literals that _:a1 is connected to bya:hasZIP; hence, without this axiom _:a1 would not be classified as an instance of the mentioned class expression.

8.4.3 Literal Value Restriction

A has-value class expressionDataHasValue( DPE lt ) consists of a data property expressionDPE and a literallt, and it contains all those individuals that are connected byDPE tolt. Each such class expression can be seen as a syntactic shortcut for the class expressionDataSomeValuesFrom( DPE DataOneOf( lt ) ).

DataHasValue := 'DataHasValue' '('DataPropertyExpressionLiteral ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
DataPropertyAssertion(a:hasAgea:Meg "17"^^xsd:integer ) Meg is seventeen years old.
RDF:
a:Mega:hasAge "17"^^xsd:integer . Meg is seventeen years old.

The following has-value expression contains all individuals that are connected bya:hasAge to the integer 17; furthermore,a:Meg is classified as its instance:

Functional-Style Syntax:
DataHasValue(a:hasAge "17"^^xsd:integer )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasAge .
_:xowl:hasValue "17"^^xsd:integer .

8.5 Data Property Cardinality Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the cardinality of data property expressions, as shown in Figure 11. These are similar to the restrictions on the cardinality of object property expressions. All cardinality restrictions can be qualified or unqualified: in the former case, the cardinality restriction only applies to literals that are connected by the data property expression and are in the qualifying data range; in the latter case it applies to all literals that are connected by the data property expression (this is equivalent to the qualified case with the qualifying data range equal tordfs:Literal). The class expressionsDataMinCardinality,DataMaxCardinality, andDataExactCardinality contain those individuals that are connected by a data property expression to at least, at most, and exactly a given number of literals in the specified data range, respectively.

Restricting the Cardinality of Data Property Expressions in OWL 2
Figure 11. Restricting the Cardinality of Data Property Expressions in OWL 2

8.5.1 Minimum Cardinality

A minimum cardinality expressionDataMinCardinality( n DPE DR ) consists of a nonnegative integern, a data property expressionDPE, and a unary data rangeDR, and it contains all those individuals that are connected byDPE to at leastn different literals inDR. IfDR is not present, it is taken to berdfs:Literal.

DataMinCardinality := 'DataMinCardinality' '('nonNegativeIntegerDataPropertyExpression [DataRange ] ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DataPropertyAssertion(a:hasNamea:Meg "Meg Griffin" )Meg's name is"Meg Griffin".
DataPropertyAssertion(a:hasNamea:Meg "Megan Griffin" )Meg's name is"Megan Griffin".
RDF:
a:Mega:hasName "Meg Griffin" .Meg's name is"Meg Griffin".
a:Mega:hasName "Megan Griffin" .Meg's name is"Megan Griffin".

The following minimum cardinality expression contains those individuals that are connected bya:hasName to at least two different literals:

Functional-Style Syntax:
DataMinCardinality( 2a:hasName )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:minCardinality "2"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:hasName .

Different string literals are distinct, so"Meg Griffin" and"Megan Griffin" are different; thus, the individuala:Meg is classified as an instance of the mentioned class expression.

Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions in OWL 2 is defined with respect to the latter. For an example demonstrating the effects such such a definition, please refer toSection 9.3.6.

8.5.2 Maximum Cardinality

A maximum cardinality expressionDataMaxCardinality( n DPE DR ) consists of a nonnegative integern, a data property expressionDPE, and a unary data rangeDR, and it contains all those individuals that are connected byDPE to at mostn different literals inDR. IfDR is not present, it is taken to berdfs:Literal.

DataMaxCardinality := 'DataMaxCardinality' '('nonNegativeIntegerDataPropertyExpression [DataRange ] ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
FunctionalDataProperty(a:hasName ) Each object can have at most one name.
RDF:
a:hasNamerdf:typeowl:FunctionalProperty . Each object can have at most one name.

The following maximum cardinality expression contains those individuals that are connected bya:hasName to at most two different literals:

Functional-Style Syntax:
DataMaxCardinality( 2a:hasName )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:maxCardinality "2"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:hasName .

Since the ontology axiom restrictsa:hasName to be functional, all individuals in the ontology are instances of this class expression.

Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions in OWL 2 is defined with respect to the latter. For an example demonstrating the effects such such a definition, please refer toSection 9.3.6.

8.5.3 Exact Cardinality

An exact cardinality expressionDataExactCardinality( n DPE DR ) consists of a nonnegative integern, a data property expressionDPE, and a unary data rangeDR, and it contains all those individuals that are connected byDPE to exactlyn different literals inDR. IfDR is not present, it is taken to berdfs:Literal.

DataExactCardinality := 'DataExactCardinality' '('nonNegativeIntegerDataPropertyExpression [DataRange ] ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DataPropertyAssertion(a:hasNamea:Brian "Brian Griffin" )Brian's name is"Brian Griffin".
FunctionalDataProperty(a:hasName ) Each object can have at most one name.
RDF:
a:Briana:hasName "Brian Griffin" .Brian's name is"Brian Griffin".
a:hasNamerdf:typeowl:FunctionalProperty . Each object can have at most one name.

The following exact cardinality expression contains those individuals that are connected bya:hasName to exactly one literal:

Functional-Style Syntax:
DataExactCardinality( 1a:hasName )
RDF:
_:xrdf:typeowl:Restriction .
_:xowl:cardinality "1"^^xsd:nonNegativeInteger .
_:xowl:onPropertya:hasName .

Since the ontology axiom restrictsa:hasName to be functional anda:Brian is connected bya:hasName to"Brian Griffin", it is classified as an instance of this class expression.

Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions in OWL 2 is defined with respect to the latter. For an example demonstrating the effects such such a definition, please refer toSection 9.3.6.

9 Axioms

The main component of an OWL 2 ontology is a set ofaxioms — statements that say what is true in the domain. OWL 2 provides an extensive set of axioms, all of which extend theAxiom class in the structural specification. As shown in Figure 12, axioms in OWL 2 can be declarations, axioms about classes, axioms about object or data properties, datatype definitions, keys, assertions (sometimes also calledfacts), and axioms about annotations.

The Axioms of OWL 2
Figure 12. The Axioms of OWL 2

Axiom :=Declaration |ClassAxiom |ObjectPropertyAxiom |DataPropertyAxiom |DatatypeDefinition |HasKey |Assertion |AnnotationAxiom

axiomAnnotations := {Annotation }

As shown in Figure 1, OWL 2 axioms can contain axiom annotations, the structure of which is defined inSection 10. Axiom annotations have no effect on the semantics of axioms — that is, they do not affect the logical consequences of OWL 2 ontologies. In contrast, axiom annotations do affect structural equivalence: axioms will not be structurally equivalent if their axiom annotations are not structurally equivalent.

The following axiom contains a comment that explains the purpose of the axiom.

Functional-Style Syntax:
SubClassOf( Annotation(rdfs:comment "Male people are people." )a:Mana:Person )
RDF:
a:Manrdfs:subClassOfa:Person
_:xrdf:typeowl:Annotation .
_:xowl:annotatedSourcea:Man .
_:xowl:annotatedPropertyrdfs:subClassOf .
_:xowl:annotatedTargeta:Person .
_:xrdfs:comment "Male people are people." .

Since annotations affect structural equivalence between axioms, the previous axiom is not structurally equivalent with the following axiom, even though these two axioms are semantically equivalent.

Functional-Style Syntax:
SubClassOf(a:Mana:Person )
RDF:
a:Manrdfs:subClassOfa:Person .

9.1 Class Expression Axioms

OWL 2 provides axioms that allow relationships to be established between class expressions, as shown in Figure 13. TheSubClassOf axiom allows one to state that each instance of one class expression is also an instance of another class expression, and thus to construct a hierarchy of classes. TheEquivalentClasses axiom allows one to state that several class expressions are equivalent to each other. TheDisjointClasses axiom allows one to state that several class expressions are pairwise disjoint — that is, that they have no instances in common. Finally, theDisjointUnion class expression allows one to define a class as a disjoint union of several class expressions and thus to express covering constraints.

The Class Axioms of OWL 2
Figure 13. The Class Axioms of OWL 2

ClassAxiom :=SubClassOf |EquivalentClasses |DisjointClasses |DisjointUnion

9.1.1 Subclass Axioms

A subclass axiomSubClassOf( CE1 CE2 ) states that the class expressionCE1 is a subclass of the class expressionCE2. Roughly speaking, this states thatCE1 is more specific thanCE2. Subclass axioms are a fundamental type of axioms in OWL 2 and can be used to construct a class hierarchy. Other kinds of class expression axiom can be seen as syntactic shortcuts for one or more subclass axioms.

SubClassOf := 'SubClassOf' '('axiomAnnotationssubClassExpressionsuperClassExpression ')'
subClassExpression :=ClassExpression
superClassExpression :=ClassExpression

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SubClassOf(a:Babya:Child ) Each baby is a child.
SubClassOf(a:Childa:Person ) Each child is a person.
ClassAssertion(a:Babya:Stewie ) Stewie is a baby.
RDF:
a:Babyrdfs:subClassOfa:Child . Each baby is a child.
a:Childrdfs:subClassOfa:Person . Each child is a person.
a:Stewierdf:typea:Baby . Stewie is a baby.

Sincea:Stewie is an instance ofa:Baby, by the first subclass axioma:Stewie is classified as an instance ofa:Child as well. Similarly, by the second subclass axioma:Stewie is classified as an instance ofa:Person. This style of reasoning can be applied to any instance ofa:Baby and not justa:Stewie; therefore, one can conclude thata:Baby is a subclass ofa:Person. In other words, this ontology entails the following axiom:

Functional-Style Syntax:
SubClassOf(a:Babya:Person )
RDF:
a:Babyrdfs:subClassOfa:Person .

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SubClassOf(a:PersonWithChild
    ObjectSomeValuesFrom(a:hasChild ObjectUnionOf(a:Boya:Girl ) )
)
A person that has a child has either at least one boy or a girl.
SubClassOf(a:Boya:Child ) Each boy is a child.
SubClassOf(a:Girla:Child ) Each girl is a child.
SubClassOf( ObjectSomeValuesFrom(a:hasChilda:Child )a:Parent ) If some object has a child, then this object is a parent.
RDF:
a:PersonWithChildrdfs:subClassOf _:x .
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasChild .
_:xowl:someValuesFrom _:y .
_:yrdf:typeowl:Class .
_:yowl:unionOf (a:Boya:Girl ) .
A person that has a child has either at least one boy or a girl.
a:Boyrdfs:subClassOfa:Child . Each boy is a child.
a:Girlrdfs:subClassOfa:Child . Each girl is a child.
_:zrdf:typeowl:Restriction .
_:zowl:onPropertya:hasChild .
_:zowl:someValuesFroma:Child .
_:zrdfs:subClassOfa:Parent .
If some object has a child, then this object is a parent.

The first axiom states that each instance ofa:PersonWithChild is connected to an individual that is an instance of eithera:Boy ora:Girl. (Because of the open-world semantics of OWL 2, this does not mean that there must be only one such individual or that all such individuals must be instances of eithera:Boy or ofa:Girl.) Furthermore, each instance ofa:Boy ora:Girl is an instance ofa:Child. Finally, the last axiom says that all individuals that are connected bya:hasChild to an instance ofa:Child are instances ofa:Parent. Since this reasoning holds for each instance ofa:PersonWithChild, each such instance is also an instance ofa:Parent. In other words, this ontology entails the following axiom:

Functional-Style Syntax:
SubClassOf(a:PersonWithChilda:Parent )
RDF:
a:PersonWithChildrdfs:subClassOfa:Parent .

9.1.2 Equivalent Classes

An equivalent classes axiomEquivalentClasses( CE1 ... CEn ) states that all of the class expressionsCEi, 1 ≤ i ≤ n, are semantically equivalent to each other. This axiom allows one to use eachCEi as a synonym for eachCEj — that is, in any expression in the ontology containing such an axiom,CEi can be replaced withCEj without affecting the meaning of the ontology. An axiomEquivalentClasses( CE1 CE2 ) is equivalent to the following two axioms:

SubClassOf( CE1 CE2 )
SubClassOf( CE2 CE1 )

Axioms of the formEquivalentClasses( C CE ), whereC is a class andCE is a class expression, are often calleddefinitions, because they define the classC in terms of the class expressionCE.

EquivalentClasses := 'EquivalentClasses' '('axiomAnnotationsClassExpressionClassExpression {ClassExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
EquivalentClasses(a:Boy ObjectIntersectionOf(a:Childa:Man ) ) A boy is a male child.
ClassAssertion(a:Childa:Chris ) Chris is a child.
ClassAssertion(a:Mana:Chris ) Chris is a man.
ClassAssertion(a:Boya:Stewie ) Stewie is a boy.
RDF:
a:Boyowl:equivalentClass _:x .
_:xrdf:typeowl:Class .
_:xowl:intersectionOf (a:Childa:Man ) .
A boy is a male child.
a:Chrisrdf:typea:Child . Chris is a child.
a:Chrisrdf:typea:Man . Chris is a man.
a:Stewierdf:typea:Boy . Stewie is a boy.

The first axiom defines the classa:Boy as an intersection of the classesa:Child anda:Man; thus, the instances ofa:Boy are exactly those instances that are both an instance ofa:Child and an instance ofa:Man. Such a definition consists of two directions. The first direction implies that each instance ofa:Child anda:Man is an instance ofa:Boy; sincea:Chris satisfies these two conditions, it is classified as an instance ofa:Boy. The second direction implies that eacha:Boy is an instance ofa:Child and ofa:Man; thus,a:Stewie is classified as an instance ofa:Man and ofa:Boy.

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
EquivalentClasses(a:MongrelOwner ObjectSomeValuesFrom(a:hasPeta:Mongrel ) ) A mongrel owner has a pet that is a mongrel.
EquivalentClasses(a:DogOwner ObjectSomeValuesFrom(a:hasPeta:Dog ) ) A dog owner has a pet that is a dog.
SubClassOf(a:Mongrela:Dog ) Each mongrel is a dog.
ClassAssertion(a:MongrelOwnera:Peter ) Peter is a mongrel owner.
RDF:
a:MongrelOwnerowl:equivalentClass _:x .
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasPet .
_:xowl:someValuesFroma:Mongrel .
A mongrel owner has a pet that is a mongrel.
a:DogOwnerowl:equivalentClass _:y .
_:yrdf:typeowl:Restriction .
_:yowl:onPropertya:hasPet .
_:yowl:someValuesFroma:Dog .
A dog owner has a pet that is a dog.
a:Mongrelrdfs:subClassOfa:Dog . Each mongrel is a dog.
a:Peterrdf:typea:MongrelOwner . Peter is a mongrel owner.

By the first axiom, each instancex ofa:MongrelOwner must be connected viaa:hasPet to an instance ofa:Mongrel; by the third axiom, this individual is an instance ofa:Dog; thus, by the second axiom,x is an instance ofa:DogOwner. In other words, this ontology entails the following axiom:

Functional-Style Syntax:
SubClassOf(a:MongrelOwnera:DogOwner )
RDF:
a:MongrelOwnerrdfs:subClassOfa:DogOwner .

By the fourth axiom,a:Peter is then classified as an instance ofa:DogOwner.

9.1.3 Disjoint Classes

A disjoint classes axiomDisjointClasses( CE1 ... CEn ) states that all of the class expressionsCEi, 1 ≤ i ≤ n, are pairwise disjoint; that is, no individual can be at the same time an instance of bothCEi andCEj for i ≠ j. An axiomDisjointClasses( CE1 CE2 ) is equivalent to the following axiom:

SubClassOf( CE1 ObjectComplementOf( CE2 ) )

DisjointClasses := 'DisjointClasses' '('axiomAnnotationsClassExpressionClassExpression {ClassExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DisjointClasses(a:Boya:Girl ) Nothing can be both a boy and a girl.
ClassAssertion(a:Boya:Stewie ) Stewie is a boy.
RDF:
a:Boyowl:disjointWitha:Girl . Nothing can be both a boy and a girl.
a:Stewierdf:typea:Boy . Stewie is a boy.

The axioms in this ontology imply thata:Stewie can be classified as an instance of the following class expression:

Functional-Style Syntax:
ObjectComplementOf(a:Girl )
RDF:
_:xrdf:typeowl:Class .
_:xowl:complementOfa:Girl .

Furthermore, if the ontology were extended with the following assertion, the ontology would become inconsistent:

Functional-Style Syntax:
ClassAssertion(a:Girla:Stewie )
RDF:
a:Stewierdf:typea:Girl .

9.1.4 Disjoint Union of Class Expressions

A disjoint union axiomDisjointUnion( C CE1 ... CEn ) states that a classC is a disjoint union of the class expressionsCEi, 1 ≤ i ≤ n, all of which are pairwise disjoint. Such axioms are sometimes referred to ascovering axioms, as they state that the extensions of allCEi exactly cover the extension ofC. Thus, each instance ofC is an instance of exactly oneCEi, and each instance ofCEi is an instance ofC. Each such axiom can be seen as a syntactic shortcut for the following two axioms:

EquivalentClasses( C ObjectUnionOf( CE1 ... CEn ) )
DisjointClasses( CE1 ... CEn )

DisjointUnion := 'DisjointUnion' '('axiomAnnotationsClassdisjointClassExpressions ')'
disjointClassExpressions :=ClassExpressionClassExpression {ClassExpression }

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DisjointUnion(a:Childa:Boya:Girl ) Each child is either a boy or a girl, each boy is a child, each girl is a child, and nothing can be both a boy and a girl.
ClassAssertion(a:Childa:Stewie ) Stewie is a child.
ClassAssertion( ObjectComplementOf(a:Girl )a:Stewie ) Stewie is not a girl.
RDF:
a:Childowl:disjointUnionOf (a:Boya:Girl ) . Each child is either a boy or a girl, each boy is a child, each girl is a child, and nothing can be both a boy and a girl.
a:Stewierdf:typea:Child . Stewie is a child.
a:Stewierdf:type _:x .
_:xrdf:typeowl:Class .
_:xowl:complementOfa:Girl .
Stewie is not a girl.

By the first two axioms,a:Stewie is either an instance ofa:Boy ora:Girl. The last assertion eliminates the second possibility, soa:Stewie is classified as an instance ofa:Boy.

9.2 Object Property Axioms

OWL 2 provides axioms that can be used to characterize and establish relationships between object property expressions. For clarity, the structure of these axioms is shown in two separate figures, Figure 14 and Figure 15. TheSubObjectPropertyOf axiom allows one to state that the extension of one object property expression is included in the extension of another object property expression. TheEquivalentObjectProperties axiom allows one to state that the extensions of several object property expressions are the same. TheDisjointObjectProperties axiom allows one to state that the extensions of several object property expressions are pairwise disjoint — that is, that they do not share pairs of connected individuals. TheInverseObjectProperties axiom can be used to state that two object property expressions are the inverse of each other. TheObjectPropertyDomain andObjectPropertyRange axioms can be used to restrict the first and the second individual, respectively, connected by an object property expression to be instances of the specified class expression.

Object Property Axioms in OWL 2, Part I
Figure 14. Object Property Axioms in OWL 2, Part I

TheFunctionalObjectProperty axiom allows one to state that an object property expression is functional — that is, that each individual can have at most one outgoing connection of the specified object property expression. TheInverseFunctionalObjectProperty axiom allows one to state that an object property expression is inverse-functional — that is, that each individual can have at most one incoming connection of the specified object property expression. Finally, theReflexiveObjectProperty,IrreflexiveObjectProperty,SymmetricObjectProperty,AsymmetricObjectProperty, andTransitiveObjectProperty axioms allow one to state that an object property expression is reflexive, irreflexive, symmetric, asymmetric, or transitive, respectively.

Axioms Defining Characteristics of Object Properties in OWL 2, Part II
Figure 15. Axioms Defining Characteristics of Object Properties in OWL 2, Part II

ObjectPropertyAxiom :=
   SubObjectPropertyOf |EquivalentObjectProperties |
   DisjointObjectProperties |InverseObjectProperties |
   ObjectPropertyDomain |ObjectPropertyRange |
   FunctionalObjectProperty |InverseFunctionalObjectProperty |
   ReflexiveObjectProperty |IrreflexiveObjectProperty |
   SymmetricObjectProperty |AsymmetricObjectProperty |
   TransitiveObjectProperty

9.2.1 Object Subproperties

Object subproperty axioms are analogous to subclass axioms, and they come in two forms.

The basic form isSubObjectPropertyOf( OPE1 OPE2 ). This axiom states that the object property expressionOPE1 is a subproperty of the object property expressionOPE2 — that is, if an individualx is connected byOPE1 to an individualy, thenx is also connected byOPE2 toy.

The more complex form isSubObjectPropertyOf( ObjectPropertyChain( OPE1 ... OPEn ) OPE ). This axiom states that, if an individualx is connected by a sequence of object property expressionsOPE1, ...,OPEn with an individualy, thenx is also connected withy by the object property expressionOPE. Such axioms are also known ascomplex role inclusions [SROIQ].

SubObjectPropertyOf := 'SubObjectPropertyOf' '('axiomAnnotationssubObjectPropertyExpressionsuperObjectPropertyExpression ')'
subObjectPropertyExpression :=ObjectPropertyExpression |propertyExpressionChain
propertyExpressionChain := 'ObjectPropertyChain' '('ObjectPropertyExpressionObjectPropertyExpression {ObjectPropertyExpression } ')'
superObjectPropertyExpression :=ObjectPropertyExpression

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SubObjectPropertyOf(a:hasDoga:hasPet ) Having a dog implies having a pet.
ObjectPropertyAssertion(a:hasDoga:Petera:Brian ) Brian is a dog of Peter.
RDF:
a:hasDogrdfs:subPropertyOfa:hasPet . Having a dog implies having a pet.
a:Petera:hasDoga:Brian . Brian is a dog of Peter.

Sincea:hasDog is a subproperty ofa:hasPet, each tuple of individuals connected by the former property expression is also connected by the latter property expression. Therefore, this ontology entails thata:Peter is connected toa:Brian bya:hasPet; that is, the ontology entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasPeta:Petera:Brian )
RDF:
a:Petera:hasPeta:Brian .

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SubObjectPropertyOf( ObjectPropertyChain(a:hasMothera:hasSister )a:hasAunt ) The sister of someone's mother is that person's aunt.
ObjectPropertyAssertion(a:hasMothera:Stewiea:Lois ) Lois is the mother of Stewie.
ObjectPropertyAssertion(a:hasSistera:Loisa:Carol ) Carol is a sister of Lois.
RDF:
a:hasAuntowl:propertyChainAxiom (a:hasMothera:hasSister ) . The sister of someone's mother is that person's aunt.
a:Stewiea:hasMothera:Lois . Lois is the mother of Stewie.
a:Loisa:hasSistera:Carol . Carol is a sister of Lois.

The axioms in this ontology imply thata:Stewie is connected bya:hasAunt witha:Carol; that is, the ontology entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasAunta:Stewiea:Carol )
RDF:
a:Stewiea:hasAunta:Carol .

9.2.2 Equivalent Object Properties

An equivalent object properties axiomEquivalentObjectProperties( OPE1 ... OPEn ) states that all of the object property expressionsOPEi, 1 ≤ i ≤ n, are semantically equivalent to each other. This axiom allows one to use eachOPEi as a synonym for eachOPEj — that is, in any expression in the ontology containing such an axiom,OPEi can be replaced withOPEj without affecting the meaning of the ontology. The axiomEquivalentObjectProperties( OPE1 OPE2 ) is equivalent to the following two axioms:

SubObjectPropertyOf( OPE1 OPE2 )
SubObjectPropertyOf( OPE2 OPE1 )

EquivalentObjectProperties := 'EquivalentObjectProperties' '('axiomAnnotationsObjectPropertyExpressionObjectPropertyExpression {ObjectPropertyExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
EquivalentObjectProperties(a:hasBrothera:hasMaleSibling ) Having a brother is the same as having a male sibling.
ObjectPropertyAssertion(a:hasBrothera:Chrisa:Stewie ) Stewie is a brother of Chris.
ObjectPropertyAssertion(a:hasMaleSiblinga:Stewiea:Chris ) Chris is a male sibling of Stewie.
RDF:
a:hasBrotherowl:equivalentPropertya:hasMaleSibling . Having a brother is the same as having a male sibling.
a:Chrisa:hasBrothera:Stewie . Stewie is a brother of Chris.
a:Stewiea:hasMaleSiblinga:Chris . Chris is a male sibling of Stewie.

Sincea:hasBrother anda:hasMaleSibling are equivalent properties, this ontology entails thata:Chris is connected bya:hasMaleSibling witha:Stewie — that is, it entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasMaleSiblinga:Chrisa:Stewie )
RDF:
a:Chrisa:hasMaleSiblinga:Stewie .

Furthermore, the ontology also entails that thata:Stewie is connected bya:hasBrother witha:Chris — that is, it entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasBrothera:Stewiea:Chris )
RDF:
a:Stewiea:hasBrothera:Chris .

9.2.3 Disjoint Object Properties

A disjoint object properties axiomDisjointObjectProperties( OPE1 ... OPEn ) states that all of the object property expressionsOPEi, 1 ≤ i ≤ n, are pairwise disjoint; that is, no individualx can be connected to an individualy by bothOPEi andOPEj for i ≠ j.

DisjointObjectProperties := 'DisjointObjectProperties' '('axiomAnnotationsObjectPropertyExpressionObjectPropertyExpression {ObjectPropertyExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DisjointObjectProperties(a:hasFathera:hasMother ) Fatherhood is disjoint with motherhood.
ObjectPropertyAssertion(a:hasFathera:Stewiea:Peter ) Peter is Stewie's father.
ObjectPropertyAssertion(a:hasMothera:Stewiea:Lois ) Lois is the mother of Stewie.
RDF:
a:hasFatherowl:propertyDisjointWitha:hasMother . Fatherhood is disjoint with motherhood.
a:Stewiea:hasFathera:Peter . Peter is Stewie's father.
a:Stewiea:hasMothera:Lois . Lois is the mother of Stewie.

In this ontology, the disjointness axiom is satisfied. If, however, one were to add the following assertion, the disjointness axiom would be invalidated and the ontology would become inconsistent:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasMothera:Stewiea:Peter )
RDF:
a:Stewiea:hasMothera:Peter .

9.2.4 Inverse Object Properties

An inverse object properties axiomInverseObjectProperties( OPE1 OPE2 ) states that the object property expressionOPE1 is an inverse of the object property expressionOPE2. Thus, if an individualx is connected byOPE1 to an individualy, theny is also connected byOPE2 tox, and vice versa. Each such axiom can be seen as a syntactic shortcut for the following axiom:

EquivalentObjectProperties( OPE1 ObjectInverseOf( OPE2 ) )

InverseObjectProperties := 'InverseObjectProperties' '('axiomAnnotationsObjectPropertyExpressionObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
InverseObjectProperties(a:hasFathera:fatherOf ) Having a father is the opposite of being a father of someone.
ObjectPropertyAssertion(a:hasFathera:Stewiea:Peter ) Peter is Stewie's father.
ObjectPropertyAssertion(a:fatherOfa:Petera:Chris ) Peter is Chris's father.
RDF:
a:hasFatherowl:inverseOfa:fatherOf . Having a father is the opposite of being a father of someone.
a:Stewiea:hasFathera:Peter . Peter is Stewie's father.
a:Petera:fatherOfa:Chris . Peter is Chris's father.

This ontology entails thata:Peter is connected bya:fatherOf witha:Stewie — that is, it entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie )
RDF:
a:Petera:fatherOfa:Stewie .

Furthermore, the ontology also entails thata:Chris is connected bya:hasFather witha:Peter — that is, it entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasFathera:Chrisa:Peter )
RDF:
a:Chrisa:hasFathera:Peter .

9.2.5 Object Property Domain

An object property domain axiomObjectPropertyDomain( OPE CE ) states that the domain of the object property expressionOPE is the class expressionCE — that is, if an individualx is connected byOPE with some other individual, thenx is an instance ofCE. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf( ObjectSomeValuesFrom( OPEowl:Thing ) CE )

ObjectPropertyDomain := 'ObjectPropertyDomain' '('axiomAnnotationsObjectPropertyExpressionClassExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyDomain(a:hasDoga:Person ) Only people can own dogs.
ObjectPropertyAssertion(a:hasDoga:Petera:Brian ) Brian is a dog of Peter.
RDF:
a:hasDogrdfs:domaina:Person . Only people can own dogs.
a:Petera:hasDoga:Brian . Brian is a dog of Peter.

By the first axiom, each individual that has an outgoinga:hasDog connection must be an instance ofa:Person. Therefore,a:Peter can be classified as an instance ofa:Person; that is, this ontology entails the following assertion:

Functional-Style Syntax:
ClassAssertion(a:Persona:Peter )
RDF:
a:Peterrdf:typea:Person .

Domain axioms in OWL 2 have a standard first-order semantics that is somewhat different from the semantics of such axioms in databases and object-oriented systems, where such axioms are interpreted as checks. The domain axiom from the example ontology would in such systems be interpreted as aconstraint saying thata:hasDog can point only from individuals that are known to be instances ofa:Person; furthermore, since the example ontology does not explicitly state thata:Peter is an instance ofa:Person, one might expect the domain constraint to be invalidated. This, however, is not the case in OWL 2: as shown in the previous paragraph, the missing type isinferred from the domain constraint.

9.2.6 Object Property Range

An object property range axiomObjectPropertyRange( OPE CE ) states that the range of the object property expressionOPE is the class expressionCE — that is, if some individual is connected byOPE with an individualx, thenx is an instance ofCE. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf(owl:Thing ObjectAllValuesFrom( OPE CE ) )

ObjectPropertyRange := 'ObjectPropertyRange' '('axiomAnnotationsObjectPropertyExpressionClassExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyRange(a:hasDoga:Dog ) The range of thea:hasDog property is the classa:Dog.
ObjectPropertyAssertion(a:hasDoga:Petera:Brian ) Brian is a dog of Peter.
RDF:
a:hasDogrdfs:rangea:Dog . The range of thea:hasDog property is the classa:Dog.
a:Petera:hasDoga:Brian . Brian is a dog of Peter.

By the first axiom, each individual that has an incominga:hasDog connection must be an instance ofa:Dog. Therefore,a:Brian can be classified as an instance ofa:Dog; that is, this ontology entails the following assertion:

Functional-Style Syntax:
ClassAssertion(a:Doga:Brian )
RDF:
a:Brianrdf:typea:Dog .

Range axioms in OWL 2 have a standard first-order semantics that is somewhat different from the semantics of such axioms in databases and object-oriented systems, where such axioms are interpreted as checks. The range axiom from the example ontology would in such systems be interpreted as aconstraint saying thata:hasDog can point only to individuals that are known to be instances ofa:Dog; furthermore, since the example ontology does not explicitly state thata:Brian is an instance ofa:Dog, one might expect the range constraint to be invalidated. This, however, is not the case in OWL 2: as shown in the previous paragraph, the missing type isinferred from the range constraint.

9.2.7 Functional Object Properties

An object property functionality axiomFunctionalObjectProperty( OPE ) states that the object property expressionOPE is functional — that is, for each individualx, there can be at most one distinct individualy such thatx is connected byOPE toy. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf(owl:Thing ObjectMaxCardinality( 1 OPE ) )

FunctionalObjectProperty := 'FunctionalObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
FunctionalObjectProperty(a:hasFather ) Each object can have at most one father.
ObjectPropertyAssertion(a:hasFathera:Stewiea:Peter ) Peter is Stewie's father.
ObjectPropertyAssertion(a:hasFathera:Stewiea:Peter_Griffin ) Peter Griffin is Stewie's father.
RDF:
a:hasFatherrdf:typeowl:FunctionalProperty . Each object can have at most one father.
a:Stewiea:hasFathera:Peter . Peter is Stewie's father.
a:Stewiea:hasFathera:Peter_Griffin . Peter Griffin is Stewie's father.

By the first axiom,a:hasFather can point froma:Stewie to at most one distinct individual, soa:Peter anda:Peter_Griffin must be equal; that is, this ontology entails the following assertion:

Functional-Style Syntax:
SameIndividual(a:Petera:Peter_Griffin )
RDF:
a:Peter_Griffinowl:sameAsa:Peter .

One might expect the previous ontology to be inconsistent, since thea:hasFather property points to two different values fora:Stewie. OWL 2, however, does not make the unique name assumption, soa:Peter anda:Peter_Griffin are not necessarily distinct individuals. If the ontology were extended with the following assertion, then it would indeed become inconsistent:

Functional-Style Syntax:
DifferentIndividuals(a:Petera:Peter_Griffin )
RDF:
a:Peterowl:differentFroma:Peter_Griffin .

9.2.8 Inverse-Functional Object Properties

An object property inverse functionality axiomInverseFunctionalObjectProperty( OPE ) states that the object property expressionOPE is inverse-functional — that is, for each individualx, there can be at most one individualy such thaty is connected byOPE withx. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf(owl:Thing ObjectMaxCardinality( 1 ObjectInverseOf( OPE ) ) )

InverseFunctionalObjectProperty := 'InverseFunctionalObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
InverseFunctionalObjectProperty(a:fatherOf ) Each object can have at most one father.
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie ) Peter is Stewie's father.
ObjectPropertyAssertion(a:fatherOfa:Peter_Griffina:Stewie ) Peter Griffin is Stewie's father.
RDF:
a:fatherOfrdf:typeowl:InverseFunctionalProperty . Each object can have at most one father.
a:Petera:fatherOfa:Stewie . Peter is Stewie's father.
a:Peter_Griffina:fatherOfa:Stewie . Peter Griffin is Stewie's father.

By the first axiom, at most one distinct individual can point bya:fatherOf toa:Stewie, soa:Peter anda:Peter_Griffin must be equal; that is, this ontology entails the following assertion:

Functional-Style Syntax:
SameIndividual(a:Petera:Peter_Griffin )
RDF:
a:Peterowl:sameAsa:Peter_Griffin .

One might expect the previous ontology to be inconsistent, since there are two individuals thata:Stewie is connected to bya:fatherOf. OWL 2, however, does not make the unique name assumption, soa:Peter anda:Peter_Griffin are not necessarily distinct individuals. If the ontology were extended with the following assertion, then it would indeed become inconsistent:

Functional-Style Syntax:
DifferentIndividuals(a:Petera:Peter_Griffin )
RDF:
a:Peterowl:differentFroma:Peter_Griffin .

9.2.9 Reflexive Object Properties

An object property reflexivity axiomReflexiveObjectProperty( OPE ) states that the object property expressionOPE is reflexive — that is, each individual is connected byOPE to itself. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf(owl:Thing ObjectHasSelf( OPE ) )

ReflexiveObjectProperty := 'ReflexiveObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ReflexiveObjectProperty(a:knows ) Everybody knows themselves.
ClassAssertion(a:Persona:Peter ) Peter is a person.
RDF:
a:knowsrdf:typeowl:ReflexiveProperty . Everybody knows themselves.
a:Peterrdf:typea:Person . Peter is a person.

By the first axiom,a:Peter must be connected bya:knows to itself; that is, this ontology entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:knowsa:Petera:Peter )
RDF:
a:Petera:knowsa:Peter .

9.2.10 Irreflexive Object Properties

An object property irreflexivity axiomIrreflexiveObjectProperty( OPE ) states that the object property expressionOPE is irreflexive — that is, no individual is connected byOPE to itself. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf( ObjectHasSelf( OPE )owl:Nothing )

IrreflexiveObjectProperty := 'IrreflexiveObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
IrreflexiveObjectProperty(a:marriedTo ) Nobody can be married to themselves.
RDF:
a:marriedTordf:typeowl:IrreflexiveProperty . Nobody can be married to themselves.

If this ontology were extended with the following assertion, the irreflexivity axiom would be contradicted and the ontology would become inconsistent:

Functional-Style Syntax:
ObjectPropertyAssertion(a:marriedToa:Petera:Peter )
RDF:
a:Petera:marriedToa:Peter .

9.2.11 Symmetric Object Properties

An object property symmetry axiomSymmetricObjectProperty( OPE ) states that the object property expressionOPE is symmetric — that is, if an individualx is connected byOPE to an individualy, theny is also connected byOPE tox. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubObjectPropertyOf( OPE ObjectInverseOf( OPE ) )

SymmetricObjectProperty := 'SymmetricObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SymmetricObjectProperty(a:friend ) If x is a friend of y, then y is a friend of x.
ObjectPropertyAssertion(a:frienda:Petera:Brian ) Brian is a friend of Peter.
RDF:
a:friendrdf:typeowl:SymmetricProperty . If x is a friend of y, then y is a friend of x.
a:Petera:frienda:Brian . Brian is a friend of Peter.

Sincea:friend is symmetric,a:Peter must be connected bya:friend toa:Brian; that is, this ontology entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:frienda:Briana:Peter )
RDF:
a:Briana:frienda:Peter .

9.2.12 Asymmetric Object Properties

An object property asymmetry axiomAsymmetricObjectProperty( OPE ) states that the object property expressionOPE is asymmetric — that is, if an individualx is connected byOPE to an individualy, theny cannot be connected byOPE tox.

AsymmetricObjectProperty := 'AsymmetricObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
AsymmetricObjectProperty(a:parentOf ) If x is a parent of y, then y is not a parent of x.
ObjectPropertyAssertion(a:parentOfa:Petera:Stewie ) Peter is a parent of Stewie.
RDF:
a:parentOfrdf:typerdf:AsymmetricProperty . If x is a parent of y, then y is not a parent of x.
a:Petera:parentOfa:Stewie . Peter is a parent of Stewie.

If this ontology were extended with the following assertion, the asymmetry axiom would be invalidated and the ontology would become inconsistent:

Functional-Style Syntax:
ObjectPropertyAssertion(a:parentOfa:Stewiea:Peter )
RDF:
a:Stewiea:parentOfa:Peter .

9.2.13 Transitive Object Properties

An object property transitivity axiomTransitiveObjectProperty( OPE ) states that the object property expressionOPE is transitive — that is, if an individualx is connected byOPE to an individualy that is connected byOPE to an individualz, thenx is also connected byOPE toz. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubObjectPropertyOf( ObjectPropertyChain( OPE OPE ) OPE )

TransitiveObjectProperty := 'TransitiveObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
TransitiveObjectProperty(a:ancestorOf ) If x is an ancestor of y and y is an ancestor of z, then x is an ancestor of z.
ObjectPropertyAssertion(a:ancestorOfa:Cartera:Lois ) Carter is an ancestor of Lois.
ObjectPropertyAssertion(a:ancestorOfa:Loisa:Meg ) Lois is an ancestor of Meg.
RDF:
a:ancestorOfrdf:typeowl:TransitiveProperty . If x is an ancestor of y and y is an ancestor of z, then x is an ancestor of z.
a:Cartera:ancestorOfa:Lois . Carter is an ancestor of Lois.
a:Loisa:ancestorOfa:Meg . Lois is an ancestor of Meg.

Sincea:ancestorOf is transitive,a:Carter must be connected bya:ancestorOf toa:Meg — that is, this ontology entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:ancestorOfa:Cartera:Meg )
RDF:
a:Cartera:ancestorOfa:Meg .

9.3 Data Property Axioms

OWL 2 also provides for data property axioms. Their structure is similar to object property axioms, as shown in Figure 16. TheSubDataPropertyOf axiom allows one to state that the extension of one data property expression is included in the extension of another data property expression. TheEquivalentDataProperties allows one to state that several data property expressions have the same extension. TheDisjointDataProperties axiom allows one to state that the extensions of several data property expressions are disjoint with each other — that is, they do not share individual–literal pairs. TheDataPropertyDomain axiom can be used to restrict individuals connected by a property expression to be instances of the specified class; similarly, theDataPropertyRange axiom can be used to restrict the literals pointed to by a property expression to be in the specified unary data range. Finally, theFunctionalDataProperty axiom allows one to state that a data property expression is functional — that is, that each individual can have at most one outgoing connection of the specified data property expression.

Data Property Axioms of OWL 2
Figure 16. Data Property Axioms of OWL 2

DataPropertyAxiom :=
   SubDataPropertyOf |EquivalentDataProperties |DisjointDataProperties |
   DataPropertyDomain |DataPropertyRange |FunctionalDataProperty

9.3.1 Data Subproperties

A data subproperty axiomSubDataPropertyOf( DPE1 DPE2 ) states that the data property expressionDPE1 is a subproperty of the data property expressionDPE2 — that is, if an individualx is connected byDPE1 to a literaly, thenx is connected byDPE2 toy as well.

SubDataPropertyOf := 'SubDataPropertyOf' '('axiomAnnotationssubDataPropertyExpressionsuperDataPropertyExpression ')'
subDataPropertyExpression :=DataPropertyExpression
superDataPropertyExpression :=DataPropertyExpression

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SubDataPropertyOf(a:hasLastNamea:hasName ) A last name of someone is his/her name as well.
DataPropertyAssertion(a:hasLastNamea:Peter "Griffin" )Peter's last name is"Griffin".
RDF:
a:hasLastNamerdfs:subPropertyOfa:hasName . A last name of someone is his/her name as well.
a:Petera:hasLastName "Griffin" .Peter's last name is"Griffin".

Sincea:hasLastName is a subproperty ofa:hasName, each individual connected by the former property to a literal is also connected by the latter property to the same literal. Therefore, this ontology entails thata:Peter is connected to"Griffin" througha:hasName; that is, the ontology entails the following assertion:

Functional-Style Syntax:
DataPropertyAssertion(a:hasNamea:Peter "Griffin" )
RDF:
a:Petera:hasName "Griffin" .

9.3.2 Equivalent Data Properties

An equivalent data properties axiomEquivalentDataProperties( DPE1 ... DPEn ) states that all the data property expressionsDPEi, 1 ≤ i ≤ n, are semantically equivalent to each other. This axiom allows one to use eachDPEi as a synonym for eachDPEj — that is, in any expression in the ontology containing such an axiom,DPEi can be replaced withDPEj without affecting the meaning of the ontology. The axiomEquivalentDataProperties( DPE1 DPE2 ) can be seen as a syntactic shortcut for the following axiom:

SubDataPropertyOf( DPE1 DPE2 )
SubDataPropertyOf( DPE2 DPE1 )

EquivalentDataProperties := 'EquivalentDataProperties' '('axiomAnnotationsDataPropertyExpressionDataPropertyExpression {DataPropertyExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
EquivalentDataProperties(a:hasNamea:seLlama )a:hasName anda:seLlama (in Spanish) are synonyms.
DataPropertyAssertion(a:hasNamea:Meg "Meg Griffin" )Meg's name is"Meg Griffin".
DataPropertyAssertion(a:seLlamaa:Meg "Megan Griffin" )Meg's name is"Megan Griffin".
RDF:
a:hasNameowl:equivalentPropertya:seLlama .a:hasName anda:seLlama (in Spanish) are synonyms.
a:Mega:hasName "Meg Griffin" .Meg's name is"Meg Griffin".
a:Mega:seLlama "Megan Griffin" .Meg's name is"Megan Griffin".

Sincea:hasName anda:seLlama are equivalent properties, this ontology entails thata:Meg is connected bya:seLlama with"Meg Griffin" — that is, it entails the following assertion:

Functional-Style Syntax:
DataPropertyAssertion(a:seLlamaa:Meg "Meg Griffin" )
RDF:
a:Mega:seLlama "Meg Griffin" .

Furthermore, the ontology also entails thata:Meg is also connected bya:hasName with"Megan Griffin" — that is, it entails the following assertion:

Functional-Style Syntax:
DataPropertyAssertion(a:hasNamea:Meg "Megan Griffin" )
RDF:
a:Mega:hasName "Megan Griffin" .

9.3.3 Disjoint Data Properties

A disjoint data properties axiomDisjointDataProperties( DPE1 ... DPEn ) states that all of the data property expressionsDPEi, 1 ≤ i ≤ n, are pairwise disjoint; that is, no individualx can be connected to a literaly by bothDPEi andDPEj for i ≠ j.

DisjointDataProperties := 'DisjointDataProperties' '('axiomAnnotationsDataPropertyExpressionDataPropertyExpression {DataPropertyExpression } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DisjointDataProperties(a:hasNamea:hasAddress ) Someone's name must be different from his address.
DataPropertyAssertion(a:hasNamea:Peter "Peter Griffin" )Peter's name is"Peter Griffin".
DataPropertyAssertion(a:hasAddressa:Peter "Quahog, Rhode Island" )Peter's address is"Quahog, Rhode Island".
RDF:
a:hasNameowl:propertyDisjointWitha:hasAddress . Someone's name must be different from his address.
a:Petera:hasName "Peter Griffin" .Peter's name is"Peter Griffin".
a:Petera:hasAddress "Quahog, Rhode Island" .Peter's address is"Quahog, Rhode Island".

In this ontology, the disjointness axiom is satisfied. If, however, one were to add the following assertion, the disjointness axiom would be invalidated and the ontology would become inconsistent:

Functional-Style Syntax:
DataPropertyAssertion(a:hasAddressa:Peter "Peter Griffin" )
RDF:
a:Petera:hasAddress "Peter Griffin" .

9.3.4 Data Property Domain

A data property domain axiomDataPropertyDomain( DPE CE ) states that the domain of the data property expressionDPE is the class expressionCE — that is, if an individualx is connected byDPE with some literal, thenx is an instance ofCE. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf( DataSomeValuesFrom( DPErdfs:Literal) CE )

DataPropertyDomain := 'DataPropertyDomain' '('axiomAnnotationsDataPropertyExpressionClassExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DataPropertyDomain(a:hasNamea:Person ) Only people can have names.
DataPropertyAssertion(a:hasNamea:Peter "Peter Griffin" )Peter's name is"Peter Griffin".
RDF:
a:hasNamerdfs:domaina:Person . Only people can have names.
a:Petera:hasName "Peter Griffin" .Peter's name is"Peter Griffin".

By the first axiom, each individual that has an outgoinga:hasName connection must be an instance ofa:Person. Therefore,a:Peter can be classified as an instance ofa:Person — that is, this ontology entails the following assertion:

Functional-Style Syntax:
ClassAssertion(a:Persona:Peter )
RDF:
a:Peterrdf:typea:Person .

Domain axioms in OWL 2 have a standard first-order semantics that is somewhat different from the semantics of such axioms in databases and object-oriented systems, where such axioms are interpreted as checks. Thus, the domain axiom from the example ontology would in such systems be interpreted as aconstraint saying thata:hasName can point only from individuals that are known to be instances ofa:Person; furthermore, since the example ontology does not explicitly state thata:Peter is an instance ofa:Person, one might expect the domain constraint to be invalidated. This, however, is not the case in OWL 2: as shown in the previous paragraph, the missing type isinferred from the domain constraint.

9.3.5 Data Property Range

A data property range axiomDataPropertyRange( DPE DR ) states that the range of the data property expressionDPE is the data rangeDR — that is, if some individual is connected byDPE with a literalx, thenx is inDR. The arity ofDRMUST be one. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf(owl:Thing DataAllValuesFrom( DPE DR ) )

DataPropertyRange := 'DataPropertyRange' '('axiomAnnotationsDataPropertyExpressionDataRange ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DataPropertyRange(a:hasNamexsd:string ) The range of thea:hasName property isxsd:string.
DataPropertyAssertion(a:hasNamea:Peter "Peter Griffin" )Peter's name is"Peter Griffin".
RDF:
a:hasNamerdfs:rangexsd:string . The range of thea:hasName property isxsd:string.
a:Petera:hasName "Peter Griffin" .Peter's name is"Peter Griffin".

By the first axiom, each literal that has an incominga:hasName link must be inxsd:string. In the example ontology, this axiom is satisfied. If, however, the ontology were extended with the following assertion, then the range axiom would imply that the literal"42"^^xsd:integer is inxsd:string, which is a contradiction and the ontology would become inconsistent:

Functional-Style Syntax:
DataPropertyAssertion(a:hasNamea:Peter "42"^^xsd:integer )
RDF:
a:Petera:hasName "42"^^xsd:integer .

9.3.6 Functional Data Properties

A data property functionality axiomFunctionalDataProperty( DPE ) states that the data property expressionDPE is functional — that is, for each individualx, there can be at most one distinct literaly such thatx is connected byDPE withy. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf(owl:Thing DataMaxCardinality( 1 DPE ) )

FunctionalDataProperty := 'FunctionalDataProperty' '('axiomAnnotationsDataPropertyExpression ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
FunctionalDataProperty(a:hasAge ) Each object can have at most one age.
DataPropertyAssertion(a:hasAgea:Meg "17"^^xsd:integer ) Meg is seventeen years old.
RDF:
a:hasAgerdf:typeowl:FunctionalProperty . Each object can have at most one age.
a:Mega:hasAge "17"^^xsd:integer . Meg is seventeen years old.

By the first axiom,a:hasAge can point froma:Meg to at most one distinct literal. In this example ontology, this axiom is satisfied. If, however, the ontology were extended with the following assertion, the semantics of functionality axioms would imply that"15"^^xsd:integer is equal to"17"^^xsd:integer, which is a contradiction and the ontology would become inconsistent:

Functional-Style Syntax:
DataPropertyAssertion(a:hasAgea:Meg "15"^^xsd:integer )
RDF:
a:Mega:hasAge "15"^^xsd:integer .

Note that some datatypes from the OWL 2 datatype map distinguish between equal and identical data values, and that the semantics of cardinality restrictions and functional data properties in OWL 2 is defined with respect to the latter. Consider the following example:

Functional-Style Syntax:
FunctionalDataProperty(a:hasAge ) Each object can have at most one age.
DataPropertyAssertion(a:hasAgea:Meg "17"^^xsd:integer ) Meg is seventeen years old.
DataPropertyAssertion(a:hasAgea:Meg "17.0"^^xsd:decimal ) Meg is seventeen years old.
DataPropertyAssertion(a:hasAgea:Meg "+17"^^xsd:int ) Meg is seventeen years old.
RDF:
a:hasAgerdf:typeowl:FunctionalProperty . Each object can have at most one age.
a:Mega:hasAge "17"^^xsd:integer . Meg is seventeen years old.
a:Mega:hasAge "17.0"^^xsd:decimal . Meg is seventeen years old.
a:Mega:hasAge "+17"^^xsd:int . Meg is seventeen years old.

Literals"17"^^xsd:integer,"17.0"^^xsd:decimal, and"+17"^^xsd:int are all mapped to the identical data value — the integer 17. Therefore, the individuala:Meg is connected by thea:hasAge property to one distinct data value, so this ontology is satisfiable.

In contrast, consider the following ontology:

Functional-Style Syntax:
FunctionalDataProperty(a:numberOfChildren ) An individual can have at most one value fora:numberOfChildren.
DataPropertyAssertion(a:numberOfChildrena:Meg "+0"^^xsd:float ) The value ofa:numberOfChildren fora:Meg is+0.
DataPropertyAssertion(a:numberOfChildrena:Meg "-0"^^xsd:float ) The value ofa:numberOfChildren fora:Meg is-0.
RDF:
a:numberOfChildrenrdf:typeowl:FunctionalProperty . An individual can have at most one value fora:numberOfChildren.
a:Mega:numberOfChildren "+0"^^xsd:float . The value ofa:numberOfChildren fora:Meg is+0.
a:Mega:numberOfChildren "-0"^^xsd:float . The value ofa:numberOfChildren fora:Meg is-0.

Literals"+0"^^xsd:float and"-0"^^xsd:float are mapped to distinct data values+0 and-0 in the value space ofxsf:float; these data values are equal, but not identical. Therefore, the individuala:Meg is connected by thea:numberOfChildren property to two distinct data values, which violates the functionality restriction ona:numberOfChildren and makes the ontology unsatisfiable.

9.4 Datatype Definitions

A datatype definitionDatatypeDefinition( DT DR ) defines a new datatypeDT as being semantically equivalent to the data rangeDR; the latterMUST be a unary data range. This axiom allows one to use thedefined datatypeDT as a synonym forDR — that is, in any expression in the ontology containing such an axiom,DT can be replaced withDR without affecting the meaning of the ontology. The structure of such axiom is shown in Figure 17.

Datatype Definitions in OWL 2
Figure 17. Datatype Definitions in OWL 2

DatatypeDefinition := 'DatatypeDefinition' '('axiomAnnotationsDatatypeDataRange ')'

The datatypes defined by datatype definition axioms support no facets so theyMUST NOT occur in datatype restrictions. Furthermore, such datatypes have empty lexical spaces and therefore theyMUST NOT occur in literals. Finally, datatype definitions are not substitutes for declarations: if an OWL 2 ontology is to satisfy the typing constraints of OWL 2 DL fromSection 5.8.1, itMUST explicitly declare all datatypes that occur in datatype definitions.

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
Declaration( Datatype(a:SSN ) )a:SSN is a datatype.
DatatypeDefinition(
   a:SSN
    DatatypeRestriction(xsd:stringxsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" )
)
A social security number is a string that matches the given regular expression.
DataPropertyRange(a:hasSSNa:SSN ) The range of thea:hasSSN property isa:SSN.
RDF:
a:SSNrdf:typerdfs:Datatype .a:SSN is a datatype.
a:SSNowl:equivalentClass _:x .
_:xrdf:typerdfs:Datatype .
_:xowl:onDatatypexsd:string .
_:x owl:withRestrictions ( _:y ) .
_:yxsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" .
A social security number is a string that matches the given regular expression.
a:hasSSNrdfs:rangea:SSN . The range of thea:hasSSN property isa:SSN.

The second axiom definesa:SSN as an abbreviation for a datatype restriction onxsd:string. In order to satisfy the typing restrictions fromSection 5.8.1, the first axiom explicitly declaresa:SSN to be a datatype. The datatypea:SSN can be used just like any other datatype; for example, it is used in the third axiom to define the range of thea:hasSSN property. The only restriction is thata:SSN supports no facets and therefore cannot be used in datatype restrictions, and that there can be no literals of datatypea:SSN.

9.5 Keys

A key axiomHasKey( CE ( OPE1 ... OPEm ) ( DPE1 ... DPEn ) ) states that each (named) instance of the class expressionCE is uniquely identified by the object property expressionsOPEi and/or the data property experssionsDPEj — that is, no two distinct (named) instances ofCE can coincide on the values of all object property expressionsOPEi and all data property expressionsDPEj. In each such axiom in an OWL ontology,m orn (or both)MUST be larger than zero. A key axiom of the formHasKey(owl:Thing ( OPE ) () ) is similar to the axiomInverseFunctionalObjectProperty( OPE ), the main differences being that the former axiom is applicable only to individuals that are explicitly named in an ontology, while the latter axiom is also applicable to anonymous individuals and individuals whose existence is implied by existential quantification. The structure of such axiom is shown in Figure 18.

Key Axioms in OWL 2
Figure 18. Key Axioms in OWL 2

HasKey := 'HasKey' '('axiomAnnotationsClassExpression '(' {ObjectPropertyExpression } ')' '(' {DataPropertyExpression } ')' ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
HasKey(owl:Thing () (a:hasSSN ) ) Each object is uniquely identified by its social security number.
DataPropertyAssertion(a:hasSSNa:Peter "123-45-6789" )Peter's social security number is"123-45-6789".
DataPropertyAssertion(a:hasSSNa:Peter_Griffin "123-45-6789" )Peter Griffin's social security number is"123-45-6789".
RDF:
owl:Thingowl:hasKey (a:hasSSN ) . Each object is uniquely identified by its social security number.
a:Petera:hasSSN "123-45-6789" .Peter's social security number is"123-45-6789".
a:Peter_Griffina:hasSSN "123-45-6789" .Peter Griffin's social security number is"123-45-6789".

The first axiom makesa:hasSSN the key for instances of theowl:Thing class; thus, only one individual can have a particular value fora:hasSSN. Since the values ofa:hasSSN are the same for the individualsa:Peter anda:Peter_Griffin, these two individuals are equal — that is, this ontology entails the following assertion:

Functional-Style Syntax:
SameIndividual(a:Petera:Peter_Griffin )
RDF:
a:Peterowl:sameAsa:Peter_Griffin .

One might expect the previous ontology to be inconsistent, since thea:hasSSN has the same value for two individualsa:Peter anda:Peter_Griffin. However, OWL 2 does not make the unique name assumption, soa:Peter anda:Peter_Griffin are not necessarily distinct individuals. If the ontology were extended with the following assertion, then it would indeed become inconsistent:

Functional-Style Syntax:
DifferentIndividuals(a:Petera:Peter_Griffin )
RDF:
a:Peterowl:differentFroma:Peter_Griffin .

The effect of a key axiom can be "localized" to instances of a particular class expression. Consider the following example:

Functional-Style Syntax:
HasKey(a:GriffinFamilyMember () (a:hasName ) ) Each member of the Griffin family is uniquely identified by its name.
DataPropertyAssertion(a:hasNamea:Peter "Peter" )Peter's name is"Peter".
ClassAssertion(a:GriffinFamilyMembera:Peter ) Peter is a member of the Griffin family.
DataPropertyAssertion(a:hasNamea:Peter_Griffin "Peter" )Peter Griffin's name is"Peter".
ClassAssertion(a:GriffinFamilyMembera:Peter_Griffin ) Peter Griffin is a member of the Griffin family.
DataPropertyAssertion(a:hasNamea:StPeter "Peter" )St. Peter's name is"Peter".
RDF:
a:GriffinFamilyMemberowl:hasKey (a:hasName ) . Each member of the Griffin family is uniquely identified by its name.
a:Petera:hasName "Peter" .Peter's name is"Peter".
a:Peterrdf:typea:GriffinFamilyMember . Peter is a member of the Griffin family.
a:Peter_Griffina:hasName "Peter" .Peter Griffin's name is"Peter".
a:Peter_Griffinrdf:typea:GriffinFamilyMember . Peter Griffin is a member of the Griffin family.
a:StPetera:hasName "Peter" .St. Peter's name is"Peter".

The effects of the first key axiom are "localized" to the classa:GriffinFamilyMember — that is, the data propertya:hasName uniquely identifies only instances of that class. The individualsa:Peter anda:Peter_Griffin are instances ofa:GriffinFamilyMember, so the key axiom implies thata:Peter anda:Peter_Griffin are the same individuals — that is, the ontology implies the following assertion:

Functional-Style Syntax:
SameIndividual(a:Petera:Peter_Griffin )
RDF:
a:Peterowl:sameAsa:Peter_Griffin .

The individuala:StPeter, however, is not an instance ofa:GriffinFamilyMember, so the key axiom is not applicable to it. Therefore, the ontology implies neither thata:Peter anda:StPeter are the same individuals, nor does it imply thata:Peter_Griffin anda:StPeter are the same. Keys can be made global by "localizing" them to theowl:Thing class, as shown in the previous example.

A key axiom does not make all the properties used in it functional. Consider the following example:

Functional-Style Syntax:
HasKey(a:GriffinFamilyMember () (a:hasName ) ) Each member of the Griffin family is uniquely identified by its name.
DataPropertyAssertion(a:hasNamea:Peter "Peter" )Peter's name is"Peter".
DataPropertyAssertion(a:hasNamea:Peter "Kichwa-Tembo" )Peter's name is"Kichwa-Tembo".
ClassAssertion(a:GriffinFamilyMembera:Peter ) Peter is a member of the Griffin family.
RDF:
a:GriffinFamilyMemberowl:hasKey (a:hasName ) . Each member of the Griffin family is uniquely identified by its name.
a:Petera:hasName "Peter" .Peter's name is"Peter".
a:Petera:hasName "Kichwa-Tembo" .Peter's name is"Kichwa-Tembo".
a:Peterrdf:typea:GriffinFamilyMember . Peter is a member of the Griffin family.

This ontology is consistent — that is, the fact that the individuala:Peter has two distinct values fora:hasName does not cause an inconsistency since thea:hasName data property is not necessarily functional.

If desired, the properties used in a key axiom can always be made functional explicitly. Thus, if the example ontology were extended with the following axiom, it would become inconsistent.

Functional-Style Syntax:
FunctionalDataProperty(a:hasName )
RDF:
a:hasNamerdf:typeowl:FunctionalProperty .

The semantics of key axioms is specific in that these axioms apply only to individuals explicitly introduced in the ontology by name, and not to unnamed individuals (i.e., the individuals whose existence is implied by existential quantification). This makes key axioms equivalent to a variant of DL-safe rulesDL-Safe]. Thus, key axioms will typically not affect class-based inferences such as the computation of the subsumption hierarchy, but they will play a role in answering queries about individuals.

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
HasKey(a:Person () (a:hasSSN ) ) Each person is uniquely identified by their social security number.
DataPropertyAssertion(a:hasSSNa:Peter "123-45-6789" )Peter's social security number is"123-45-6789".
ClassAssertion(a:Persona:Peter ) Peter is a person.
ClassAssertion(
    ObjectSomeValuesFrom(
      a:marriedTo
       ObjectIntersectionOf(a:Man DataHasValue(a:hasSSN "123-45-6789" ) )
    )
   a:Lois
)
Lois is married to some man whose social security number is"123-45-6789".
SubClassOf(a:Mana:Person ) Each man is a person.
RDF:
a:Personowl:hasKey (a:hasSSN ) . Each person is uniquely identified by their social security number.
a:Petera:hasSSN "123-45-6789" .Peter's social security number is"123-45-6789".
a:Peterrdf:typea:Person . Peter is a person.
a:Loisrdf:type _:x .
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:marriedTo .
_:xowl:someValuesFrom _:y .
_:yrdf:typeowl:Class .
_:yowl:intersectionOf SEQ(a:Man _:z ) .
_:zrdf:typeowl:Restriction .
_:zowl:onPropertya:hasSSN .
_:zowl:hasValue "123-45-6789" .
Lois is married to some man whose social security number is"123-45-6789".
a:Manrdfs:subClassOfa:Person . Each man is a person.

The fourth axiom implies existence of some individualx that is an instance ofa:Man and whose value for thea:hasSSN data property is"123-45-6789"; by the fifth axiom,x is an instance ofa:Person as well. Furthermore, the second and the third axiom say thata:Peter is an instance ofa:Person and that the value ofa:hasSSN fora:Peter is"123-45-6789". Finally, the first axiom says thata:hasSSN is a key property for instances ofa:Person. Thus, one might expectx to be equal toa:Peter, and for the ontology to entail the following assertion:

Functional-Style Syntax:
ClassAssertion(a:Mana:Peter )
RDF:
a:Peterrdf:typea:Man .

The inferences in the previous paragraph, however, cannot be drawn because of the DL-safe semantics of key axioms:x is an individual that has not been explicitly named in the ontology; therefore, the semantics of key axioms does not apply tox. Therefore, this OWL 2 ontology does not entail the mentioned assertion.

9.6 Assertions

OWL 2 supports a rich set of axioms for statingassertions — axioms about individuals that are often also calledfacts. For clarity, different types of assertions are shown in three separate figures, Figure 19, 20, and 21. TheSameIndividual assertion allows one to state that several individuals are all equal to each other, while theDifferentIndividuals assertion allows for the opposite — that is, to state that several individuals are all different from each other. (More precisely, that the several different individuals in the syntax are also semantically different.) TheClassAssertion axiom allows one to state that an individual is an instance of a particular class.

Class and Individual (In)Equality Assertions in OWL 2
Figure 19. Class and Individual (In)Equality Assertions in OWL 2

TheObjectPropertyAssertion axiom allows one to state that an individual is connected by an object property expression to an individual, whileNegativeObjectPropertyAssertion allows for the opposite — that is, to state that an individual is not connected by an object property expression to an individual.

Object Property Assertions in OWL 2
Figure 20. Object Property Assertions in OWL 2

TheDataPropertyAssertion axiom allows one to state that an individual is connected by a data property expression to a literal, whileNegativeDataPropertyAssertion allows for the opposite — that is, to state that an individual is not connected by a data property expression to a literal.

Data Property Assertions in OWL 2
Figure 21. Data Property Assertions in OWL 2

Assertion :=
   SameIndividual |DifferentIndividuals |ClassAssertion |
   ObjectPropertyAssertion |NegativeObjectPropertyAssertion |
   DataPropertyAssertion |NegativeDataPropertyAssertion

sourceIndividual :=Individual
targetIndividual :=Individual
targetValue :=Literal

9.6.1 Individual Equality

An individual equality axiomSameIndividual( a1 ... an ) states that all of the individuals ai, 1 ≤ i ≤ n, are equal to each other. This axiom allows one to use eachai as a synonym for eachaj — that is, in any expression in the ontology containing such an axiom,ai can be replaced withaj without affecting the meaning of the ontology.

SameIndividual := 'SameIndividual' '('axiomAnnotationsIndividualIndividual {Individual } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
SameIndividual(a:Mega:Megan ) Meg and Megan are the same objects.
ObjectPropertyAssertion(a:hasBrothera:Mega:Stewie ) Meg has a brother Stewie.
RDF:
a:Megowl:sameAsa:Megan . Meg and Megan are the same objects.
a:Mega:hasBrothera:Stewie . Meg has a brother Stewie.

Sincea:Meg anda:Megan are equal, one individual can always be replaced with the other one. Therefore, this ontology entails thata:Megan is connected bya:hasBrother witha:Stewie — that is, the ontology entails the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasBrothera:Megana:Stewie )
RDF:
a:Megana:hasBrothera:Stewie .

9.6.2 Individual Inequality

An individual inequality axiomDifferentIndividuals( a1 ... an ) states that all of the individualsai, 1 ≤ i ≤ n, are different from each other; that is, no individualsai andaj with i ≠ j can be derived to be equal. This axiom can be used to axiomatize theunique name assumption — the assumption that all different individual names denote different individuals.

DifferentIndividuals := 'DifferentIndividuals' '('axiomAnnotationsIndividualIndividual {Individual } ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:fatherOfa:Petera:Meg ) Peter is Meg's father.
ObjectPropertyAssertion(a:fatherOfa:Petera:Chris ) Peter is Chris's father.
ObjectPropertyAssertion(a:fatherOfa:Petera:Stewie ) Peter is Stewie's father.
DifferentIndividuals(a:Petera:Mega:Chrisa:Stewie ) Peter, Meg, Chris, and Stewie are all different from each other.
RDF:
a:Petera:fatherOfa:Meg . Peter is Meg's father.
a:Petera:fatherOfa:Chris . Peter is Chris's father.
a:Petera:fatherOfa:Stewie . Peter is Stewie's father.
_:xrdf:typeowl:AllDifferent .
_:xowl:members (a:Petera:Mega:Chrisa:Stewie ) .
Peter, Meg, Chris, and Stewie are all different from each other.

The last axiom in this example ontology axiomatizes the unique name assumption (but only for the four names in the axiom). If the ontology were extended with the following axiom stating thata:fatherOf is functional, then this axiom would imply thata:Meg,a:Chris, anda:Stewie are all equal, thus invalidating the unique name assumption and making the ontology inconsistent.

Functional-Style Syntax:
FunctionalObjectProperty(a:fatherOf )
RDF:
a:fatherOfrdf:typeowl:FunctionalProperty .

9.6.3 Class Assertions

A class assertionClassAssertion( CE a ) states that the individuala is an instance of the class expressionCE.

ClassAssertion := 'ClassAssertion' '('axiomAnnotationsClassExpressionIndividual ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ClassAssertion(a:Doga:Brian ) Brian is a dog.
SubClassOf(a:Doga:Mammal ) Each dog is a mammal.
RDF:
a:Brianrdf:typea:Dog . Brian is a dog.
a:Dogrdfs:subClassOfa:Mammal . Each dog is a mammal.

The first axiom states thata:Brian is an instance of the classa:Dog. By the second axiom, each instance ofa:Dog is an instance ofa:Mammal. Therefore, this ontology entails thata:Brian is an instance ofa:Mammal — that is, the ontology entails the following assertion:

Functional-Style Syntax:
ClassAssertion(a:Mammala:Brian )
RDF:
a:Brianrdf:typea:Mammal .

9.6.4 Positive Object Property Assertions

A positive object property assertionObjectPropertyAssertion( OPE a1 a2 ) states that the individuala1 is connected by the object property expressionOPE to the individuala2.

ObjectPropertyAssertion := 'ObjectPropertyAssertion' '('axiomAnnotationsObjectPropertyExpressionsourceIndividualtargetIndividual ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasDoga:Petera:Brian ) Brian is a dog of Peter.
SubClassOf( ObjectSomeValuesFrom(a:hasDogowl:Thing )a:DogOwner ) Objects that have a dog are dog owners.
RDF:
a:Petera:hasDoga:Brian . Brian is a dog of Peter.
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasDog .
_:xowl:someValuesFromowl:Thing .
_:xrdfs:subClassOfa:DogOwner .
Objects that have a dog are dog owners.

The first axiom states thata:Peter is connected bya:hasDog toa:Brian. By the second axiom, each individual connected bya:hasDog to an individual is an instance ofa:DogOwner. Therefore, this ontology entails thata:Peter is an instance ofa:DogOwner — that is, the ontology entails the following assertion:

Functional-Style Syntax:
ClassAssertion(a:DogOwnera:Peter )
RDF:
a:Peterrdf:typea:DogOwner .

9.6.5 Negative Object Property Assertions

A negative object property assertionNegativeObjectPropertyAssertion( OPE a1 a2 ) states that the individuala1 is not connected by the object property expressionOPE to the individuala2.

NegativeObjectPropertyAssertion := 'NegativeObjectPropertyAssertion' '('axiomAnnotationsObjectPropertyExpressionsourceIndividualtargetIndividual ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
NegativeObjectPropertyAssertion(a:hasSona:Petera:Meg ) Meg is not a son of Peter.
RDF:
_:xrdf:typeowl:NegativePropertyAssertion .
_:xowl:sourceIndividuala:Peter .
_:xowl:assertionPropertya:hasSon .
_:xowl:targetIndividuala:Meg .
Meg is not a son of Peter.

The ontology would become inconsistent if it were extended with the following assertion:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasSona:Petera:Meg )
RDF:
a:Petera:hasSona:Meg .

9.6.6 Positive Data Property Assertions

A positive data property assertionDataPropertyAssertion( DPE a lt ) states that the individuala is connected by the data property expressionDPE to the literallt.

DataPropertyAssertion := 'DataPropertyAssertion' '('axiomAnnotationsDataPropertyExpressionsourceIndividualtargetValue ')'

Consider the ontology consisting of the following axioms.

Functional-Style Syntax:
DataPropertyAssertion(a:hasAgea:Meg "17"^^xsd:integer ) Meg is seventeen years old.
SubClassOf(
    DataSomeValuesFrom(a:hasAge
       DatatypeRestriction(xsd:integer
         xsd:minInclusive "13"^^xsd:integer
         xsd:maxInclusive "19"^^xsd:integer
       )
    )
   a:Teenager
)
Objects that are older than 13 and younger than 19 (both inclusive) are teenagers.
RDF:
a:Mega:hasAge "17"^^xsd:integer . Meg is seventeen years old.
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasAge .
_:xowl:someValuesFrom _:y .
_:yrdf:typerdfs:Datatype .
_:yowl:onDatatypexsd:integer .
_:yowl:withRestrictions ( _:z _:w ) .
_:zxsd:minInclusive "13"^^xsd:integer .
_:wxsd:maxInclusive "19"^^xsd:integer .
_:xrdfs:subClassOfa:Teenager .
Objects that are often than 13 and younger than 19 (both inclusive) are teenagers.

The first axiom states thata:Meg is connected bya:hasAge to the literal"17"^^xsd:integer. By the second axiom, each individual connected bya:hasAge to an integer between 13 and 19 is an instance ofa:Teenager. Therefore, this ontology entails thata:Meg is an instance ofa:Teenager — that is, the ontology entails the following assertion:

Functional-Style Syntax:
ClassAssertion(a:Teenagera:Meg )
RDF:
a:Megrdf:typea:Teenager .

9.6.7 Negative Data Property Assertions

A negative data property assertionNegativeDataPropertyAssertion( DPE a lt ) states that the individuala is not connected by the data property expressionDPE to the literallt.

NegativeDataPropertyAssertion := 'NegativeDataPropertyAssertion' '('axiomAnnotationsDataPropertyExpressionsourceIndividualtargetValue ')'

Consider the ontology consisting of the following axiom.

Functional-Style Syntax:
NegativeDataPropertyAssertion(a:hasAgea:Meg "5"^^xsd:integer ) Meg is not five years old.
RDF:
_:xrdf:typeowl:NegativePropertyAssertion .
_:xowl:sourceIndividuala:Meg .
_:xowl:assertionPropertya:hasAge .
_:xowl:targetValue "5"^^xsd:integer .
Meg is not five years old.

The ontology would become inconsistent if it were extended with the following assertion:

Functional-Style Syntax:
DataPropertyAssertion(a:hasAgea:Meg "5"^^xsd:integer )
RDF:
a:Mega:hasAge "5"^^xsd:integer .

10 Annotations

OWL 2 applications often need ways to associate additional information with ontologies, entities, and axioms. To this end, OWL 2 provides forannotations on ontologies, axioms, and entities.

One might want to associate human-readable labels with IRIs and use them when visualizing an ontology. To this end, one might use therdfs:label annotation property to associate such labels with ontology IRIs.

Various OWL 2 syntaxes, such as the functional-style syntax, provide a mechanism for embedding comments into ontology documents. The structure of such comments is, however, dependent on the syntax, so these are simply discarded during parsing. In contrast, annotations are "first-class citizens" in the structural specification of OWL 2, and their structure is independent of the underlying syntax.

Since it is based on XML, the OWL 2 XML Syntax [OWL 2 XML Serialization] allows the embedding of the standard XML comments into ontology documents. Such comments are not represented in the structural specification of OWL 2 and, consequently, they should be ignored during document parsing.

10.1 Annotations of Ontologies, Axioms, and other Annotations

Ontologies, axioms, and annotations themselves can be annotated using annotations shown in Figure 22. As shown in the figure, such annotations consist of an annotation property and an annotation value, where the latter can be anonymous individuals, IRIs, and literals.

Annotations of Ontologies and Axioms in OWL 2
Figure 22. Annotations of Ontologies and Axioms in OWL 2

Annotation := 'Annotation' '('annotationAnnotationsAnnotationPropertyAnnotationValue ')'
annotationAnnotations  := {Annotation }
AnnotationValue :=AnonymousIndividual |IRI |Literal

10.2 Annotation Axioms

OWL 2 provides means to state several types of axioms about annotation properties, as shown in Figure 23. These statements are treated as axioms only in order to simplify the structural specification of OWL 2.

Annotations of IRIs and Anonymous Individuals in OWL 2
Figure 23. Annotations of IRIs and Anonymous Individuals in OWL 2

AnnotationAxiom :=AnnotationAssertion |SubAnnotationPropertyOf |AnnotationPropertyDomain |AnnotationPropertyRange

10.2.1 Annotation Assertion

An annotation assertionAnnotationAssertion( AP as av ) states that the annotation subjectas — an IRI or an anonymous individual — is annotated with the annotation propertyAP and the annotation valueav.

AnnotationAssertion := 'AnnotationAssertion' '('axiomAnnotationsAnnotationPropertyAnnotationSubjectAnnotationValue ')'
AnnotationSubject :=IRI |AnonymousIndividual

The following axiom assigns a human-readable comment to the IRIa:Person.

Functional-Style Syntax:
AnnotationAssertion(rdfs:labela:Person "Represents the set of all people." )
RDF:
a:Personrdfs:label "Represents the set of all people." .

Since the annotation is assigned to an IRI, it applies to all entities with the given IRI. Thus, if an ontology contains both a class and an individuala:Person, the above comment applies to both entities.

10.2.2 Annotation Subproperties

An annotation subproperty axiomSubAnnotationPropertyOf( AP1 AP2 ) states that the annotation propertyAP1 is a subproperty of the annotation propertyAP2.

SubAnnotationPropertyOf := 'SubAnnotationPropertyOf' '('axiomAnnotationssubAnnotationPropertysuperAnnotationProperty ')'
subAnnotationProperty :=AnnotationProperty
superAnnotationProperty :=AnnotationProperty

10.2.3 Annotation Property Domain

An annotation property domain axiomAnnotationPropertyDomain( AP U ) states that the domain of the annotation propertyAP is the IRIU.

AnnotationPropertyDomain := 'AnnotationPropertyDomain' '('axiomAnnotationsAnnotationPropertyIRI ')'

10.2.4 Annotation Property Range

An annotation property range axiomAnnotationPropertyRange( AP U ) states that the range of the annotation propertyAP is the IRIU.

AnnotationPropertyRange := 'AnnotationPropertyRange' '('axiomAnnotationsAnnotationPropertyIRI ')'

11 Global Restrictions on Axioms in OWL 2 DL

The axiom closureAx (with anonymous individuals standardized apart as explained inSection 5.6.2) of each OWL 2 DL ontologyOMUST satisfy theglobal restrictions defined in this section. As explained in the literature [SROIQ], this restriction is necessary in order to obtain a decidable language. The formal definition of these conditions is rather technical, so it is split into two parts.Section 11.1 first introduces the notions of a property hierarchy and ofsimple object property expressions. These notions are then used inSection 11.2 to define the actual conditions onAx.

11.1 Property Hierarchy and Simple Object Property Expressions

For an object property expressionOPE, theinverse property expressionINV(OPE) is defined as follows:

The setAllOPE(Ax) of all object property expressions w.r.t.Ax is the smallest set containingOP andINV(OP) for each object propertyOP occurring inAx.

An object property expressionOPE iscomposite in the set of axiomsAx if

The relation → is the smallest relation onAllOPE(Ax) for which the following conditions hold (AB means that → holds forA andB):

Theproperty hierarchy relation →* is the reflexive-transitive closure of →.

An object property expressionOPE issimple inAx if, for each object property expressionOPE' such thatOPE'*OPE holds,OPE' is not composite.

Roughly speaking, a simple object property expression has no direct or indirect subproperties that are either transitive or are defined by means of property chains, where the notion of indirect subproperties is captured by the property hierarchy. Consider the following axioms:

Functional-Style Syntax:
SubObjectPropertyOf( ObjectPropertyChain(a:hasFathera:hasBrother )a:hasUncle ) The brother of someone's father is that person's uncle.
SubObjectPropertyOf(a:hasUnclea:hasRelative ) Having an uncle implies having a relative.
SubObjectPropertyOf(a:hasBiologicalFathera:hasFather ) Having a biological father implies having a father.
RDF:
a:hasUncleowl:propertyChainAxiom (a:hasFathera:hasBrother ) . The brother of someone's father is that person's uncle.
a:hasUnclerdfs:subPropertyOfa:hasRelative . Having an uncle implies having a relative.
a:hasBiologicalFatherrdfs:subPropertyOfa:hasFather . Having a biological father implies having a father.

The object propertya:hasUncle occurs in an object subproperty axiom involving a property chain, so it is not simple. Consequently, the object propertya:hasRelative is not simple either, becausea:hasUncle is a subproperty ofa:hasRelative anda:hasUncle is not simple. In contrast, the object propertya:hasBiologicalFather is simple, and so isa:hasFather.

11.2 The Restrictions on the Axiom Closure

The set of axiomsAx satisfies theglobal restrictions of OWL 2 DL if all of the following conditions hold.

Restriction onowl:topDataProperty. Theowl:topDataProperty property occurs inAx only in thesuperDataPropertyExpression part ofSubDataPropertyOf axioms.

Without this restriction,owl:topDataProperty could be used to write axioms about datatypes, which would invalidate Theorem DS1 from the OWL 2 Direct Semantics [OWL 2 Direct Semantics]. That is, the consequences of an ontology would then not necessarily depend only on the datatypes used in the ontology, but would also depend on the datatypes selected in the OWL 2 datatype map. Thus, if an implementation or a future revision of OWL decided to extend the set of supported datatypes, it would run the risk of possibly changing the consequences of certain ontologies.

Restrictions on Datatypes.

The first condition ensures that all datatypes inAx are given a well-defined interpretation and that datatype definitions do not redefine the datatypes from the OWL 2 datatype map. The second condition ensures that datatype definitions are acyclic — that is, if a datatypeDT1 is used in a definition ofDT, thenDT is not allowed to be used in the definition ofDT1 — and it is illustrated by the following example:

Functional-Style Syntax:
Declaration( Datatype(a:SSN ) )a:SSN is a datatype.
Declaration( Datatype(a:TIN ) )a:TIN is a datatype.
Declaration( Datatype(a:TaxNumber ) )a:TaxNumber is a datatype.
DatatypeDefinition(
   a:SSN
    DatatypeRestriction(xsd:stringxsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" )
)
A social security number is a string that matches the given regular expression.
DatatypeDefinition(
   a:TIN
    DatatypeRestriction(xsd:stringxsd:pattern "[0-9]{11}" )
)
A TIN — a tax identification number used in Germany — is a string consisting of 11 digits.
DatatypeDefinition(a:TaxNumber DataUnionOf(a:SSNa:TIN ) ) A tax number is either a social security number of a TIN.
RDF:
a:SSNrdf:typerdfs:Datatype .a:SSN is a datatype.
a:TINrdf:typerdfs:Datatype .a:TIN is a datatype.
a:TaxNumberrdf:typerdfs:Datatype .a:TaxNumber is a datatype.
a:SSNowl:equivalentClass _:x1 .
_:x1rdf:typerdfs:Datatype .
_:x1owl:onDatatypexsd:string .
_:x1 owl:withRestrictions ( _:x2 ) .
_:x2xsd:pattern "[0-9]{3}-[0-9]{2}-[0-9]{4}" .
A social security number is a string that matches the given regular expression.
a:TINowl:equivalentClass _:y1 .
_:y1rdf:typerdfs:Datatype .
_:y1owl:onDatatypexsd:string .
_:y1 owl:withRestrictions ( _:y2 ) .
_:y2xsd:pattern "[0-9]{11}" .
A TIN — a tax identification number used in Germany — is a string consisting of 11 digits.
a:TaxNumberowl:equivalentClass _:z .
_:zrdf:typerdfs:Datatype .
_:zowl:unionOf (a:SSNa:TIN ) .
A tax number is either a social security number of a TIN.

These datatype definitions are acyclic:a:SSN anda:TIN are defined in terms ofxsd:string, anda:TaxNumber is defined in terms ofa:SSN anda:TIN. To verify this condition formally, it suffices to find one strict partial order < on these datatypes such that each datatype is defined only in terms of the datatypes that are smaller w.r.t. <. For example, it can be readily verified that the partial order < given below fulfills the above conditions.

xsd:string   <  a:SSN   <  a:TaxNumber
xsd:string   <  a:TIN   <  a:TaxNumber

Note that order < is allowed to be partial — that is, some datatypes can be incomparable under <. In the above example, datatypesa:SSN anda:TIN are incomparable under <. Since neither of these two datatypes is defined in terms of the other datatype, the order between the two datatypes is irrelevant.

The restriction on datatypes is necessary to ensure validity of Theorem DS1 from the OWL 2 Direct Semantics [OWL 2 Direct Semantics]. Furthermore, the restriction is natural given that data ranges describe the set of values exactly. For example, if an axiom defininga:SSN in terms ofa:TIN anda:TaxNumber were added to the above axioms, then datatypesa:SSN,a:TIN, anda:TaxNumber could not be simply "unfolded", which is contrary to the intended meaning of these datatypes. This situation, however, is disallowed since no ordering < satisfying the mentioned restrictions exists for the extended axiom set.

Restriction on Simple Roles. Each class expression and each axiom inAx of type from the following two lists contains only simple object properties.

This restriction is necessary in order to guarantee decidability of the basic reasoning problems for OWL 2 DL [Description Logics].

Restriction on the Property Hierarchy. A strict partial order (i.e., an irreflexive and transitive relation) < onAllOPE(Ax) exists that fulfills the following conditions:

This restriction is necessary in order to guarantee decidability of the basic reasoning problems for OWL 2 DL [Description Logics].

The main goal of this restriction is to prevent cyclic definitions involving object subproperty axioms with property chains. Consider the following ontology:

Functional-Style Syntax:
SubObjectPropertyOf( ObjectPropertyChain(a:hasFathera:hasBrother )a:hasUncle ) The brother of someone's father is that person's uncle.
SubObjectPropertyOf( ObjectPropertyChain(a:hasUnclea:hasWife )a:hasAuntInLaw ) The wife of someone's uncle is that person's aunt-in-law.
RDF:
a:hasUncleowl:propertyChainAxiom (a:hasFathera:hasBrother ) . The brother of someone's father is that person's uncle.
a:hasAuntInLawowl:propertyChainAxiom (a:hasUnclea:hasWife ) . The wife of someone's uncle is that person's aunt-in-law.

The first axiom definesa:hasUncle in terms ofa:hasFather anda:hasBrother, and the second axiom definesa:hasAuntInLaw in terms ofa:hasUncle anda:hasWife. The second axiom depends on the first one, but not vice versa; hence, these axioms are not cyclic and can occur together in the axiom closure of an OWL 2 DL ontology. To verify this condition formally, it suffices to find one strict partial order < on object properties such that each property is defined only in terms of the properties that are smaller w.r.t. <. For example, it can be readily verified that the partial order < given below fulfills the above conditions.

a:hasFather   <  a:hasUncle
a:hasBrother   <  a:hasUncle
a:hasUncle   <  a:hasAuntInLaw
a:hasWife   <  a:hasAuntInLaw

The first two conditions on < are needed to satisfy the first axiom, while the remaining two conditions on < are needed to satisfy the second axiom from the example OWL 2 DL ontology.

In contrast to the previous example, the following axioms are cyclic and do not satisfy the restriction on the property hierarchy.

Functional-Style Syntax:
SubObjectPropertyOf( ObjectPropertyChain(a:hasFathera:hasBrother )a:hasUncle ) The brother of someone's father is that person's uncle.
SubObjectPropertyOf( ObjectPropertyChain(a:hasChilda:hasUncle )a:hasBrother ) The uncle of someone's child is that person's brother.
RDF:
a:hasUncleowl:propertyChainAxiom (a:hasFathera:hasBrother ) . The brother of someone's father is that person's uncle.
a:hasBrotherowl:propertyChainAxiom (a:hasChilda:hasUncle ) . The uncle of someone's child is that person's brother.

The first axiom definesa:hasUncle in terms ofa:hasBrother, while the second axiom definesa:hasBrother in terms ofa:hasUncle; these two definitions are thus cyclic and cannot occur together in the axiom closure of an OWL 2 DL ontology. To verify this condition formally, note that, for < to satisfy the third subcondition of the third condition, we needa:hasBrother <a:hasUncle (due to the first axiom) anda:hasUncle <a:hasBrother (due to the second axiom); by transitivity of < we then havea:hasUncle <a:hasUncle anda:hasBrother <a:hasBrother; however, this contradicts the requirement that < is irreflexive. Thus, an order < satisfying all the required conditions does not exist.

A particular kind of cyclic definitions is known not to lead to decidability problems. Consider the following ontology:

Functional-Style Syntax:
SubObjectPropertyOf( ObjectPropertyChain(a:hasChilda:hasSibling )a:hasChild ) The sibling of someone's child is that person's child.
RDF:
a:hasChildowl:propertyChainAxiom (a:hasChilda:hasSibling ) . The sibling of someone's child is that person's child.

The above definition is cyclic, since the object propertya:hasChild occurs in both the subproperty chain and as a superproperty. As per the fourth and the fifth subcondition of the third condition, however, axioms of this form do not violate the restriction on the property hierarchy.

Restrictions on the Usage of Anonymous Individuals.

These restrictions ensure that each OWL 2 DL ontology with anonymous individuals can be transformed to an equivalent ontology without anonymous individuals. Roughly speaking, this is possible if property assertions connect anonymous individuals in a tree-like way. Consider the following ontology:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasChilda:Francis _:a1 ) Francis has some (unknown) child.
ObjectPropertyAssertion(a:hasChild _:a1a:Meg ) This unknown child has Meg...
ObjectPropertyAssertion(a:hasChild _:a1a:Chris ) ...Chris...
ObjectPropertyAssertion(a:hasChild _:a1a:Stewie ) ...and Stewie as children.
RDF:
a:Francisa:hasChild _:a1 . Francis has some (unknown) child.
_:a1a:hasChilda:Meg . This unknown child has Meg...
_:a1a:hasChilda:Chris . ...Chris...
_:a1a:hasChilda:Stewie . ...and Stewie as children.

The connections between individualsa:Francis,a:Meg,a:Chris, anda:Stewie can be understood as a tree that contains_:a1 as its root. Because of that, the anonymous individuals can be "rolled up"; that is, these four assertions can be replaced by the following equivalent assertion:

Functional-Style Syntax:
ClassAssertion(
    ObjectSomeValuesFrom(a:hasChild
       ObjectIntersectionOf(
          ObjectHasValue(a:hasChilda:Meg )
          ObjectHasValue(a:hasChilda:Chris )
          ObjectHasValue(a:hasChilda:Stewie )
       )
    )
   a:Francis
)
RDF:
a:Francisrdf:type _:x .
_:xrdf:typeowl:Restriction .
_:xowl:onPropertya:hasChild .
_:xowl:someValuesFrom _:y .
_:yrdf:typeowl:Class .
_:yowl:intersectionOf ( _:z1 _:z2 _:z3 ) .
_:z1rdf:typeowl:Restriction .
_:z1owl:onPropertya:hasChild .
_:z1owl:hasValuea:Meg .
_:z2rdf:typeowl:Restriction .
_:z2owl:onPropertya:hasChild .
_:z2owl:hasValuea:Chris .
_:z3rdf:typeowl:Restriction .
_:z3owl:onPropertya:hasChild .
_:z3owl:hasValuea:Stewie .

Unlike in the previous example, the following ontology does not satisfy the restrictions on the usage of anonymous individuals:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasSibling _:b1 _:b2 )
ObjectPropertyAssertion(a:hasSibling _:b2 _:b3 )
ObjectPropertyAssertion(a:hasSibling _:b3 _:b1 )
RDF:
_:b1a:hasSibling _:b2 .
_:b2a:hasSibling _:b3 .
_:b3a:hasSibling _:b1 .

The following ontology does not satisfy these restrictions either:

Functional-Style Syntax:
ObjectPropertyAssertion(a:hasChild _:b1 _:b2 )
ObjectPropertyAssertion(a:hasDaughter _:b1 _:b2 )
RDF:
_:b1a:hasChild _:b2 .
_:b1a:hasDaughter _:b2 .

In both of these examples, the anonymous individuals are connected by property assertions in a non-tree-like way. These assertions can therefore not be replaced with class expressions, which can lead to the undecidability of the basic reasoning problems.

12 Appendix: Internet Media Type, File Extension, and Macintosh File Type

Contact
Ivan Herman / Sandro Hawke
See also
How to Register a Media Type for a W3C Specification [Register MIME] and Internet Media Type registration, consistency of use [MIME Consistency].

The Internet Media Type / MIME Type for the OWL functional-style Syntax istext/owl-functional.

It is recommended that OWL functional-style Syntax files have the extension.ofn (all lowercase) on all platforms.

It is recommended that OWL functional-style Syntax files stored on Macintosh HFS file systems be given a file type ofTEXT.

The information that follows will be submitted to the IESG for review, approval, and registration with IANA.

Type name
text
Subtype name
owl-functional
Required parameters
None
Optional parameters
charset This parameter may be required when transfering non-ASCII data across some protocols. If present, the value of charset should be UTF-8.
Encoding considerations
The syntax of the OWL functional-style Syntax is expressed over code points in Unicode [UNICODE]. The encoding should be UTF-8 [RFC 3629], but other encodings are allowed.
Security considerations
The OWL functional-style Syntax uses IRIs as term identifiers. Applications interpreting data expressed in the OWL functional-style Syntax should address the security issues of Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8, as well as Uniform Resource Identifiers (URI): Generic Syntax [RFC 3986] Section 7. Multiple IRIs may have the same appearance. Characters in different scripts may look similar (a Cyrillic "o" may appear similar to a Latin "o"). A character followed by combining characters may have the same visual representation as another character (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation as LATIN SMALL LETTER E WITH ACUTE). Any person or application that is writing or interpreting data in the OWL functional-style Syntax must take care to use the IRI that matches the intended semantics, and avoid IRIs that may look similar. Further information about matching of similar characters can be found in Unicode Security Considerations [UNISEC] and Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8.
Interoperability considerations
There are no known interoperability issues.
Published specification
This specification.
Applications which use this media type
No widely deployed applications are known to currently use this media type. It is expected that OWL tools will use this media type in the future.
Additional information
None.
Magic number(s)
OWL functional-style Syntax documents may have the strings "Prefix" or "Ontology" (case dependent) near the beginning of the document.
File extension(s)
".ofn"
Base IRI
There are no constructs in the OWL functional-style Syntax to change the Base IRI.
Macintosh file type code(s)
"TEXT"
Person & email address to contact for further information
Ivan Herman, ivan@w3.org / Sandro Hawke, sandro@w3.org. Please send technical comments and questions about OWL to public-owl-comments@w3.org, a mailing list with a public archive athttp://lists.w3.org/Archives/Public/public-owl-comments/
Intended usage
COMMON
Restrictions on usage
None
Author/Change controller
The OWL functional-style Syntax is the product of the W3C OWL Working Group; W3C reserves change control over this specification.

13 Appendix: Complete Grammar (Normative)

This section contains the complete grammar of the functional-style syntax defined in this specification document. For easier reference, the grammar has been split into two parts.

13.1 General Definitions

nonNegativeInteger :=a nonempty finite sequence of digits between 0 and 9
quotedString :=a finite sequence of characters in which " (U+22) and \ (U+5C) occur only in pairs of the form \" (U+5C, U+22) and \\ (U+5C, U+5C), enclosed in a pair of " (U+22) characters
languageTag :=@ (U+40) followed a nonempty sequence of characters matching the langtag production from [BCP 47]
nodeID :=a finite sequence of characters matching the BLANK_NODE_LABEL production of [SPARQL]



fullIRI :=an IRI as defined in [RFC3987], enclosed in a pair of < (U+3C) and > (U+3E) characters
prefixName :=a finite sequence of characters matching the as PNAME_NS production of [SPARQL]
abbreviatedIRI :=a finite sequence of characters matching the PNAME_LN production of [SPARQL]
IRI :=fullIRI |abbreviatedIRI



ontologyDocument := {prefixDeclaration }Ontology
prefixDeclaration := 'Prefix' '('prefixName '='fullIRI ')'
Ontology :=
    'Ontology' '(' [ontologyIRI [versionIRI ] ]
      directlyImportsDocuments
      ontologyAnnotations
      axioms
    ')'
ontologyIRI :=IRI
versionIRI :=IRI
directlyImportsDocuments := { 'Import' '('IRI ')' }
ontologyAnnotations := {Annotation }
axioms := {Axiom }



Declaration := 'Declaration' '('axiomAnnotationsEntity ')'
Entity :=
    'Class' '('Class ')' |
    'Datatype' '('Datatype ')' |
    'ObjectProperty' '('ObjectProperty ')' |
    'DataProperty' '('DataProperty ')' |
    'AnnotationProperty' '('AnnotationProperty ')' |
    'NamedIndividual' '('NamedIndividual ')'



AnnotationSubject :=IRI |AnonymousIndividual
AnnotationValue :=AnonymousIndividual |IRI |Literal
axiomAnnotations := {Annotation }

Annotation := 'Annotation' '('annotationAnnotationsAnnotationPropertyAnnotationValue ')'
annotationAnnotations  := {Annotation }

AnnotationAxiom :=AnnotationAssertion |SubAnnotationPropertyOf |AnnotationPropertyDomain |AnnotationPropertyRange

AnnotationAssertion := 'AnnotationAssertion' '('axiomAnnotationsAnnotationPropertyAnnotationSubjectAnnotationValue ')'

SubAnnotationPropertyOf := 'SubAnnotationPropertyOf' '('axiomAnnotationssubAnnotationPropertysuperAnnotationProperty ')'
subAnnotationProperty :=AnnotationProperty
superAnnotationProperty :=AnnotationProperty

AnnotationPropertyDomain := 'AnnotationPropertyDomain' '('axiomAnnotationsAnnotationPropertyIRI ')'

AnnotationPropertyRange := 'AnnotationPropertyRange' '('axiomAnnotationsAnnotationPropertyIRI ')'

13.2 Definitions of OWL 2 Constructs

Class :=IRI

Datatype :=IRI

ObjectProperty :=IRI

DataProperty :=IRI

AnnotationProperty :=IRI

Individual :=NamedIndividual |AnonymousIndividual

NamedIndividual :=IRI

AnonymousIndividual :=nodeID

Literal :=typedLiteral |stringLiteralNoLanguage |stringLiteralWithLanguage
typedLiteral :=lexicalForm '^^'Datatype
lexicalForm :=quotedString
stringLiteralNoLanguage :=quotedString
stringLiteralWithLanguage :=quotedStringlanguageTag



ObjectPropertyExpression :=ObjectProperty |InverseObjectProperty

InverseObjectProperty := 'ObjectInverseOf' '('ObjectProperty ')'

DataPropertyExpression :=DataProperty



DataRange :=
   Datatype |
   DataIntersectionOf |
   DataUnionOf |
   DataComplementOf |
   DataOneOf |
   DatatypeRestriction

DataIntersectionOf := 'DataIntersectionOf' '('DataRangeDataRange {DataRange } ')'

DataUnionOf := 'DataUnionOf' '('DataRangeDataRange {DataRange } ')'

DataComplementOf := 'DataComplementOf' '('DataRange ')'

DataOneOf := 'DataOneOf' '('Literal {Literal } ')'

DatatypeRestriction := 'DatatypeRestriction' '('DatatypeconstrainingFacetrestrictionValue {constrainingFacetrestrictionValue } ')'
constrainingFacet :=IRI
restrictionValue :=Literal



ClassExpression :=
   Class |
   ObjectIntersectionOf |ObjectUnionOf |ObjectComplementOf |ObjectOneOf |
   ObjectSomeValuesFrom |ObjectAllValuesFrom |ObjectHasValue |ObjectHasSelf |
   ObjectMinCardinality |ObjectMaxCardinality |ObjectExactCardinality |
   DataSomeValuesFrom |DataAllValuesFrom |DataHasValue |
   DataMinCardinality |DataMaxCardinality |DataExactCardinality

ObjectIntersectionOf := 'ObjectIntersectionOf' '('ClassExpressionClassExpression {ClassExpression } ')'

ObjectUnionOf := 'ObjectUnionOf' '('ClassExpressionClassExpression {ClassExpression } ')'

ObjectComplementOf := 'ObjectComplementOf' '('ClassExpression ')'

ObjectOneOf := 'ObjectOneOf' '('Individual {Individual }')'

ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '('ObjectPropertyExpressionClassExpression ')'

ObjectAllValuesFrom := 'ObjectAllValuesFrom' '('ObjectPropertyExpressionClassExpression ')'

ObjectHasValue := 'ObjectHasValue' '('ObjectPropertyExpressionIndividual ')'

ObjectHasSelf := 'ObjectHasSelf' '('ObjectPropertyExpression ')'

ObjectMinCardinality := 'ObjectMinCardinality' '('nonNegativeIntegerObjectPropertyExpression [ClassExpression ] ')'

ObjectMaxCardinality := 'ObjectMaxCardinality' '('nonNegativeIntegerObjectPropertyExpression [ClassExpression ] ')'

ObjectExactCardinality := 'ObjectExactCardinality' '('nonNegativeIntegerObjectPropertyExpression [ClassExpression ] ')'

DataSomeValuesFrom := 'DataSomeValuesFrom' '('DataPropertyExpression {DataPropertyExpression }DataRange ')'

DataAllValuesFrom := 'DataAllValuesFrom' '('DataPropertyExpression {DataPropertyExpression }DataRange ')'

DataHasValue := 'DataHasValue' '('DataPropertyExpressionLiteral ')'

DataMinCardinality := 'DataMinCardinality' '('nonNegativeIntegerDataPropertyExpression [DataRange ] ')'

DataMaxCardinality := 'DataMaxCardinality' '('nonNegativeIntegerDataPropertyExpression [DataRange ] ')'

DataExactCardinality := 'DataExactCardinality' '('nonNegativeIntegerDataPropertyExpression [DataRange ] ')'



Axiom :=Declaration |ClassAxiom |ObjectPropertyAxiom |DataPropertyAxiom |DatatypeDefinition |HasKey |Assertion |AnnotationAxiom



ClassAxiom :=SubClassOf |EquivalentClasses |DisjointClasses |DisjointUnion

SubClassOf := 'SubClassOf' '('axiomAnnotationssubClassExpressionsuperClassExpression ')'
subClassExpression :=ClassExpression
superClassExpression :=ClassExpression

EquivalentClasses := 'EquivalentClasses' '('axiomAnnotationsClassExpressionClassExpression {ClassExpression } ')'

DisjointClasses := 'DisjointClasses' '('axiomAnnotationsClassExpressionClassExpression {ClassExpression } ')'

DisjointUnion := 'DisjointUnion' '('axiomAnnotationsClassdisjointClassExpressions ')'
disjointClassExpressions :=ClassExpressionClassExpression {ClassExpression }



ObjectPropertyAxiom :=
   SubObjectPropertyOf |EquivalentObjectProperties |
   DisjointObjectProperties |InverseObjectProperties |
   ObjectPropertyDomain |ObjectPropertyRange |
   FunctionalObjectProperty |InverseFunctionalObjectProperty |
   ReflexiveObjectProperty |IrreflexiveObjectProperty |
   SymmetricObjectProperty |AsymmetricObjectProperty |
   TransitiveObjectProperty

SubObjectPropertyOf := 'SubObjectPropertyOf' '('axiomAnnotationssubObjectPropertyExpressionsuperObjectPropertyExpression ')'
subObjectPropertyExpression :=ObjectPropertyExpression |propertyExpressionChain
propertyExpressionChain := 'ObjectPropertyChain' '('ObjectPropertyExpressionObjectPropertyExpression {ObjectPropertyExpression } ')'
superObjectPropertyExpression :=ObjectPropertyExpression

EquivalentObjectProperties := 'EquivalentObjectProperties' '('axiomAnnotationsObjectPropertyExpressionObjectPropertyExpression {ObjectPropertyExpression } ')'

DisjointObjectProperties := 'DisjointObjectProperties' '('axiomAnnotationsObjectPropertyExpressionObjectPropertyExpression {ObjectPropertyExpression } ')'

ObjectPropertyDomain := 'ObjectPropertyDomain' '('axiomAnnotationsObjectPropertyExpressionClassExpression ')'

ObjectPropertyRange := 'ObjectPropertyRange' '('axiomAnnotationsObjectPropertyExpressionClassExpression ')'

InverseObjectProperties := 'InverseObjectProperties' '('axiomAnnotationsObjectPropertyExpressionObjectPropertyExpression ')'

FunctionalObjectProperty := 'FunctionalObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

InverseFunctionalObjectProperty := 'InverseFunctionalObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

ReflexiveObjectProperty := 'ReflexiveObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

IrreflexiveObjectProperty := 'IrreflexiveObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

SymmetricObjectProperty := 'SymmetricObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

AsymmetricObjectProperty := 'AsymmetricObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'

TransitiveObjectProperty := 'TransitiveObjectProperty' '('axiomAnnotationsObjectPropertyExpression ')'



DataPropertyAxiom :=
   SubDataPropertyOf |EquivalentDataProperties |DisjointDataProperties |
   DataPropertyDomain |DataPropertyRange |FunctionalDataProperty

SubDataPropertyOf := 'SubDataPropertyOf' '('axiomAnnotationssubDataPropertyExpressionsuperDataPropertyExpression ')'
subDataPropertyExpression :=DataPropertyExpression
superDataPropertyExpression :=DataPropertyExpression

EquivalentDataProperties := 'EquivalentDataProperties' '('axiomAnnotationsDataPropertyExpressionDataPropertyExpression {DataPropertyExpression } ')'

DisjointDataProperties := 'DisjointDataProperties' '('axiomAnnotationsDataPropertyExpressionDataPropertyExpression {DataPropertyExpression } ')'

DataPropertyDomain := 'DataPropertyDomain' '('axiomAnnotationsDataPropertyExpressionClassExpression ')'

DataPropertyRange := 'DataPropertyRange' '('axiomAnnotationsDataPropertyExpressionDataRange ')'

FunctionalDataProperty := 'FunctionalDataProperty' '('axiomAnnotationsDataPropertyExpression ')'



DatatypeDefinition := 'DatatypeDefinition' '('axiomAnnotationsDatatypeDataRange ')'



HasKey := 'HasKey' '('axiomAnnotationsClassExpression '(' {ObjectPropertyExpression } ')' '(' {DataPropertyExpression } ')' ')'



Assertion :=
   SameIndividual |DifferentIndividuals |ClassAssertion |
   ObjectPropertyAssertion |NegativeObjectPropertyAssertion |
   DataPropertyAssertion |NegativeDataPropertyAssertion

sourceIndividual :=Individual
targetIndividual :=Individual
targetValue :=Literal

SameIndividual := 'SameIndividual' '('axiomAnnotationsIndividualIndividual {Individual } ')'

DifferentIndividuals := 'DifferentIndividuals' '('axiomAnnotationsIndividualIndividual {Individual } ')'

ClassAssertion := 'ClassAssertion' '('axiomAnnotationsClassExpressionIndividual ')'

ObjectPropertyAssertion := 'ObjectPropertyAssertion' '('axiomAnnotationsObjectPropertyExpressionsourceIndividualtargetIndividual ')'

NegativeObjectPropertyAssertion := 'NegativeObjectPropertyAssertion' '('axiomAnnotationsObjectPropertyExpressionsourceIndividualtargetIndividual ')'

DataPropertyAssertion := 'DataPropertyAssertion' '('axiomAnnotationsDataPropertyExpressionsourceIndividualtargetValue ')'

NegativeDataPropertyAssertion := 'NegativeDataPropertyAssertion' '('axiomAnnotationsDataPropertyExpressionsourceIndividualtargetValue ')'

14 Appendix: Change Log (Informative)

14.1 Changes Since Recommendation

This section summarizes the changes to this document since theRecommendation of 27 October 2009.

14.2 Changes Since Proposed Recommendation

This section summarizes the changes to this document since theProposed Recommendation of 22 September, 2009.

14.3 Changes Since Candidate Recommendation

This section summarizes the changes to this document since theCandidate Recommendation of 11 June, 2009.

14.4 Changes Since Last Call

This section summarizes the changes to this document since theLast Call Working Draft of 21 April, 2009.

15 Acknowledgments

The starting point for the development of OWL 2 was theOWL1.1 member submission, itself a result of user and developer feedback, and in particular of information gathered during theOWL Experiences and Directions (OWLED) Workshop series. The working group also consideredpostponed issues from theWebOnt Working Group.

This document has been produced by the OWL Working Group (see below), and its contents reflect extensive discussions within the Working Group as a whole.The editors extend special thanks toBernardo Cuenca Grau (Oxford University Computing Laboratory),Ivan Herman (W3C/ERCIM),Mike Smith (Clark & Parsia) andVojtech Svatek (K-Space)for their thorough reviews.

The regular attendees at meetings of the OWL Working Group at the time of publication of this document were:Jie Bao (RPI),Diego Calvanese (Free University of Bozen-Bolzano),Bernardo Cuenca Grau (Oxford University Computing Laboratory),Martin Dzbor (Open University),Achille Fokoue (IBM Corporation),Christine Golbreich (Université de Versailles St-Quentin and LIRMM),Sandro Hawke (W3C/MIT),Ivan Herman (W3C/ERCIM),Rinke Hoekstra (University of Amsterdam),Ian Horrocks (Oxford University Computing Laboratory),Elisa Kendall (Sandpiper Software),Markus Krötzsch (FZI),Carsten Lutz (Universität Bremen),Deborah L. McGuinness (RPI),Boris Motik (Oxford University Computing Laboratory),Jeff Pan (University of Aberdeen),Bijan Parsia (University of Manchester),Peter F. Patel-Schneider (Bell Labs Research, Alcatel-Lucent),Sebastian Rudolph (FZI),Alan Ruttenberg (Science Commons),Uli Sattler (University of Manchester),Michael Schneider (FZI),Mike Smith (Clark & Parsia),Evan Wallace (NIST),Zhe Wu (Oracle Corporation), andAntoine Zimmermann (DERI Galway).We would also like to thank past members of the working group:Jeremy Carroll,Jim Hendler, andVipul Kashyap.

16 References

16.1 Normative References

[BCP 47]
BCP 47 - Tags for Identifying Languages. A. Phillips and M. Davis, eds. IETF, September 2006. http://www.rfc-editor.org/rfc/bcp/bcp47.txt
[ISO 8601:2004]
ISO 8601:2004. Representations of dates and times. ISO (International Organization for Standardization).
[ISO/IEC 10646]
ISO/IEC 10646-1:2000. Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture and Basic Multilingual Plane and ISO/IEC 10646-2:2001. Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 2: Supplementary Planes, as, from time to time, amended, replaced by a new edition or expanded by the addition of new parts. [Geneva]: International Organization for Standardization. ISO (International Organization for Standardization).
[RFC 2119]
RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. Network Working Group, S. Bradner. IETF, March 1997, http://www.ietf.org/rfc/rfc2119.txt
[RFC 3629]
RFC 3629: UTF-8, a transformation format of ISO 10646. F. Yergeau. IETF, November 2003, http://www.ietf.org/rfc/rfc3629.txt
[RFC 3987]
RFC 3987: Internationalized Resource Identifiers (IRIs). M. Duerst and M. Suignard. IETF, January 2005, http://www.ietf.org/rfc/rfc3987.txt
[RDF Concepts]
Resource Description Framework (RDF): Concepts and Abstract Syntax. Graham Klyne and Jeremy J. Carroll, eds. W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version available as http://www.w3.org/TR/rdf-concepts/.
[RDF Test Cases]
RDF Test Cases. Jan Grant and Dave Beckett, eds. W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/. Latest version available as http://www.w3.org/TR/rdf-testcases/.
[RDF:PLAINLITERAL]
rdf:PlainLiteral: A Datatype for RDF Plain Literals (Second Edition) Jie Bao, Sandro Hawke, Boris Motik, Peter F. Patel-Schneider, Axel Polleres, eds. W3C Recommendation, 11 December 2012,http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/. Latest version available athttp://www.w3.org/TR/rdf-plain-literal-1/.
[SPARQL]
SPARQL Query Language for RDF. Eric Prud'hommeaux and Andy Seaborne, eds. W3C Recommendation, 15 January 2008, http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/. Latest version available as http://www.w3.org/TR/rdf-sparql-query/.
[UML]
OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. Object Management Group, OMG Available Specification, November 2007, http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.
[UNICODE]
The Unicode Standard. The Unicode Consortium, Version 5.1.0,ISBN 0-321-48091-0, as updated from time to time by the publication of new versions. (Seehttp://www.unicode.org/unicode/standard/versions/ for the latest version and additional information on versions of the standard and of the Unicode Character Database).
[XML]
Extensible Markup Language (XML) 1.0 (Fifth Edition). Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau, eds. W3C Recommendation, 26 November 2008, http://www.w3.org/TR/2008/REC-xml-20081126/. Latest version available as http://www.w3.org/TR/xml/.
[XML Schema Datatypes]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. David Peterson, Shudi (Sandy) Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S. Thompson, eds. (Version 1.1) and Paul V. Biron, and Ashok Malhotra, eds. (Version 1.0). W3C Recommendation, 5 April 2012,http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/. Latest version available ashttp://www.w3.org/TR/xmlschema11-2/.

16.2 Nonnormative References

[Description Logics]
The Description Logic Handbook: Theory, Implementation, and Applications, second edition. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, eds. Cambridge University Press, 2007. Also see theDescription Logics Home Page.
[DL-Safe]
Query Answering for OWL-DL with Rules. Boris Motik, Ulrike Sattler and Rudi Studer. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60, 2005.
[MIME Consistency]
Internet Media Type registration, consistency of use. Tim Bray, ed. W3C TAG Finding, 30 April 2004.
[MOF]
Meta Object Facility (MOF) Core Specification, version 2.0. Object Management Group, OMG Available Specification January 2006, http://www.omg.org/spec/MOF/2.0/PDF/.
[OWL 2 RDF Mapping]
OWL 2 Web Ontology Language:Mapping to RDF Graphs (Second Edition) Peter F. Patel-Schneider, Boris Motik, eds. W3C Recommendation, 11 December 2012,http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/. Latest version available athttp://www.w3.org/TR/owl2-mapping-to-rdf/.
[OWL 2 Direct Semantics]
OWL 2 Web Ontology Language:Direct Semantics (Second Edition) Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau, eds. W3C Recommendation, 11 December 2012,http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/. Latest version available athttp://www.w3.org/TR/owl2-direct-semantics/.
[OWL 2 RDF-Based Semantics]
OWL 2 Web Ontology Language:RDF-Based Semantics (Second Edition) Michael Schneider, editor. W3C Recommendation, 11 December 2012,http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/. Latest version available athttp://www.w3.org/TR/owl2-rdf-based-semantics/.
[OWL 2 Conformance]
OWL 2 Web Ontology Language:Conformance (Second Edition) Michael Smith, Ian Horrocks, Markus Krötzsch, Birte Glimm, eds. W3C Recommendation, 11 December 2012,http://www.w3.org/TR/2012/REC-owl2-conformance-20121211/. Latest version available athttp://www.w3.org/TR/owl2-conformance/.
[OWL 2 XML Serialization]
OWL 2 Web Ontology Language:XML Serialization (Second Edition) Boris Motik, Bijan Parsia, Peter F. Patel-Schneider, eds. W3C Recommendation, 11 December 2012,http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/. Latest version available athttp://www.w3.org/TR/owl2-xml-serialization/.
[RDF Syntax]
RDF/XML Syntax Specification (Revised). Dave Beckett, ed. W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/. Latest version available as http://www.w3.org/TR/rdf-syntax-grammar/.
[Register MIME]
Register an Internet Media Type for a W3C Spec. Philippe Le Hégaret, ed. W3C Guidebook.
[RFC 3986]
RFC 3986: Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee, R. Fielding, and L. Masinter. IETF, January 2005, http://www.ietf.org/rfc/rfc3986.txt
[SROIQ]
The Even More Irresistible SROIQ. Ian Horrocks, Oliver Kutz, and Uli Sattler. In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006). AAAI Press, 2006.
[UNISEC]
Unicode Security Considerations. Mark Davis and Michel Suignard. Unicode technical report 36, 23 July 2008, http://www.unicode.org/reports/tr36/tr36-7.html. Latest version available as http://www.unicode.org/reports/tr36/.
[XML Namespaces]
Namespaces in XML 1.0 (Second Edition). Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, eds. W3C Recommendation, 16 August 2006, http://www.w3.org/TR/2006/REC-xml-names-20060816/. Latest version available as http://www.w3.org/TR/REC-xml-names/.

[8]ページ先頭

©2009-2025 Movatter.jp