Movatterモバイル変換


[0]ホーム

URL:


Data Structures & Algorithms Tutorial

Data Structures & Algorithms - Quick Guide



Overview

Data Structure is a systematic way to organize data in order to use it efficiently. Following terms are the foundation terms of a data structure.

  • Interface − Each data structure has an interface. Interface represents the set of operations that a data structure supports. An interface only provides the list of supported operations, type of parameters they can accept and return type of these operations.

  • Implementation − Implementation provides the internal representation of a data structure. Implementation also provides the definition of the algorithms used in the operations of the data structure.

Characteristics of a Data Structure

  • Correctness − Data structure implementation should implement its interface correctly.

  • Time Complexity − Running time or the execution time of operations of data structure must be as small as possible.

  • Space Complexity − Memory usage of a data structure operation should be as little as possible.

Need for Data Structure

As applications are getting complex and data rich, there are three common problems that applications face now-a-days.

  • Data Search − Consider an inventory of 1 million(106) items of a store. If the application is to search an item, it has to search an item in 1 million(106) items every time slowing down the search. As data grows, search will become slower.

  • Processor speed − Processor speed although being very high, falls limited if the data grows to billion records.

  • Multiple requests − As thousands of users can search data simultaneously on a web server, even the fast server fails while searching the data.

To solve the above-mentioned problems, data structures come to rescue. Data can be organized in a data structure in such a way that all items may not be required to be searched, and the required data can be searched almost instantly.

Execution Time Cases

There are three cases which are usually used to compare various data structure's execution time in a relative manner.

  • Worst Case − This is the scenario where a particular data structure operation takes maximum time it can take. If an operation's worst case time is ƒ(n) then this operation will not take more than ƒ(n) time where ƒ(n) represents function of n.

  • Average Case − This is the scenario depicting the average execution time of an operation of a data structure. If an operation takes ƒ(n) time in execution, then m operations will take mƒ(n) time.

  • Best Case − This is the scenario depicting the least possible execution time of an operation of a data structure. If an operation takes ƒ(n) time in execution, then the actual operation may take time as the random number which would be maximum as ƒ(n).

Basic Terminology

  • Data − Data are values or set of values.

  • Data Item − Data item refers to single unit of values.

  • Group Items − Data items that are divided into sub items are called as Group Items.

  • Elementary Items − Data items that cannot be divided are called as Elementary Items.

  • Attribute and Entity − An entity is that which contains certain attributes or properties, which may be assigned values.

  • Entity Set − Entities of similar attributes form an entity set.

  • Field − Field is a single elementary unit of information representing an attribute of an entity.

  • Record − Record is a collection of field values of a given entity.

  • File − File is a collection of records of the entities in a given entity set.

Environment Setup

Local Environment Setup

If you are still willing to set up your environment for C programming language, you need the following two tools available on your computer, (a) Text Editor and (b) The C Compiler.

Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

The name and the version of the text editor can vary on different operating systems. For example, Notepad will be used on Windows, and vim or vi can be used on Windows as well as Linux or UNIX.

The files you create with your editor are called source files and contain program source code. The source files for C programs are typically named with the extension ".c".

Before starting your programming, make sure you have one text editor in place and you have enough experience to write a computer program, save it in a file, compile it, and finally execute it.

The C Compiler

The source code written in the source file is the human readable source for your program. It needs to be "compiled", to turn into machine language so that your CPU can actually execute the program as per the given instructions.

This C programming language compiler will be used to compile your source code into a final executable program. We assume you have the basic knowledge about a programming language compiler.

Most frequently used and free available compiler is GNU C/C++ compiler. Otherwise, you can have compilers either from HP or Solaris if you have respective Operating Systems (OS).

The following section guides you on how to install GNU C/C++ compiler on various OS. We are mentioning C/C++ together because GNU GCC compiler works for both C and C++ programming languages.

Installation on UNIX/Linux

If you are usingLinux or UNIX, then check whether GCC is installed on your system by entering the following command from the command line −

$ gcc -v

If you have GNU compiler installed on your machine, then it should print a message such as the following −

Using built-in specs.Target: i386-redhat-linuxConfigured with: ../configure --prefix = /usr .......Thread model: posixgcc version 4.1.2 20080704 (Red Hat 4.1.2-46)

If GCC is not installed, then you will have to install it yourself using the detailed instructions available athttps://gcc.gnu.org/install/

This tutorial has been written based on Linux and all the given examples have been compiled on Cent OS flavor of Linux system.

Installation on Mac OS

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode development environment from Apple's website and follow the simple installation instructions. Once you have Xcode setup, you will be able to use GNU compiler for C/C++.

Xcode is currently available atdeveloper.apple.com/technologies/tools/

Installation on Windows

To install GCC on Windows, you need to install MinGW. To install MinGW, go to the MinGW homepage,www.mingw.org, and follow the link to the MinGW download page. Download the latest version of the MinGW installation program, which should be named MinGW-<version>.exe.

While installing MinWG, at a minimum, you must install gcc-core, gcc-g&plus;&plus;, binutils, and the MinGW runtime, but you may wish to install more.

Add the bin subdirectory of your MinGW installation to yourPATH environment variable, so that you can specify these tools on the command line by their simple names.

When the installation is complete, you will be able to run gcc, g&plus;&plus;, ar, ranlib, dlltool, and several other GNU tools from the Windows command line.

Data Structure Basics

This chapter explains the basic terms related to data structure.

Data Definition

Data Definition defines a particular data with the following characteristics.

  • Atomic − Definition should define a single concept.

  • Traceable − Definition should be able to be mapped to some data element.

  • Accurate − Definition should be unambiguous.

  • Clear and Concise − Definition should be understandable.

Data Object

Data Object represents an object having a data.

Data Type

Data type is a way to classify various types of data such as integer, string, etc. which determines the values that can be used with the corresponding type of data, the type of operations that can be performed on the corresponding type of data. There are two data types −

  • Built-in Data Type
  • Derived Data Type

Built-in Data Type

Those data types for which a language has built-in support are known as Built-in Data types. For example, most of the languages provide the following built-in data types.

  • Integers
  • Boolean (true, false)
  • Floating (Decimal numbers)
  • Character and Strings

Derived Data Type

Those data types which are implementation independent as they can be implemented in one or the other way are known as derived data types. These data types are normally built by the combination of primary or built-in data types and associated operations on them. For example −

  • List
  • Array
  • Stack
  • Queue

Basic Operations

The data in the data structures are processed by certain operations. The particular data structure chosen largely depends on the frequency of the operation that needs to be performed on the data structure.

  • Traversing
  • Searching
  • Insertion
  • Deletion
  • Sorting
  • Merging

Data Structures and Types

Data structures are introduced in order to store, organize and manipulate data in programming languages. They are designed in a way that makes accessing and processing of the data a little easier and simpler. These data structures are not confined to one particular programming language; they are just pieces of code that structure data in the memory.

Data types are often confused as a type of data structures, but it is not precisely correct even though they are referred to as Abstract Data Types. Data types represent the nature of the data while data structures are just a collection of similar or different data types in one.

Data Structures And Types

There are usually just two types of data structures −

  • Linear

  • Non-Linear

Linear Data Structures

The data is stored in linear data structures sequentially. These are rudimentary structures since the elements are stored one after the other without applying any mathematical operations.

Linear Data Structures

Linear data structures are usually easy to implement but since the memory allocation might become complicated, time and space complexities increase. Few examples of linear data structures include −

  • Arrays

  • Linked Lists

  • Stacks

  • Queues

Based on the data storage methods, these linear data structures are divided into two sub-types. They are −static anddynamic data structures.

Static Linear Data Structures

In Static Linear Data Structures, the memory allocation is not scalable. Once the entire memory is used, no more space can be retrieved to store more data. Hence, the memory is required to be reserved based on the size of the program. This will also act as a drawback since reserving more memory than required can cause a wastage of memory blocks.

The best example for static linear data structures is an array.

Dynamic Linear Data Structures

In Dynamic linear data structures, the memory allocation can be done dynamically when required. These data structures are efficient considering the space complexity of the program.

Few examples of dynamic linear data structures include: linked lists, stacks and queues.

Non-Linear Data Structures

Non-Linear data structures store the data in the form of a hierarchy. Therefore, in contrast to the linear data structures, the data can be found in multiple levels and are difficult to traverse through.

Non-Linear Data Structures

However, they are designed to overcome the issues and limitations of linear data structures. For instance, the main disadvantage of linear data structures is the memory allocation. Since the data is allocated sequentially in linear data structures, each element in these data structures uses one whole memory block. However, if the data uses less memory than the assigned block can hold, the extra memory space in the block is wasted. Therefore, non-linear data structures are introduced. They decrease the space complexity and use the memory optimally.

Few types of non-linear data structures are −

  • Graphs

  • Trees

  • Tries

  • Maps

Array Data Structure

Array is a type of linear data structure that is defined as a collection of elements with same or different data types. They exist in both single dimension and multiple dimensions. These data structures come into picture when there is a necessity to store multiple elements of similar nature together at one place.

Array

The difference between an array index and a memory address is that the array index acts like a key value to label the elements in the array. However, a memory address is the starting address of free memory available.

Following are the important terms to understand the concept of Array.

  • Element − Each item stored in an array is called an element.

  • Index − Each location of an element in an array has a numerical index, which is used to identify the element.

Syntax

Creating an array inC andC++ programming languages −

data_type array_name[array_size] = {elements separated using commas}or,data_type array_name[array_size];

Creating an array inJava programming language −

data_type[] array_name = {elements separated by commas}or,data_type array_name = new data_type[array_size];

Need for Arrays

Arrays are used as solutions to many problems from the small sorting problems to more complex problems like travelling salesperson problem. There are many data structures other than arrays that provide efficient time and space complexity for these problems, so what makes using arrays better? The answer lies in the random access lookup time.

Arrays provideO(1) random access lookup time. That means, accessing the 1st index of the array and the 1000th index of the array will both take the same time. This is due to the fact that array comes with a pointer and an offset value. The pointer points to the right location of the memory and the offset value shows how far to look in the said memory.

                           array_name[index]                              |       |                           Pointer   Offset

Therefore, in an array with 6 elements, to access the 1st element, array is pointed towards the 0th index. Similarly, to access the 6th element, array is pointed towards the 5th index.

Array Representation

Arrays are represented as a collection of buckets where each bucket stores one element. These buckets are indexed from 0 to n-1, where n is the size of that particular array. For example, an array with size 10 will have buckets indexed from 0 to 9.

This indexing will be similar for the multidimensional arrays as well. If it is a 2-dimensional array, it will have sub-buckets in each bucket. Then it will be indexed as array_name[m][n], where m and n are the sizes of each level in the array.

Array Representation

As per the above illustration, following are the important points to be considered.

  • Index starts with 0.

  • Array length is 9 which means it can store 9 elements.

  • Each element can be accessed via its index. For example, we can fetch an element at index 6 as 23.

Basic Operations in the Arrays

The basic operations in the Arrays are insertion, deletion, searching, display, traverse, and update. These operations are usually performed to either modify the data in the array or to report the status of the array.

Following are the basic operations supported by an array.

  • Traverse − print all the array elements one by one.

  • Insertion − Adds an element at the given index.

  • Deletion − Deletes an element at the given index.

  • Search − Searches an element using the given index or by the value.

  • Update − Updates an element at the given index.

  • Display − Displays the contents of the array.

In C, when an array is initialized with size, then it assigns defaults values to its elements in following order.

Data TypeDefault Value
boolfalse
char0
int0
float0.0
double0.0f
void
wchar_t0

Insertion Operation

In the insertion operation, we are adding one or more elements to the array. Based on the requirement, a new element can be added at the beginning, end, or any given index of array. This is done using input statements of the programming languages.

Algorithm

Following is an algorithm to insert elements into a Linear Array until we reach the end of the array −

1. Start2. Create an Array of a desired datatype and size.3. Initialize a variable i as 0.4. Enter the element at ith index of the array.5. Increment i by 1.6. Repeat Steps 4 & 5 until the end of the array.7. Stop

Here, we see a practical implementation of insertion operation, where we add data at the end of the array −

Example

#include <stdio.h>int main(){   int LA[3] = {}, i;   printf("Array Before Insertion:\n");   for(i = 0; i < 3; i++)      printf("LA[%d] = %d \n", i, LA[i]);   printf("Inserting Elements.. \n");   printf("The array elements after insertion :\n"); // prints array values   for(i = 0; i < 3; i++) {      LA[i] = i + 2;      printf("LA[%d] = %d \n", i, LA[i]);   }   return 0;}

Output

Array Before Insertion:LA[0] = 0 LA[1] = 0 LA[2] = 0 Inserting Elements.. The array elements after insertion :LA[0] = 2 LA[1] = 3 LA[2] = 4
#include <iostream>using namespace std;int main(){   int LA[3] = {}, i;   cout << "Array Before Insertion:" << endl;   for(i = 0; i < 3; i++)      cout << "LA[" << i <<"] = " << LA[i] << endl;          //prints garbage values   cout << "Inserting elements.." <<endl;   cout << "Array After Insertion:" << endl; // prints array values   for(i = 0; i < 5; i++) {      LA[i] = i + 2;      cout << "LA[" << i <<"] = " << LA[i] << endl;   }   return 0;}

Output

Array Before Insertion:LA[0] = 0LA[1] = 0LA[2] = 0Inserting elements..Array After Insertion:LA[0] = 2LA[1] = 3LA[2] = 4LA[3] = 5LA[4] = 6
public class ArrayDemo {   public static void main(String []args) {      int LA[] = new int[3];      System.out.println("Array Before Insertion:");      for(int i = 0; i < 3; i++)         System.out.println("LA[" + i + "] = " + LA[i]); //prints empty array      System.out.println("Inserting Elements..");            // Printing Array after Insertion      System.out.println("Array After Insertion:");      for(int i = 0; i < 3; i++) {         LA[i] = i+3;         System.out.println("LA[" + i + "] = " + LA[i]);      }   }}

Output

Array Before Insertion:LA[0] = 0LA[1] = 0LA[2] = 0Inserting Elements..Array After Insertion:LA[0] = 3LA[1] = 4LA[2] = 5
# python program to insert element using insert operationdef insert(arr, element):arr.append(element)# Driver's codeif __name__ == '__main__':# declaring array and value to insertLA = [0, 0, 0]x = 0# array before inserting an elementprint("Array Before Insertion: ")for x in range(len(LA)):    print("LA", [x], " = " , LA[x])print("Inserting elements....")# array after Inserting elementfor x in range(len(LA)):    LA.append(x);    LA[x] = x+1;print("Array After Insertion: ")for x in range(len(LA)):    print("LA", [x], " = " , LA[x])

Output

Array Before Insertion: LA [0]  =  0LA [1]  =  0LA [2]  =  0Inserting elements....Array After Insertion: LA [0]  =  1LA [1]  =  2LA [2]  =  3LA [3]  =  0LA [4]  =  1LA [5]  =  2

For other variations of array insertion operation,click here.

Deletion Operation

In this array operation, we delete an element from the particular index of an array. This deletion operation takes place as we assign the value in the consequent index to the current index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following is the algorithm to delete an element available at the Kth position of LA.

1. Start2. Set J = K3. Repeat steps 4 and 5 while J < N4. Set LA[J] = LA[J + 1]5. Set J = J+16. Set N = N-17. Stop

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>void main(){   int LA[] = {1,3,5};   int n = 3;   int i;   printf("The original array elements are :\n");   for(i = 0; i<n; i++)      printf("LA[%d] = %d \n", i, LA[i]);   for(i = 1; i<n; i++) {      LA[i] = LA[i+1];      n = n - 1;   }   printf("The array elements after deletion :\n");   for(i = 0; i<n; i++)      printf("LA[%d] = %d \n", i, LA[i]);}

Output

The original array elements are :LA[0] = 1LA[1] = 3LA[2] = 5The array elements after deletion :LA[0] = 1LA[1] = 5
#include <iostream>using namespace std;int main(){   int LA[] = {1,3,5};   int i, n = 3;   cout << "The original array elements are :"<<endl;   for(i = 0; i<n; i++) {      cout << "LA[" << i << "] = " << LA[i] << endl;   }   for(i = 1; i<n; i++) {      LA[i] = LA[i+1];      n = n - 1;   }   cout << "The array elements after deletion :"<<endl;   for(i = 0; i<n; i++) {      cout << "LA[" << i << "] = " << LA[i] <<endl;   }}

Output

The original array elements are :LA[0] = 1LA[1] = 3LA[2] = 5The array elements after deletion :LA[0] = 1LA[1] = 5
public class ArrayDemo {   public static void main(String []args) {      int LA[] = new int[3];      int n = LA.length;      System.out.println("Array Before Deletion:");      for(int i = 0; i < n; i++) {         LA[i] = i + 3;         System.out.println("LA[" + i + "] = " + LA[i]);      }      for(int i = 1; i<n-1; i++) {         LA[i] = LA[i+1];         n = n - 1;      }      System.out.println("Array After Deletion:");      for(int i = 0; i < n; i++) {         System.out.println("LA[" + i + "] = " + LA[i]);      }   }}

Output

Array Before Deletion:LA[0] = 3LA[1] = 4LA[2] = 5Array After Deletion:LA[0] = 3LA[1] = 5
#python program to delete the value using delete operationif __name__ == '__main__':# Declaring array and deleting valueLA = [0,0,0]n = len(LA)print("Array Before Deletion: ")for x in range(len(LA)):    LA.append(x)    LA[x] = x + 3    print("LA", [x], " = " , LA[x])# delete the value if exists # or show error it does not exist in the list for x in range(1, n-1):    LA[x] = LA[x+1]    n = n-1print("Array After Deletion: ")for x in range(n):    print("LA", [x], " = " , LA[x])

Output

Array Before Deletion: LA [0]  =  3LA [1]  =  4LA [2]  =  5Array After Deletion: LA [0]  =  3LA [1]  =  5

Search Operation

Searching an element in the array using a key; The key element sequentially compares every value in the array to check if the key is present in the array or not.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following is the algorithm to find an element with a value of ITEM using sequential search.

1. Start2. Set J = 03. Repeat steps 4 and 5 while J < N4. IF LA[J] is equal ITEM THEN GOTO STEP 65. Set J = J +16. PRINT J, ITEM7. Stop

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>void main(){   int LA[] = {1,3,5,7,8};   int item = 5, n = 5;   int i = 0, j = 0;   printf("The original array elements are :\n");   for(i = 0; i<n; i++) {      printf("LA[%d] = %d \n", i, LA[i]);   }   for(i = 0; i<n; i++) {      if( LA[i] == item ) {         printf("Found element %d at position %d\n", item, i+1);      }   }}

Output

The original array elements are :LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 Found element 5 at position 3
#include <iostream>using namespace std;int main(){   int LA[] = {1,3,5,7,8};   int item = 5, n = 5;   int i = 0;   cout << "The original array elements are : " <<endl;   for(i = 0; i<n; i++) {      cout << "LA[" << i << "] = " << LA[i] << endl;   }   for(i = 0; i<n; i++) {      if( LA[i] == item ) {         cout << "Found element " << item << " at position " << i+1 <<endl;      }   }   return 0;}

Output

The original array elements are : LA[0] = 1LA[1] = 3LA[2] = 5LA[3] = 7LA[4] = 8Found element 5 at position 3
public class ArrayDemo{   public static void main(String []args){      int LA[] = new int[5];      System.out.println("Array:");      for(int i = 0; i < 5; i++) {         LA[i] = i + 3;         System.out.println("LA[" + i + "] = " + LA[i]);      }      for(int i = 0; i < 5; i++) {         if(LA[i] == 6)            System.out.println("Element " + 6 + " is found at index " + i);      }   }}

Output

Array:LA[0] = 3LA[1] = 4LA[2] = 5LA[3] = 6LA[4] = 7Element 6 is found at index 3
#search operation using pythondef findElement(arr, n, value):for i in range(n):if (arr[i] == value):return i# If the key is not foundreturn -1# Driver's codeif __name__ == '__main__':LA = [1,3,5,7,8]print("Array element are: ")for x in range(len(LA)):    print("LA", [x], " = ", LA[x])value = 5n = len(LA)# element found using search operationindex = findElement(LA, n, value)if index != -1:print("Element", value, "Found at position = " + str(index + 1))else:print("Element not found")

Output

Array element are: LA [0]  =  1LA [1]  =  3LA [2]  =  5LA [3]  =  7LA [4]  =  8Element 5 Found at position = 3

Traversal Operation

This operation traverses through all the elements of an array. We use loop statements to carry this out.

Algorithm

Following is the algorithm to traverse through all the elements present in a Linear Array −

1 Start2. Initialize an Array of certain size and datatype.3. Initialize another variable i with 0.4. Print the ith value in the array and increment i.5. Repeat Step 4 until the end of the array is reached.6. End

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int main(){   int LA[] = {1,3,5,7,8};   int item = 10, k = 3, n = 5;   int i = 0, j = n;   printf("The original array elements are :\n");   for(i = 0; i<n; i++) {      printf("LA[%d] = %d \n", i, LA[i]);   }}

Output

The original array elements are :LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
#include <iostream>using namespace std;int main(){   int LA[] = {1,3,5,7,8};   int item = 10, k = 3, n = 5;   int i = 0, j = n;   cout << "The original array elements are:\n";   for(i = 0; i<n; i++)      cout << "LA[" << i << "] = " << LA[i] << endl;   return 0;}

Output

The original array elements are:LA[0] = 1LA[1] = 3LA[2] = 5LA[3] = 7LA[4] = 8
public class ArrayDemo {   public static void main(String []args) {      int LA[] = new int[5];      System.out.println("The array elements are: ");      for(int i = 0; i < 5; i++) {         LA[i] = i + 2;         System.out.println("LA[" + i + "] = " + LA[i]);      }   }}

Output

The array elements are: LA[0] = 2LA[1] = 3LA[2] = 4LA[3] = 5LA[4] = 6
# Python code to iterate over a array using pythonLA = [1, 3, 5, 7, 8]# length of the elementslength = len(LA)# Traversing the elements using For loop and range# same as 'for x in range(len(array))'print("Array elements are: ")for x in range(length):print("LA", [x], " = ", LA[x])

Output

Array elements are: LA [0]  =  1LA [1]  =  3LA [2]  =  5LA [3]  =  7LA [4]  =  8

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Following is the algorithm to update an element available at the Kth position of LA.

1. Start2. Set LA[K-1] = ITEM3. Stop

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>void main(){   int LA[] = {1,3,5,7,8};   int k = 3, n = 5, item = 10;   int i, j;   printf("The original array elements are :\n");   for(i = 0; i<n; i++) {      printf("LA[%d] = %d \n", i, LA[i]);   }   LA[k-1] = item;   printf("The array elements after updation :\n");   for(i = 0; i<n; i++) {      printf("LA[%d] = %d \n", i, LA[i]);   }}

Output

The original array elements are :LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8 The array elements after updation :LA[0] = 1 LA[1] = 3 LA[2] = 10 LA[3] = 7 LA[4] = 8
#include <iostream>using namespace std;int main(){   int LA[] = {1,3,5,7,8};   int item = 10, k = 3, n = 5;   int i = 0, j = n;   cout << "The original array elements are :\n";   for(i = 0; i<n; i++)      cout << "LA[" << i << "] = " << LA[i] << endl;   LA[2] = item;   cout << "The array elements after updation are :\n";   for(i = 0; i<n; i++)      cout << "LA[" << i << "] = " << LA[i] << endl;   return 0;}

Output

The original array elements are :LA[0] = 1LA[1] = 3LA[2] = 5LA[3] = 7LA[4] = 8The array elements after updation are :LA[0] = 1LA[1] = 3LA[2] = 10LA[3] = 7LA[4] = 8
public class ArrayDemo {   public static void main(String []args) {      int LA[] = new int[5];      int item = 15;      System.out.println("The array elements are: ");      for(int i = 0; i < 5; i++) {         LA[i] = i + 2;         System.out.println("LA[" + i + "] = " + LA[i]);      }      LA[3] = item;      System.out.println("The array elements after updation are: ");      for(int i = 0; i < 5; i++)         System.out.println("LA[" + i + "] = " + LA[i]);   }}

Output

The array elements are: LA[0] = 2LA[1] = 3LA[2] = 4LA[3] = 5LA[4] = 6The array elements after updation are: LA[0] = 2LA[1] = 3LA[2] = 4LA[3] = 15LA[4] = 6
#update operation using python#Declaring array elementsLA = [1,3,5,7,8]#before updationprint("The original array elements are :");for x in range(len(LA)):    print("LA", [x], " = ", LA[x])#after updationLA[2] = 10print("The array elements after updation are: ")for x in range(len(LA)):    print("LA", [x], " = ", LA[x])

Output

The original array elements are :LA [0]  =  1LA [1]  =  3LA [2]  =  5LA [3]  =  7LA [4]  =  8The array elements after updation are: LA [0]  =  1LA [1]  =  3LA [2]  =  10LA [3]  =  7LA [4]  =  8

Display Operation

This operation displays all the elements in the entire array using a print statement.

Algorithm

1. Start2. Print all the elements in the Array3. Stop

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int main(){   int LA[] = {1,3,5,7,8};   int n = 5;   int i;   printf("The original array elements are :\n");   for(i = 0; i<n; i++) {      printf("LA[%d] = %d \n", i, LA[i]);   }}

Output

The original array elements are :LA[0] = 1 LA[1] = 3 LA[2] = 5 LA[3] = 7 LA[4] = 8
#include <iostream>using namespace std;int main(){   int LA[] = {1,3,5,7,8};   int n = 5;   int i;   cout << "The original array elements are :\n";   for(i = 0; i<n; i++)      cout << "LA[" << i << "] = " << LA[i] << endl;   return 0;}

Output

The original array elements are :LA[0] = 1LA[1] = 3LA[2] = 5LA[3] = 7LA[4] = 8
public class ArrayDemo {   public static void main(String []args) {      int LA[] = new int[5];      System.out.println("The array elements are: ");      for(int i = 0; i < 5; i++) {         LA[i] = i + 2;         System.out.println("LA[" + i + "] = " + LA[i]);      }   }}

Output

The array elements are: LA[0] = 2LA[1] = 3LA[2] = 4LA[3] = 5LA[4] = 6
#Display operation using python#Display operation using python#Declaring array elementsLA = [2,3,4,5,6]#Displaying the arrayprint("The array elements are: ")for x in range(len(LA)):    print("LA", [x], " = " , LA[x])

Output

The array elements are: LA [0]  =  2LA [1]  =  3LA [2]  =  4LA [3]  =  5LA [4]  =  6

Linked List Data Structure

If arrays accommodate similar types of data types, linked lists consist of elements with different data types that are also arranged sequentially.

But how are these linked lists created?

A linked list is a collection of nodes connected together via links. These nodes consist of the data to be stored and a pointer to the address of the next node within the linked list. In the case of arrays, the size is limited to the definition, but in linked lists, there is no defined size. Any amount of data can be stored in it and can be deleted from it.

There are three types of linked lists −

  • Singly Linked List − The nodes only point to the address of the next node in the list.

  • Doubly Linked List − The nodes point to the addresses of both previous and next nodes.

  • Circular Linked List − The last node in the list will point to the first node in the list. It can either be singly linked or doubly linked.

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to the next node.

Linked List Representation

As per the above illustration, following are the important points to be considered.

  • Linked List contains a link element called first (head).

  • Each link carries a data field(s) and a link field called next.

  • Each link is linked with its next link using its next link.

  • Last link carries a link as null to mark the end of the list.

Types of Linked List

Following are the various types of linked list.

Singly Linked Lists

Singly linked lists contain two buckets in one node; one bucket holds the data and the other bucket holds the address of the next node of the list. Traversals can be done in one direction only as there is only a single link between two nodes of the same list.

Singly Linked Lists

Doubly Linked Lists

Doubly Linked Lists contain three buckets in one node; one bucket holds the data and the other buckets hold the addresses of the previous and next nodes in the list. The list is traversed twice as the nodes in the list are connected to each other from both sides.

Doubly Linked Lists

Circular Linked Lists

Circular linked lists can exist in both singly linked list and doubly linked list.

Since the last node and the first node of the circular linked list are connected, the traversal in this linked list will go on forever until it is broken.

Circular_Linked_Lists

Basic Operations in the Linked Lists

The basic operations in the linked lists are insertion, deletion, searching, display, and deleting an element at a given key. These operations are performed on Singly Linked Lists as given below −

  • Insertion − Adds an element at the beginning of the list.

  • Deletion − Deletes an element at the beginning of the list.

  • Display − Displays the complete list.

  • Search − Searches an element using the given key.

  • Delete − Deletes an element using the given key.

Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn this with diagrams here. First, create a node using the same structure and find the location where it has to be inserted.

Insertion Operation

Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C (RightNode). Then point B.next to C −

NewNode.next −> RightNode;

It should look like this −

Inserting A Node

Now, the next node at the left should point to the new node.

LeftNode.next −> NewNode;
Point To The New Node

This will put the new node in the middle of the two. The new list should look like this −

Insertion in linked list can be done in three different ways. They are explained as follows −

Insertion at Beginning

In this operation, we are adding an element at the beginning of the list.

Algorithm

1. START2. Create a node to store the data3. Check if the list is empty4. If the list is empty, add the data to the node and assign the head pointer to it.5 If the list is not empty, add the data to a node and link to the current head. Assign the head to the newly added node.6. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");      //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){      //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;      // point it to old first node   lk->next = head;      //point first to new first node   head = lk;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   printf("Linked List: ");      // print list   printList();}

Output

Linked List: [ 50  44  30  22  12 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";      //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){      //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;      // point it to old first node   lk->next = head;      //point first to new first node   head = lk;}int main(){   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   cout << "Linked List: ";      // print list   printList();}

Output

Linked List: [ 50  44  30  22  12 ]
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;      // display the list   static void printList() {      node p = head;      System.out.print("\n[");         //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }   //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertatbegin(50);      insertatbegin(33);      System.out.println("Linked List: ");            // print list      printList();   }}

Output

Linked List: [33  50  44  30  22  12 ]
class Node:   def __init__(self, data=None):      self.data = data      self.next = Noneclass SLL:   def __init__(self):      self.head = None# Print the linked list   def listprint(self):      printval = self.head      print("Linked List: ")      while printval is not None:         print (printval.data)         printval = printval.next   def AddAtBeginning(self,newdata):      NewNode = Node(newdata)      # Update the new nodes next val to existing node      NewNode.next = self.head      self.head = NewNodel1 = SLL()l1.head = Node("731")e2 = Node("672")e3 = Node("63")l1.head.next = e2e2.next = e3l1.AddAtBeginning("122")l1.listprint()

Output

Linked List: 12273167263

Insertion at Ending

In this operation, we are adding an element at the ending of the list.

Algorithm

1. START2. Create a new node and assign the data3. Find the last node4. Point the last node to new node5. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");      //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;      //point first to new first node   head = lk;}void insertatend(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   struct node *linkedlist = head;   // point it to old first node   while(linkedlist->next != NULL)      linkedlist = linkedlist->next;   //point first to new first node   linkedlist->next = lk;}void main(){   int k=0;   insertatbegin(12);   insertatend(22);   insertatend(30);   insertatend(44);   insertatend(50);   printf("Linked List: ");      // print list   printList();}

Output

Linked List:[ 12 22 30 44 50 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";      //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void insertatend(int data){      //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   struct node *linkedlist = head;   // point it to old first node   while(linkedlist->next != NULL)      linkedlist = linkedlist->next;   //point first to new first node   linkedlist->next = lk;}int main(){   insertatbegin(12);   insertatend(22);   insertatbegin(30);   insertatend(44);   insertatbegin(50);   cout << "Linked List: ";   // print list   printList();}

Output

Linked List: [ 50  30  12  22  44 ]
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;   // display the list   static void printList() {      node p = head;      System.out.print("\n[");      //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }   //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   static void insertatend(int data) {         //create a link      node lk = new node(data);      node linkedlist = head;      // point it to old first node      while(linkedlist.next != null)         linkedlist = linkedlist.next;      //point first to new first node      linkedlist.next = lk;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatend(44);      insertatend(50);      insertatend(33);      System.out.println("Linked List: ");      // print list      printList();   }}

Output

Linked List: [ 30  22  12  44 50  33 ]
class Node:   def __init__(self, data=None):      self.data = data      self.next = Noneclass LL:   def __init__(self):      self.head = None   def listprint(self):      val = self.head      print("Linked List:")      while val is not None:         print(val.data)         val = val.nextl1 = LL()l1.head = Node("23")l2 = Node("12")l3 = Node("7")l4 = Node("14")l5 = Node("61")# Linking the first Node to second nodel1.head.next = l2# Linking the second Node to third nodel2.next = l3l3.next = l4l4.next = l5l1.listprint()

Output

Linked List:231271461

Insertion at a Given Position

In this operation, we are adding an element at any position within the list.

Algorithm

1. START2. Create a new node and assign data to it3. Iterate until the node at position is found4. Point first to new first node5. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");      //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void insertafternode(struct node *list, int data){   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   lk->next = list->next;   list->next = lk;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertafternode(head->next, 30);   printf("Linked List: ");   // print list   printList();}

Output

Linked List:[ 22 12 30 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";      //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void insertafternode(struct node *list, int data){   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   lk->next = list->next;   list->next = lk;}int main(){   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertafternode(head->next,44);   insertafternode(head->next->next, 50);   cout << "Linked List: ";   // print list   printList();}

Output

Linked List: [ 30  22  44  50  12 ]
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;   // display the list   static void printList() {      node p = head;      System.out.print("\n[");      //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }   //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   static void insertafternode(node list, int data) {      node lk = new node(data);      lk.next = list.next;      list.next = lk;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertafternode(head.next, 50);      insertafternode(head.next.next, 33);      System.out.println("Linked List: ");      // print list      printList();   }}

Output

Linked List: [44  30  50  33  22  12 ]
class Node:   def __init__(self, data=None):      self.data = data      self.next = Noneclass SLL:   def __init__(self):      self.head = None# Print the linked list   def listprint(self):      printval = self.head      print("Linked List: ")      while printval is not None:         print (printval.data)         printval = printval.next   # Function to add node   def InsertAtPos(self,nodeatpos,newdata):      if nodeatpos is None:         print("The mentioned node is absent")         return      NewNode = Node(newdata)      NewNode.next = nodeatpos.next      nodeatpos.next = NewNodel1 = SLL()l1.head = Node("731")e2 = Node("672")e3 = Node("63")l1.head.next = e2e2.next = e3l1.InsertAtPos(l1.head.next, "122")l1.listprint()

Output

Linked List: 73167212263

Deletion Operation

Deletion is also a more than one step process. We shall learn with pictorial representation. First, locate the target node to be removed, by using searching algorithms.

Deletion Operation

The left (previous) node of the target node now should point to the next node of the target node −

LeftNode.next > TargetNode.next;
Linked List Deletion

This will remove the link that was pointing to the target node. Now, using the following code, we will remove what the target node is pointing at.

TargetNode.next > NULL;
Pointing Target Node

We need to use the deleted node. We can keep that in memory otherwise we can simply deallocate memory and wipe off the target node completely.

use deleted nodedata items

Similar steps should be taken if the node is being inserted at the beginning of the list. While inserting it at the end, the second last node of the list should point to the new node and the new node will point to NULL.

Deletion in linked lists is also performed in three different ways. They are as follows −

Deletion at Beginning

In this deletion operation of the linked, we are deleting an element from the beginning of the list. For this, we point the head to the second node.

Algorithm

1. START2. Assign the head pointer to the next node in the list3. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");      //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void deleteatbegin(){   head = head->next;}int main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(40);   insertatbegin(55);   printf("Linked List: ");      // print list   printList();   deleteatbegin();   printf("\nLinked List after deletion: ");      // print list   printList();}

Output

Linked List: [ 55  40  30  22  12 ]Linked List after deletion: [ 40  30  22  12 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";      //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){      //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void deleteatbegin(){   head = head->next;}int main(){   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   cout << "Linked List: ";   // print list   printList();   deleteatbegin();   cout << "Linked List after deletion: ";   printList();}

Output

Linked List: [ 50  44  30  22  12 ]Linked List after deletion: [ 44  30  22  12 ]
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;      // display the list   static void printList() {      node p = head;      System.out.print("\n[");            //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }      //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;            // point it to old first node      lk.next = head;            //point first to new first node      head = lk;   }   static void deleteatbegin() {      head = head.next;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertatbegin(50);      insertatbegin(33);      System.out.println("Linked List: ");            // print list      printList();      deleteatbegin();      System.out.println("\nLinked List after deletion: ");            // print list      printList();   }}

Output

Linked List: [ 33  50  44  30  22  12 ]Linked List after deletion: [50  44  30  22  12 ]
#python code for deletion at beginning using linked list.from typing import Optionalclass Node:    def __init__(self, data: int, next: Optional['Node'] = None):        self.data = data        self.next = nextclass LinkedList:    def __init__(self):        self.head = None     #display the list    def print_list(self):        p = self.head        print("\n[", end="")        while p:            print(f" {p.data} ", end="")            p = p.next        print("]")     #Insertion at the beginning    def insert_at_begin(self, data: int):        lk = Node(data)         #point it to old first node        lk.next = self.head        #point firt to new first node        self.head = lk    def delete_at_begin(self):        self.head = self.head.nextif __name__ == "__main__":    linked_list = LinkedList()    linked_list.insert_at_begin(12)    linked_list.insert_at_begin(22)    linked_list.insert_at_begin(30)    linked_list.insert_at_begin(44)    linked_list.insert_at_begin(50)    #print list    print("Linked List: ", end="")    linked_list.print_list()    linked_list.delete_at_begin()    print("Linked List after deletion: ", end="")    linked_list.print_list()

Output

Linked List: [ 50  44  30  22  12 ]Linked List after deletion: [ 44  30  22  12 ]

Deletion at Ending

In this deletion operation of the linked, we are deleting an element from the ending of the list.

Algorithm

1. START2. Iterate until you find the second last element in the list.3. Assign NULL to the second last element in the list.4. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");      //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){      //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void deleteatend(){   struct node *linkedlist = head;   while (linkedlist->next->next != NULL)      linkedlist = linkedlist->next;   linkedlist->next = NULL;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(40);   insertatbegin(55);   printf("Linked List: ");      // print list   printList();   deleteatend();   printf("\nLinked List after deletion: ");      // print list   printList();}

Output

Linked List: [ 55  40  30  22  12 ]Linked List after deletion: [ 55  40  30  22 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// Displaying the listvoid printList(){   struct node *p = head;   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }}// Insertion at the beginningvoid insertatbegin(int data){      //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;      // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void deleteatend(){   struct node *linkedlist = head;   while (linkedlist->next->next != NULL)      linkedlist = linkedlist->next;   linkedlist->next = NULL;}int main(){   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   cout << "Linked List: ";   // print list   printList();   deleteatend();   cout << "\nLinked List after deletion: ";   printList();}

Output

Linked List:  50  44  30  22  12 Linked List after deletion:  50  44  30  22
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;      // display the list   static void printList() {      node p = head;      System.out.print("\n[");            //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }      //insertion at the beginning   static void insertatbegin(int data) {            //create a link      node lk = new node(data);;            // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   static void deleteatend() {      node linkedlist = head;      while (linkedlist.next.next != null)         linkedlist = linkedlist.next;      linkedlist.next = null;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertatbegin(50);      insertatbegin(33);      System.out.println("Linked List: ");      // print list      printList();      //deleteatbegin();      deleteatend();      System.out.println("\nLinked List after deletion: ");      // print list      printList();   }}

Output

Linked List: [ 33  50  44  30  22  12 ]Linked List after deletion: [ 33  50  44  30  22 ]
#python code for deletion at beginning using linked list.class Node:    def __init__(self, data=None):        self.data = data        self.next = Noneclass LinkedList:    def __init__(self):        self.head = None #Displaying the list    def printList(self):        p = self.head        print("\n[", end="")        while p != None:            print(" " + str(p.data) + " ", end="")            p = p.next        print("]") #Insertion at the beginning    def insertatbegin(self, data):        #create a link        lk = Node(data)        #point it to old first node        lk.next = self.head        #point first to new first node        self.head = lk    def deleteatend(self):        linkedlist = self.head        while linkedlist.next.next != None:            linkedlist = linkedlist.next        linkedlist.next = Noneif __name__ == "__main__":    linked_list = LinkedList()    linked_list.insertatbegin(12)    linked_list.insertatbegin(22)    linked_list.insertatbegin(30)    linked_list.insertatbegin(40)    linked_list.insertatbegin(55)    #print list    print("Linked List: ", end="")    linked_list.printList()    linked_list.deleteatend()    print("Linked List after deletion: ", end="")    linked_list.printList()

Output

Linked List: [ 55  40  30  22  12 ]Linked List after deletion: [ 55  40  30  22 ]

Deletion at a Given Position

In this deletion operation of the linked, we are deleting an element at any position of the list.

Algorithm

1. START2. Iterate until find the current node at position in the list3. Assign the adjacent node of current node in the list to its previous node.4. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");   //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void deletenode(int key){   struct node *temp = head, *prev;   if (temp != NULL && temp->data == key) {      head = temp->next;      return;   }   // Find the key to be deleted   while (temp != NULL && temp->data != key) {      prev = temp;      temp = temp->next;   }   // If the key is not present   if (temp == NULL) return;   // Remove the node   prev->next = temp->next;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(40);   insertatbegin(55);   printf("Linked List: ");   // print list   printList();   deletenode(30);   printf("\nLinked List after deletion: ");   // print list   printList();}

Output

Linked List: [ 55  40  30  22  12 ]Linked List after deletion: [ 55  40  22  12 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";   //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void deletenode(int key){   struct node *temp = head, *prev;   if (temp != NULL && temp->data == key) {      head = temp->next;      return;   }   // Find the key to be deleted   while (temp != NULL && temp->data != key) {      prev = temp;      temp = temp->next;   }   // If the key is not present   if (temp == NULL) return;   // Remove the node   prev->next = temp->next;}int main(){   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   cout << "Linked List: ";   // print list   printList();   deletenode(30);   cout << "Linked List after deletion: ";   printList();}

Output

Linked List: [ 50  44  30  22  12 ]Linked List after deletion: [ 50  44  22  12 ]
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;      // display the list   static void printList() {      node p = head;      System.out.print("\n[");         //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }      //insertion at the beginning   static void insertatbegin(int data) {         //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   static void deletenode(int key) {      node temp = head;      node prev = null;      if (temp != null && temp.data == key) {         head = temp.next;         return;      }            // Find the key to be deleted      while (temp != null && temp.data != key) {         prev = temp;         temp = temp.next;      }            // If the key is not present      if (temp == null) return;            // Remove the node      prev.next = temp.next;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertatbegin(50);      insertatbegin(33);      System.out.println("Linked List: ");      // print list      printList();      //deleteatbegin();      //deleteatend();      deletenode(12);      System.out.println("\nLinked List after deletion: ");      // print list      printList();   }}

Output

Linked List: [ 33  50  44  30  22  12 ]Linked List after deletion: [ 33  50  44  30  22 ]
#python code for deletion at given position using linked list.class Node:    def __init__(self, data=None):        self.data = data        self.next = Noneclass LinkedList:    def __init__(self):        self.head = None    # display the list    def printList(self):        p = self.head        print("\n[", end="")        #start from the beginning        while(p != None):            print(" ", p.data, " ", end="")            p = p.next        print("]")    #insertion at the beginning    def insertatbegin(self, data):        #create a link        lk = Node(data)        # point it to old first node        lk.next = self.head        #point first to new first node        self.head = lk    def deletenode(self, key):        temp = self.head        if (temp != None and temp.data == key):            self.head = temp.next            return        # Find the key to be deleted        while (temp != None and temp.data != key):            prev = temp            temp = temp.next        # If the key is not present        if (temp == None):            return        # Remove the node        prev.next = temp.nextllist = LinkedList()llist.insertatbegin(12)llist.insertatbegin(22)llist.insertatbegin(30)llist.insertatbegin(40)llist.insertatbegin(55)print("Original Linked List: ", end="")# print listllist.printList()llist.deletenode(30)print("\nLinked List after deletion: ", end="")# print listllist.printList()

Output

Linked List: [ 55  40  30  22  12 ]Linked List after deletion: [ 55  40  22  12 ]

Reverse Operation

This operation is a thorough one. We need to make the last node to be pointed by the head node and reverse the whole linked list.

Reverse Operation

First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall make it point to its previous node −

traverse to the end

We have to make sure that the last node is not the last node. So we'll have some temp node, which looks like the head node pointing to the last node. Now, we shall make all left side nodes point to their previous nodes one by one.

temp node

Except the node (first node) pointed by the head node, all nodes should point to their predecessor, making them their new successor. The first node will point to NULL.

point to null

We'll make the head node point to the new first node by using the temp node.

the temp node

Algorithm

Step by step process to reverse a linked list is as follows −

1 START2. We use three pointers to perform the reversing: prev, next, head.3. Point the current node to head and assign its next value to the prev node.4. Iteratively repeat the step 3 for all the nodes in the list.5. Assign head to the prev node.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");      //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void reverseList(struct node** head){   struct node *prev = NULL, *cur=*head, *tmp;   while(cur!= NULL) {      tmp = cur->next;      cur->next = prev;      prev = cur;      cur = tmp;   }   *head = prev;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(40);   insertatbegin(55);   printf("Linked List: ");   // print list   printList();   reverseList(&head);   printf("\nReversed Linked List: ");   printList();}

Output

Linked List: [ 55  40  30  22  12 ]Reversed Linked List: [ 12  22  30  40  55 ]
#include <bits/stdc++.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");   //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void reverseList(struct node** head){   struct node *prev = NULL, *cur=*head, *tmp;   while(cur!= NULL) {      tmp = cur->next;      cur->next = prev;      prev = cur;      cur = tmp;   }   *head = prev;}int main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(40);   insertatbegin(55);   printf("Linked List: ");   // print list   printList();   reverseList(&head);   printf("\nReversed Linked List: ");   printList();   return 0;}

Output

Linked List: [ 55  40  30  22  12 ]Reversed Linked List: [ 12  22  30  40  55 ]
public class Linked_List {   static Node head;   static class Node {      int data;      Node next;      Node (int value) {         data = value;         next = null;      }   }   // display the list   static void printList(Node node) {      System.out.print("\n[");      //start from the beginning      while(node != null) {         System.out.print(" " + node.data + " ");         node = node.next;      }      System.out.print("]");   }   static Node reverseList(Node head) {      Node prev = null;      Node cur = head;      Node temp = null;      while (cur != null) {         temp = cur.next;         cur.next = prev;         prev = cur;         cur = temp;      }      head = prev;      return head;   }   public static void main(String args[]) {      Linked_List list = new Linked_List();      list.head = new Node(33);      list.head.next = new Node(50);      list.head.next.next = new Node(44);      list.head.next.next.next = new Node(22);      list.head.next.next.next.next = new Node(12);      System.out.println("Linked List: ");            // print list      list.printList(head);      head = list.reverseList(head);      System.out.println("\nReversed linked list ");      list.printList(head);   }}

Output

Linked List: [ 33  50  44  22  12 ]Reversed linked list [ 12 22  44  50  33 ]
class Node:   def __init__(self, data=None):      self.data = data      self.next = Noneclass SLL:   def __init__(self):      self.head = None# Print the linked list   def listprint(self):      printval = self.head      print("Linked List: ")      while printval is not None:         print (printval.data)         printval = printval.next   def reverse(self):      prev = None      curr = self.head      while(curr is not None):         next = curr.next         curr.next = prev         prev = curr         curr = next      self.head = prevl1 = SLL()l1.head = Node("731")e2 = Node("672")e3 = Node("63")l1.head.next = e2e2.next = e3l1.listprint()l1.reverse()print("After reversing: ")l1.listprint()

Output

Linked List: 73167263After reversing: Linked List: 63672731

Search Operation

Searching for an element in the list using a key element. This operation is done in the same way as array search; comparing every element in the list with the key element given.

Algorithm

1 START2 If the list is not empty, iteratively check if the list contains the key3 If the key element is not present in the list, unsuccessful search4 END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");   //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}int searchlist(int key){   struct node *temp = head;   while(temp != NULL) {      if (temp->data == key) {         return 1;      }      temp=temp->next;   }   return 0;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(40);   insertatbegin(55);   printf("Linked List: ");   // print list   printList();   k = searchlist(30);   if (k == 1)      printf("\nElement is found");   else      printf("\nElement is not present in the list");}

Output

Linked List: [ 55  40  30  22  12 ]Element is found
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";   //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}int searchlist(int key){   struct node *temp = head;   while(temp != NULL) {      if (temp->data == key) {         return 1;      }      temp=temp->next;   }   return 0;}int main(){   int k = 0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   cout << "Linked List: ";   // print list   printList();   k = searchlist(16);   if (k == 1)      cout << "\nElement is found";   else      cout << "\nElement is not present in the list";}

Output

Linked List: [ 50  44  30  22  12 ]Element is not present in the list
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;   // display the list   static void printList() {      node p = head;      System.out.print("\n[");      //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }   //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;            //point first to new first node      head = lk;   }   static int searchlist(int key) {      node temp = head;      while(temp != null) {         if (temp.data == key) {            return 1;         }         temp=temp.next;      }      return 0;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertatbegin(50);      insertatbegin(33);      System.out.println("Linked List: ");      // print list      printList();      k = searchlist(44);      if (k == 1)         System.out.println("\nElement is found");      else         System.out.println("\nElement is not present in the list");   }}

Output

Linked List: [33  50  44  30  22  12 ]Element is found
class Node:   def __init__(self, data=None):      self.data = data      self.next = Noneclass SLL:   def __init__(self):      self.head = None   def search(self, x):      count = 0            # Initialize current to head      current = self.head      # loop till current not equal to None      while current != None:         if current.data == x:            print("data found")            count = count + 1         current = current.next      if count == 0:         print("Data Not found")l1 = SLL()l1.head = Node("731")e2 = Node("672")e3 = Node("63")l1.head.next = e2e2.next = e3l1.search("63")

Output

data found

Traversal Operation

The traversal operation walks through all the elements of the list in an order and displays the elements in that order.

Algorithm

1. START2. While the list is not empty and did not reach the end of the list, print the data in each node3. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;   // display the list   void printList(){   struct node *p = head;   printf("\n[");   //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}   //insertion at the beginning   void insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   printf("Linked List: ");   // print list   printList();}

Output

Linked List: [ 30  22  12 ]
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// Displaying the listvoid printList(){   struct node *p = head;   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }}// Insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}int main(){   insertatbegin(12);   insertatbegin(22);   insertatbegin(30);   insertatbegin(44);   insertatbegin(50);   cout << "Linked List: ";   // print list   printList();}

Output

Linked List:  50  44  30  22  12
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;   // display the list   static void printList() {      node p = head;      System.out.print("\n[");            //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }      //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatbegin(30);      insertatbegin(44);      insertatbegin(50);      insertatbegin(33);      System.out.println("Linked List: ");      // print list      printList();   }}

Output

Linked List: [ 33  50  44  30  22  12 ]
class Node:   def __init__(self, data=None):      self.data = data      self.next = Noneclass SLL:   def __init__(self):      self.head = None# Print the linked list   def listprint(self):      printval = self.head      print("Linked List: ")      while printval is not None:         print (printval.data)         printval = printval.nextl1 = SLL()l1.head = Node("731")e2 = Node("672")e3 = Node("63")l1.head.next = e2e2.next = e3l1.listprint()

Output

Linked List: 73167263

Complete implementation

#include <stdio.h>#include <string.h>#include <stdlib.h>struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   printf("\n[");   //start from the beginning   while(p != NULL) {      printf(" %d ",p->data);      p = p->next;   }   printf("]");}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void insertatend(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   struct node *linkedlist = head;   // point it to old first node   while(linkedlist->next != NULL)      linkedlist = linkedlist->next;   //point first to new first node   linkedlist->next = lk;}void insertafternode(struct node *list, int data){   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   lk->next = list->next;   list->next = lk;}void deleteatbegin(){   head = head->next;}void deleteatend(){   struct node *linkedlist = head;   while (linkedlist->next->next != NULL)      linkedlist = linkedlist->next;   linkedlist->next = NULL;}void deletenode(int key){   struct node *temp = head, *prev;   if (temp != NULL && temp->data == key) {      head = temp->next;      return;   }   // Find the key to be deleted   while (temp != NULL && temp->data != key) {      prev = temp;      temp = temp->next;   }   // If the key is not present   if (temp == NULL) return;   // Remove the node   prev->next = temp->next;}int searchlist(int key){   struct node *temp = head;   while(temp != NULL) {      if (temp->data == key) {         return 1;      }      temp=temp->next;   }   return 0;}void main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatend(30);   insertatend(44);   insertatbegin(50);   insertafternode(head->next->next, 33);   printf("Linked List: ");   // print list   printList();   deleteatbegin();   deleteatend();   deletenode(12);   printf("\nLinked List after deletion: ");   // print list   printList();   insertatbegin(4);   insertatbegin(16);   printf("\nUpdated Linked List: ");   printList();   k = searchlist(16);   if (k == 1)      printf("\nElement is found");   else      printf("\nElement is not present in the list");}

Output

Linked List: [ 50  22  12  33  30  44 ]Linked List after deletion: [ 22  33  30 ]Updated Linked List: [ 16  4  22  33  30 ]Element is found
#include <bits/stdc++.h>#include <string>using namespace std;struct node {   int data;   struct node *next;};struct node *head = NULL;struct node *current = NULL;// display the listvoid printList(){   struct node *p = head;   cout << "\n[";   //start from the beginning   while(p != NULL) {      cout << " " << p->data << " ";      p = p->next;   }   cout << "]";}//insertion at the beginningvoid insertatbegin(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   // point it to old first node   lk->next = head;   //point first to new first node   head = lk;}void insertatend(int data){   //create a link   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   struct node *linkedlist = head;   // point it to old first node   while(linkedlist->next != NULL)      linkedlist = linkedlist->next;   //point first to new first node   linkedlist->next = lk;}void insertafternode(struct node *list, int data){   struct node *lk = (struct node*) malloc(sizeof(struct node));   lk->data = data;   lk->next = list->next;   list->next = lk;}void deleteatbegin(){   head = head->next;}void deleteatend(){   struct node *linkedlist = head;   while (linkedlist->next->next != NULL)      linkedlist = linkedlist->next;   linkedlist->next = NULL;}void deletenode(int key){   struct node *temp = head, *prev;   if (temp != NULL && temp->data == key) {      head = temp->next;      return;   }   // Find the key to be deleted   while (temp != NULL && temp->data != key) {      prev = temp;      temp = temp->next;   }   // If the key is not present   if (temp == NULL) return;   // Remove the node   prev->next = temp->next;}int searchlist(int key){   struct node *temp = head;   while(temp != NULL) {      if (temp->data == key) {         temp=temp->next;         return 1;      } else         return 0;   }}int main(){   int k=0;   insertatbegin(12);   insertatbegin(22);   insertatend(30);   insertatend(44);   insertatbegin(50);   insertafternode(head->next->next, 33);   cout << "Linked List: ";   // print list   printList();   deleteatbegin();   deleteatend();   deletenode(12);   cout << "\nLinked List after deletion: ";   // print list   printList();   insertatbegin(4);   insertatbegin(16);   cout << "\nUpdated Linked List: ";   printList();   k = searchlist(16);   if (k == 1)      cout << "\nElement is found";   else      cout << "\nElement is not present in the list";   return 0;}

Output

Linked List: [ 50  22  12  33  30  44 ]Linked List after deletion: [ 22  33  30 ]Updated Linked List: [ 16  4  22  33  30 ]Element is found
public class Linked_List {   static class node {      int data;      node next;      node (int value) {         data = value;         next = null;      }   }   static node head;   // display the list   static void printList() {      node p = head;      System.out.print("\n[");      //start from the beginning      while(p != null) {         System.out.print(" " + p.data + " ");         p = p.next;      }      System.out.print("]");   }   //insertion at the beginning   static void insertatbegin(int data) {      //create a link      node lk = new node(data);;      // point it to old first node      lk.next = head;      //point first to new first node      head = lk;   }   static void insertatend(int data) {      //create a link      node lk = new node(data);      node linkedlist = head;      // point it to old first node      while(linkedlist.next != null)         linkedlist = linkedlist.next;      //point first to new first node      linkedlist.next = lk;   }   static void insertafternode(node list, int data) {      node lk = new node(data);      lk.next = list.next;      list.next = lk;   }   static void deleteatbegin() {      head = head.next;   }   static void deleteatend() {      node linkedlist = head;      while (linkedlist.next.next != null)         linkedlist = linkedlist.next;      linkedlist.next = null;   }   static void deletenode(int key) {      node temp = head;      node prev = null;      if (temp != null && temp.data == key) {         head = temp.next;         return;      }      // Find the key to be deleted      while (temp != null && temp.data != key) {         prev = temp;         temp = temp.next;      }            // If the key is not present      if (temp == null) return;            // Remove the node      prev.next = temp.next;   }   static int searchlist(int key) {      node temp = head;      while(temp != null) {         if (temp.data == key) {            temp=temp.next;            return 1;         }      }      return 0;   }   public static void main(String args[]) {      int k=0;      insertatbegin(12);      insertatbegin(22);      insertatend(30);      insertatend(44);      insertatbegin(50);      insertafternode(head.next.next, 33);      System.out.println("Linked List: ");            // print list      printList();      deleteatbegin();      deleteatend();      deletenode(12);      System.out.println("\nLinked List after deletion: ");      // print list      printList();      insertatbegin(4);      insertatbegin(16);      System.out.println("\nUpdated Linked List: ");      printList();      k = searchlist(16);      if (k == 1)         System.out.println("\nElement is found");      else         System.out.println("\nElement is not present in the list");   }}

Output

Linked List:[ 50 22 12 33 30 44 ]Linked List after deletion:[ 22 33 30 ]Updated Linked List:[ 16 4 22 33 30 ]Element is found
class LLNode:   def __init__(self, data=None):      self.data = data      self.next = Noneclass LL:   def __init__(self):      self.head = None   def listprint(self):      printval = self.head      while printval is not None:         print(printval.data)         printval = printval.next   def AddAtBeginning(self,newdata):      NewNode = LLNode(newdata)      # Update the new nodes next val to existing node      NewNode.next = self.head      self.head = NewNode   # Function to add node at a position   def InsertAtPos(self,nodeatpos,newdata):      if nodeatpos is None:         print("The mentioned node is absent")         return      NewNode = LLNode(newdata)      NewNode.next = nodeatpos.next      nodeatpos.next = NewNode   def reverse(self):      prev = None      curr = self.head      while(curr is not None):         next = curr.next         curr.next = prev         prev = curr         curr = next      self.head = prev   def search(self, x):      count = 0      # Initialize current to head      current = self.head      # loop till current not equal to None      while current != None:         if current.data == x:            print("data found")            count = count + 1         current = current.next      if count == 0:         print("Data Not found")l1 = LL()l1.head = LLNode("23")l2 = LLNode("12")l3 = LLNode("7")l4 = LLNode("14")l5 = LLNode("61")# Linking the first Node to second nodel1.head.next = l2# Linking the second Node to third nodel2.next = l3l3.next = l4l4.next = l5print("Original Linked List: ")l1.listprint()l1.AddAtBeginning("45")l1.InsertAtPos(l1.head.next.next, "4")print("Updated Linked List:")l1.listprint()l1.reverse()print("Reversed Linked List:")l1.listprint()l1.search("7")

Output

Original Linked List: 231271461Updated Linked List:452312471461Reversed Linked List:611474122345data found

Doubly Linked List Data Structure

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways, either forward and backward easily as compared to Single Linked List. Following are the important terms to understand the concept of doubly linked list.

  • Link − Each link of a linked list can store a data called an element.

  • Next − Each link of a linked list contains a link to the next link called Next.

  • Prev − Each link of a linked list contains a link to the previous link called Prev.

  • Linked List − A Linked List contains the connection link to the first link called First and to the last link called Last.

Doubly Linked List Representation

Doubly Linked List Representation

As per the above illustration, following are the important points to be considered.

  • Doubly Linked List contains a link element called first and last.

  • Each link carries a data field(s) and a link field called next.

  • Each link is linked with its next link using its next link.

  • Each link is linked with its previous link using its previous link.

  • The last link carries a link as null to mark the end of the list.

Basic Operations

Following are the basic operations supported by a list.

  • Insertion − Adds an element at the beginning of the list.

  • Deletion − Deletes an element at the beginning of the list.

  • Insert Last − Adds an element at the end of the list.

  • Delete Last − Deletes an element from the end of the list.

  • Insert After − Adds an element after an item of the list.

  • Delete − Deletes an element from the list using the key.

  • Display forward − Displays the complete list in a forward manner.

  • Display backward − Displays the complete list in a backward manner.

Insertion at the Beginning

In this operation, we create a new node with three compartments, one containing the data, the others containing the address of its previous and next nodes in the list. This new node is inserted at the beginning of the list.

Algorithm

1. START2. Create a new node with three variables: prev, data, next.3. Store the new data in the data variable4. If the list is empty, make the new node as head.5. Otherwise, link the address of the existing first node to the next variable of the new node, and assign null to the prev variable.6. Point the head to the new node.7. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the doubly linked listvoid printList(){   struct node *ptr = head;   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}void main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("\nDoubly Linked List: ");   printList();}

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10)
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the doubly linked listvoid printList(){   struct node *ptr = head;   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("\nDoubly Linked List: ");   printList();   return 0;}

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10)
//Java code for doubly linked listimport java.util.*;class Node {    public int data;    public int key;    public Node next;    public Node prev;    public Node(int data, int key) {        this.data = data;        this.key = key;        this.next = null;        this.prev = null;    }}public class Main {    //this link always point to first Link    static Node head = null;    //this link always point to last Link    static Node last = null;    static Node current = null;    // is list empty    public static boolean is_empty() {        return head == null;    }    //display the doubly linked list    public static void print_list() {        Node ptr = head;        while (ptr != null) {            System.out.println("(" + ptr.key + "," + ptr.data + ")");            ptr = ptr.next;        }    }    //insert link at the first location    public static void insert_first(int key, int data) {          //create a link        Node link = new Node(data, key);        if (is_empty()) {            //make it the last link            last = link;        } else {            //update first prev link            head.prev = link;        }        //point it to old first link        link.next = head;         //point first to new first link        head = link;    }    public static void main(String[] args) {        insert_first(1, 10);        insert_first(2, 20);        insert_first(3, 30);        insert_first(4, 1);        insert_first(5, 40);        insert_first(6, 56);        System.out.println("\nDoubly Linked List: ");        print_list();    }}

Output

Doubly Linked List: (6,56)(5,40)(4,1)(3,30)(2,20)(1,10)
#Python code for doubly linked listclass Node:    def __init__(self, data=None, key=None):        self.data = data        self.key = key        self.next = None        self.prev = None#this link always point to first Linkhead = None#this link always point to last Linklast = Nonecurrent = None#is list emptydef is_empty():    return head == None#display the doubly linked listdef print_list():    ptr = head    while ptr != None:        print(f"({ptr.key},{ptr.data})")        ptr = ptr.next#insert link at the first locationdef insert_first(key, data):    global head, last    #create a link    link = Node(data, key)    if is_empty():        #make it the last link        last = link    else:        #update first prev link        head.prev = link    #point it to old first link    link.next = head    #point first to new first link    head = linkinsert_first(1,10)insert_first(2,20)insert_first(3,30)insert_first(4,1)insert_first(5,40)insert_first(6,56)print("\nDoubly Linked List: ")print_list()

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10)

Deletion at the Beginning

This deletion operation deletes the existing first nodes in the doubly linked list. The head is shifted to the next node and the link is removed.

Algorithm

1. START2. Check the status of the doubly linked list3. If the list is empty, deletion is not possible4. If the list is not empty, the head pointer is shifted to the next node.5. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the doubly linked listvoid printList(){   struct node *ptr = head;   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}//delete first itemstruct node* deleteFirst(){   //save reference to first link   struct node *tempLink = head;   //if only one link   if(head->next == NULL) {      last = NULL;   } else {      head->next->prev = NULL;   }   head = head->next;   //return the deleted link   return tempLink;}void main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("\nDoubly Linked List: ");   printList();   printf("\nList after deleting first record: ");   deleteFirst();   printList();}

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) List after deleting first record: (5,40) (4,1) (3,30) (2,20) (1,10)
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the doubly linked listvoid printList(){   struct node *ptr = head;   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}//delete first itemstruct node* deleteFirst(){   //save reference to first link   struct node *tempLink = head;   //if only one link   if(head->next == NULL) {      last = NULL;   } else {      head->next->prev = NULL;   }   head = head->next;   //return the deleted link   return tempLink;}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("\nDoubly Linked List: ");   printList();   printf("\nList after deleting first record: ");   deleteFirst();   printList();   return 0;}

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) List after deleting first record: (5,40) (4,1) (3,30) (2,20) (1,10)
//Java code for doubly linked listimport java.util.*;class Node {    public int data;    public int key;    public Node next;    public Node prev;    public Node(int data, int key) {        this.data = data;        this.key = key;        this.next = null;        this.prev = null;    }}public class Main {    //this link always point to first Link    public static Node head = null;    //this link always point to last Link    public static Node last = null;    //this link always point to current Link    public static Node current = null;    //is list empty    public static boolean isEmpty() {        return head == null;    }    //display the doubly linked list    public static void printList() {        Node ptr = head;        while (ptr != null) {            System.out.print("(" + ptr.key + "," + ptr.data + ") ");            ptr = ptr.next;        }    }    //insert link at the first location    public static void insertFirst(int key, int data) {        //create a link        Node link = new Node(data, key);        if (isEmpty()) {            //make it the last link            last = link;        } else {            //update first prev link            head.prev = link;        }        //point it to old first link        link.next = head;        head = link;    }    //delete the first item    public static Node deleteFirst() {        //save reference to first link        Node tempLink = head;        //if only one link        if (head.next == null) {            last = null;        } else {            head.next.prev = null;        }        head = head.next;        //return the deleted link        return tempLink;    }    public static void main(String[] args) {        insertFirst(1, 10);        insertFirst(2, 20);        insertFirst(3, 30);        insertFirst(4, 1);        insertFirst(5, 40);        insertFirst(6, 56);        System.out.print("\nDoubly Linked List: ");        printList();        System.out.print("\nList after deleting first record: ");        deleteFirst();        printList();    }}

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) List after deleting first record: (5,40) (4,1) (3,30) (2,20) (1,10)
#Python code for doubly linked listclass Node:    def __init__(self, data=None, key=None):        self.data = data        self.key = key        self.next = None        self.prev = None#this link always point to first Linkhead = None#this link always point to last Linklast = Nonecurrent = None#is list emptydef isEmpty():    return head == None#display the doubly linked listdef printList():    ptr = head    while ptr != None:        print(f"({ptr.key},{ptr.data}) ", end="")        ptr = ptr.next#insert link at the first locationdef insertFirst(key, data):    #create a link    global head, last    link = Node(data, key)    if isEmpty():        #make it the last link        last = link    else:        #update first prev link        head.prev = link    #point it to old first link    link.next = head    head = link#delete first itemdef deleteFirst():     #save reference to first link    global head, last    tempLink = head    #if only one link    if head.next == None:        last = None    else:        head.next.prev = None    head = head.next    #return the deleted link    return tempLinkinsertFirst(1,10)insertFirst(2,20)insertFirst(3,30)insertFirst(4,1)insertFirst(5,40)insertFirst(6,56)print("\nDoubly Linked List: ", end="")printList()print("\nList after deleting first record: ")deleteFirst()printList()

Output

Doubly Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) (1,10) List after deleting first record: (5,40) (4,1) (3,30) (2,20) (1,10)

Insertion at the End

In this insertion operation, the new input node is added at the end of the doubly linked list; if the list is not empty. The head will be pointed to the new node, if the list is empty.

Algorithm

1. START2. If the list is empty, add the node to the list and point the head to it.3. If the list is not empty, find the last node of the list.4. Create a link between the last node in the list and the new node.5. The new node will point to NULL as it is the new last node.6. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the doubly linked listvoid printList(){   struct node *ptr = head;   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}//insert link at the last locationvoid insertLast(int key, int data){      //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //make link a new last link      last->next = link;      //mark old last node as prev of new link      link->prev = last;   }   //point last to new last node   last = link;}void main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertLast(5,40);   insertLast(6,56);   printf("\nDoubly Linked List: ");   printList();}

Output

Doubly Linked List: (4,1) (3,30) (2,20) (1,10) (5,40) (6,56)
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the doubly linked listvoid printList(){   struct node *ptr = head;   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}//insert link at the last locationvoid insertLast(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //make link a new last link      last->next = link;      //mark old last node as prev of new link      link->prev = last;   }   //point last to new last node   last = link;}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertLast(5,40);   insertLast(6,56);   printf("\nDoubly Linked List: ");   printList();   return 0;}

Output

Doubly Linked List: (4,1) (3,30) (2,20) (1,10) (5,40) (6,56)
import java.util.*;class Node {    public int data;    public int key;    public Node next;    public Node prev;    public Node(int data, int key) {        this.data = data;        this.key = key;        this.next = null;        this.prev = null;    }}public class Main {    static Node head = null;    static Node last = null;    static Node current = null;    public static boolean isEmpty() {        return head == null;    }     public static void printList() {        Node ptr = head;        while (ptr != null) {            System.out.print("(" + ptr.key + "," + ptr.data + ") ");            ptr = ptr.next;        }    }    public static void insertFirst(int key, int data) {        Node link = new Node(data, key);        if (isEmpty()) {            last = link;        } else {            head.prev = link;        }        link.next = head;        head = link;    }    public static void insertLast(int key, int data) {        Node link = new Node(data, key);        if (isEmpty()) {            last = link;        } else {            last.next = link;            link.prev = last;        }        last = link;    }        public static void main(String[] args) {        insertFirst(1,10);        insertFirst(2,20);        insertFirst(3,30);        insertFirst(4,1);        insertLast(5,40);        insertLast(6,56);        System.out.print("\nDoubly Linked List: ");        printList();    }}

Output

Doubly Linked List: (4,1) (3,30) (2,20) (1,10) (5,40) (6,56)
class Node:    def __init__(self, data=None, key=None):        self.data = data        self.key = key        self.next = None        self.prev = Nonehead = Nonelast = Nonecurrent = Nonedef isEmpty():    return head == Nonedef printList():    ptr = head    while ptr != None:        print(f"({ptr.key},{ptr.data})", end=" ")        ptr = ptr.nextdef insertFirst(key, data):    global head, last    link = Node(data, key)    if isEmpty():        last = link    else:        head.prev = link    link.next = head    head = linkdef insertLast(key, data):    global head, last    link = Node(data, key)    if isEmpty():        last = link    else:        last.next = link        link.prev = last    last = linkinsertFirst(1,10)insertFirst(2,20)insertFirst(3,30)insertFirst(4,1)insertLast(5,40)insertLast(6,56)print("\nDoubly Linked List: ", end="")printList()

Output

Doubly Linked List: (4,1) (3,30) (2,20) (1,10) (5,40) (6,56)

Complete implementation
#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the list in from first to lastvoid displayForward(){   //start from the beginning   struct node *ptr = head;   //navigate till the end of the list   printf("\n[ ");   while(ptr != NULL) {      printf("(%d,%d) ",ptr->key,ptr->data);      ptr = ptr->next;   }   printf(" ]");}//display the list from last to firstvoid displayBackward(){//start from the last   struct node *ptr = last;   //navigate till the start of the list   printf("\n[ ");   while(ptr != NULL) {      //print data      printf("(%d,%d) ",ptr->key,ptr->data);      //move to next item      ptr = ptr ->prev;      printf(" ");   }   printf(" ]");}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}//insert link at the last locationvoid insertLast(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //make link a new last link      last->next = link;      //mark old last node as prev of new link      link->prev = last;   }   //point last to new last node   last = link;}//delete first itemstruct node* deleteFirst(){   //save reference to first link   struct node *tempLink = head;   //if only one link   if(head->next == NULL) {      last = NULL;   } else {      head->next->prev = NULL;   }   head = head->next;   //return the deleted link   return tempLink;}//delete link at the last locationstruct node* deleteLast(){   //save reference to last link   struct node *tempLink = last;   //if only one link   if(head->next == NULL) {      head = NULL;   } else {      last->prev->next = NULL;   }   last = last->prev;   //return the deleted link   return tempLink;}//delete a link with given keystruct node* delete(int key){   //start from the first link   struct node* current = head;   struct node* previous = NULL;   //if list is empty   if(head == NULL) {      return NULL;   }   //navigate through list   while(current->key != key) {      //if it is last node      if(current->next == NULL) {         return NULL;      } else {         //store reference to current link         previous = current;         //move to next link         current = current->next;      }   }   //found a match, update the link   if(current == head) {      //change first to point to next link      head = head->next;   } else {      //bypass the current link      current->prev->next = current->next;   }   if(current == last) {      //change last to point to prev link      last = current->prev;   } else {      current->next->prev = current->prev;   }   return current;}bool insertAfter(int key, int newKey, int data){   //start from the first link   struct node *current = head;   //if list is empty   if(head == NULL) {      return false;   }   //navigate through list   while(current->key != key) {      //if it is last node      if(current->next == NULL) {         return false;      } else {         //move to next link         current = current->next;      }   }   //create a link   struct node *newLink = (struct node*) malloc(sizeof(struct node));   newLink->key = key;   newLink->data = data;   if(current == last) {      newLink->next = NULL;      last = newLink;   } else {      newLink->next = current->next;      current->next->prev = newLink;   }   newLink->prev = current;   current->next = newLink;   return true;}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("\nList (First to Last): ");   displayForward();   printf("\n");   printf("\nList (Last to first): ");   displayBackward();   printf("\nList , after deleting first record: ");   deleteFirst();   displayForward();   printf("\nList , after deleting last record: ");   deleteLast();   displayForward();   printf("\nList , insert after key(4) : ");   insertAfter(4,7, 13);   displayForward();   printf("\nList , after delete key(4) : ");   delete(4);   displayForward();}

Output

List (First to Last): [ (6,56) (5,40) (4,1) (3,30) (2,20) (1,10)  ]List (Last to first): [ (1,10)  (2,20)  (3,30)  (4,1)  (5,40)  (6,56)   ]List , after deleting first record: [ (5,40) (4,1) (3,30) (2,20) (1,10)  ]List , after deleting last record: [ (5,40) (4,1) (3,30) (2,20)  ]List , insert after key(4) : [ (5,40) (4,1) (4,13) (3,30) (2,20)  ]List , after delete key(4) : [ (5,40) (4,13) (3,30) (2,20)  ]
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>using namespace std;struct node {   int data;   int key;   struct node *next;   struct node *prev;};//this link always point to first Linkstruct node *head = NULL;//this link always point to last Linkstruct node *last = NULL;struct node *current = NULL;//is list emptybool isEmpty(){   return head == NULL;}//display the list in from first to lastvoid displayForward(){   //start from the beginning   struct node *ptr = head;   //navigate till the end of the list   cout << "\n[ ";   while(ptr != NULL) {      cout << "(" << ptr->key << "," << ptr->data << ")";      ptr = ptr->next;   }   cout << " ]" << endl;}//display the list from last to firstvoid displayBackward(){   //start from the last   struct node *ptr = last;   //navigate till the start of the list   cout << "\n[ ";   while(ptr != NULL) {      //print data      cout << "(" << ptr->key << "," << ptr->data << ")";      //move to next item      ptr = ptr ->prev;      cout << " ";   }   cout << " ]" << endl;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //update first prev link      head->prev = link;   }   //point it to old first link   link->next = head;   //point first to new first link   head = link;}//insert link at the last locationvoid insertLast(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if(isEmpty()) {      //make it the last link      last = link;   } else {      //make link a new last link      last->next = link;      //mark old last node as prev of new link      link->prev = last;   }   //point last to new last node   last = link;}//delete first itemstruct node* deleteFirst(){   //save reference to first link   struct node *tempLink = head;   //if only one link   if(head->next == NULL) {      last = NULL;   } else {      head->next->prev = NULL;   }   head = head->next;   //return the deleted link   return tempLink;}//delete link at the last locationstruct node* deleteLast(){   //save reference to last link   struct node *tempLink = last;   //if only one link   if(head->next == NULL) {      head = NULL;   } else {      last->prev->next = NULL;   }   last = last->prev;   //return the deleted link   return tempLink;}//delete a link with given keystruct node* deletenode(int key){   //start from the first link   struct node* current = head;   struct node* previous = NULL;   //if list is empty   if(head == NULL) {      return NULL;   }   //navigate through list   while(current->key != key) {      //if it is last node      if(current->next == NULL) {         return NULL;      } else {         //store reference to current link         previous = current;         //move to next link         current = current->next;      }   }   //found a match, update the link   if(current == head) {      //change first to point to next link      head = head->next;   } else {            //bypass the current link      current->prev->next = current->next;   }   if(current == last) {      //change last to point to prev link      last = current->prev;   } else {      current->next->prev = current->prev;   }   return current;}bool insertAfter(int key, int newKey, int data){   //start from the first link   struct node *current = head;   //if list is empty   if(head == NULL) {      return false;   }   //navigate through list   while(current->key != key) {      //if it is last node      if(current->next == NULL) {         return false;      } else {         //move to next link         current = current->next;      }   }   //create a link   struct node *newLink = (struct node*) malloc(sizeof(struct node));   newLink->key = key;   newLink->data = data;   if(current == last) {      newLink->next = NULL;      last = newLink;   } else {      newLink->next = current->next;      current->next->prev = newLink;   }   newLink->prev = current;   current->next = newLink;   return true;}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("\nList (First to Last): ");   displayForward();   printf("\n");   printf("\nList (Last to first): ");   displayBackward();   printf("\nList , after deleting first record: ");   deleteFirst();   displayForward();   printf("\nList , after deleting last record: ");   deleteLast();   displayForward();   printf("\nList , insert after key(4) : ");   insertAfter(4, 7, 13);   displayForward();   printf("\nList , after delete key(4) : ");   deletenode(4);   displayForward();   return 0;}

Output

List (First to Last):[ (6, 56) (5, 40) (4, 1) (3, 30) (2, 20) (1, 10) ]List (Last to First):[ (1, 10) (2, 20) (3, 30) (4, 1) (5, 40) (6, 56) ]List, after deleting first record:[ (5, 40) (4, 1) (3, 30) (2, 20) (1, 10) ]List, after deleting last record:[ (5, 40) (4, 1) (3, 30) (2, 20) ]List, insert after key(4):[ (5, 40) (4, 1) (7, 13) (3, 30) (2, 20) ]List, after delete key(4):[ (5, 40) (7, 13) (3, 30) (2, 20) ]
class Node {    int data;    int key;    Node next;    Node prev;    public Node(int key, int data) {        this.key = key;        this.data = data;        this.next = null;        this.prev = null;    }}class DoublyLinkedList {    Node head;    Node last;    boolean isEmpty() {        return head == null;    }    void displayForward() {        Node ptr = head;        System.out.print("[ ");        while (ptr != null) {            System.out.print("(" + ptr.key + "," + ptr.data + ") ");            ptr = ptr.next;        }        System.out.println("]");    }    void displayBackward() {        Node ptr = last;        System.out.print("[ ");        while (ptr != null) {            System.out.print("(" + ptr.key + "," + ptr.data + ") ");            ptr = ptr.prev;        }        System.out.println("]");    }    void insertFirst(int key, int data) {        Node link = new Node(key, data);        if (isEmpty()) {            last = link;        } else {            head.prev = link;        }        link.next = head;        head = link;    }    void insertLast(int key, int data) {        Node link = new Node(key, data);        if (isEmpty()) {            last = link;        } else {            last.next = link;            link.prev = last;        }        last = link;    }    Node deleteFirst() {        if (isEmpty()) {            return null;        }        Node tempLink = head;        if (head.next == null) {            last = null;        } else {            head.next.prev = null;        }        head = head.next;        return tempLink;    }    Node deleteLast() {        if (isEmpty()) {            return null;        }        Node tempLink = last;        if (head.next == null) {            head = null;        } else {            last.prev.next = null;        }        last = last.prev;        return tempLink;    }    Node delete(int key) {        Node current = head;        Node previous = null;        if (head == null) {            return null;        }        while (current.key != key) {            if (current.next == null) {                return null;            } else {                previous = current;                current = current.next;            }        }        if (current == head) {            head = head.next;        } else {            current.prev.next = current.next;        }        if (current == last) {            last = current.prev;        } else {            current.next.prev = current.prev;        }        return current;    }    boolean insertAfter(int key, int newKey, int data) {        Node current = head;        if (head == null) {            return false;        }        while (current.key != key) {            if (current.next == null) {                return false;            } else {                current = current.next;            }        }        Node newLink = new Node(newKey, data);        if (current == last) {            newLink.next = null;            last = newLink;        } else {            newLink.next = current.next;            current.next.prev = newLink;        }        newLink.prev = current;        current.next = newLink;        return true;    }}public class Main {    public static void main(String[] args) {        DoublyLinkedList dll = new DoublyLinkedList();        dll.insertFirst(1, 10);        dll.insertFirst(2, 20);        dll.insertFirst(3, 30);        dll.insertFirst(4, 1);        dll.insertFirst(5, 40);        dll.insertFirst(6, 56);        System.out.println("List (First to Last):");        dll.displayForward();        System.out.println();        System.out.println("List (Last to First):");        dll.displayBackward();        System.out.println("List, after deleting first record:");        dll.deleteFirst();        dll.displayForward();        System.out.println("List, after deleting last record:");        dll.deleteLast();        dll.displayForward();        System.out.println("List, insert after key(4):");        dll.insertAfter(4, 7, 13);        dll.displayForward();        System.out.println("List, after delete key(4):");        dll.delete(4);        dll.displayForward();    }}

Output

List (First to Last):[ (6, 56) (5, 40) (4, 1) (3, 30) (2, 20) (1, 10) ]List (Last to First):[ (1, 10) (2, 20) (3, 30) (4, 1) (5, 40) (6, 56) ]List, after deleting first record:[ (5, 40) (4, 1) (3, 30) (2, 20) (1, 10) ]List, after deleting last record:[ (5, 40) (4, 1) (3, 30) (2, 20) ]List, insert after key(4):[ (5, 40) (4, 1) (7, 13) (3, 30) (2, 20) ]List, after delete key(4):[ (5, 40) (7, 13) (3, 30) (2, 20) ]
class Node:    def __init__(self, key, data):        self.key = key        self.data = data        self.next = None        self.prev = Noneclass DoublyLinkedList:    def __init__(self):        self.head = None        self.last = None    def is_empty(self):        return self.head is None    def display_forward(self):        ptr = self.head        print("[", end=" ")        while ptr:            print("({}, {})".format(ptr.key, ptr.data), end=" ")            ptr = ptr.next        print("]")    def display_backward(self):        ptr = self.last        print("[", end=" ")        while ptr:            print("({}, {})".format(ptr.key, ptr.data), end=" ")            ptr = ptr.prev        print("]")    def insert_first(self, key, data):        link = Node(key, data)        if self.is_empty():            self.last = link        else:            self.head.prev = link        link.next = self.head        self.head = link    def insert_last(self, key, data):        link = Node(key, data)        if self.is_empty():            self.last = link        else:            self.last.next = link            link.prev = self.last        self.last = link    def delete_first(self):        if self.is_empty():            return None        temp_link = self.head        if self.head.next is None:            self.last = None        else:            self.head.next.prev = None        self.head = self.head.next        return temp_link    def delete_last(self):        if self.is_empty():            return None        temp_link = self.last        if self.head.next is None:            self.head = None        else:            self.last.prev.next = None        self.last = self.last.prev        return temp_link    def delete(self, key):        current = self.head        while current and current.key != key:            current = current.next        if current is None:            return None        if current == self.head:            self.head = self.head.next        else:            current.prev.next = current.next        if current == self.last:            self.last = current.prev        else:            current.next.prev = current.prev        return current    def insert_after(self, key, new_key, data):        current = self.head        while current and current.key != key:            current = current.next        if current is None:            return False        new_link = Node(new_key, data)        if current == self.last:            new_link.next = None            self.last = new_link        else:            new_link.next = current.next            current.next.prev = new_link        new_link.prev = current        current.next = new_link        return True# Example usagedll = DoublyLinkedList()dll.insert_first(1, 10)dll.insert_first(2, 20)dll.insert_first(3, 30)dll.insert_first(4, 1)dll.insert_first(5, 40)dll.insert_first(6, 56)print("List (First to Last):")dll.display_forward()print()print("List (Last to First):")dll.display_backward()print("List, after deleting first record:")dll.delete_first()dll.display_forward()print("List, after deleting last record:")dll.delete_last()dll.display_forward()print("List, insert after key(4):")dll.insert_after(4, 7, 13)dll.display_forward()print("List, after delete key(4):")dll.delete(4)dll.display_forward()

Output

List (First to Last):[ (6, 56) (5, 40) (4, 1) (3, 30) (2, 20) (1, 10) ]List (Last to First):[ (1, 10) (2, 20) (3, 30) (4, 1) (5, 40) (6, 56) ]List, after deleting first record:[ (5, 40) (4, 1) (3, 30) (2, 20) (1, 10) ]List, after deleting last record:[ (5, 40) (4, 1) (3, 30) (2, 20) ]List, insert after key(4):[ (5, 40) (4, 1) (7, 13) (3, 30) (2, 20) ]List, after delete key(4):[ (5, 40) (7, 13) (3, 30) (2, 20) ]

Circular Linked List Data Structure

Circular Linked List is a variation of Linked list in which the first element points to the last element and the last element points to the first element. Both Singly Linked List and Doubly Linked List can be made into a circular linked list.

Singly Linked List as Circular

In singly linked list, the next pointer of the last node points to the first node.

Singly Linked List As Circular

Doubly Linked List as Circular

In doubly linked list, the next pointer of the last node points to the first node and the previous pointer of the first node points to the last node making the circular in both directions.

Doubly Linked List As Circular

As per the above illustration, following are the important points to be considered.

  • The last link's next points to the first link of the list in both cases of singly as well as doubly linked list.

  • The first link's previous points to the last of the list in case of doubly linked list.

Basic Operations

Following are the important operations supported by a circular list.

  • insert − Inserts an element at the start of the list.

  • delete − Deletes an element from the start of the list.

  • display − Displays the list.

Insertion Operation

The insertion operation of a circular linked list only inserts the element at the start of the list. This differs from the usual singly and doubly linked lists as there is no particular starting and ending points in this list. The insertion is done either at the start or after a particular node (or a given position) in the list.

Algorithm

1. START2. Check if the list is empty3. If the list is empty, add the node and point the head to this node4. If the list is not empty, link the existing head as the next node to the new node.5. Make the new node as the new head.6. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//display the listvoid printList(){   struct node *ptr = head;   printf("\n[ ");   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }   printf(" ]");}void main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Circular Linked List: ");   //print list   printList();}

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ]
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//display the listvoid printList(){   struct node *ptr = head;   printf("\n[ ");   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }   printf(" ]");}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Circular Linked List: ");      //print list   printList();   return 0;}

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ]
//Java program for circular link listimport java.util.*;class Node {    int data;    int key;    Node next;}public class Main {    static Node head = null;    static Node current = null;    static boolean isEmpty() {        return head == null;    }    //insert link at the first location    static void insertFirst(int key, int data) {        //create a link        Node link = new Node();        link.key = key;        link.data = data;        if (isEmpty()) {            head = link;            head.next = head;        } else {            //point it to old first node            link.next = head;            //point first to new first node            head = link;        }    }    //display the list    static void printList() {        Node ptr = head;        System.out.print("\n[ ");        //start from the beginning        if (head != null) {            while (ptr.next != ptr) {                System.out.print("(" + ptr.key + "," + ptr.data + ") ");                ptr = ptr.next;            }        }        System.out.print(" ]");    }    public static void main(String[] args) {        insertFirst(1, 10);        insertFirst(2, 20);        insertFirst(3, 30);        insertFirst(4, 1);        insertFirst(5, 40);        insertFirst(6, 56);        System.out.print("Circular Linked List: ");        //print list        printList();    }}

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20) ]
#python program for circular linked listclass Node:    def __init__(self, key, data):        self.key = key        self.data = data        self.next = Nonehead = Nonecurrent = Nonedef is_empty():    return head is None#insert link at the first locationdef insert_first(key, data):    #create a link    global head    new_node = Node(key, data)    if is_empty():        head = new_node        head.next = head    else:        #point it to old first node        new_node.next = head        #point first to the new first node        head = new_node        #display the listdef print_list():    global head    ptr = head    print("[", end=" ")    #start from the beginning    if head is not None:        while ptr.next != ptr:            print("({}, {})".format(ptr.key, ptr.data), end=" ")            ptr = ptr.next        print("]")insert_first(1, 10)insert_first(2, 20)insert_first(3, 30)insert_first(4, 1)insert_first(5, 40)insert_first(6, 56)#printlistprint("Circular Linked List: ")print_list()

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20) ]

Deletion Operation

The Deletion operation in a Circular linked list removes a certain node from the list. The deletion operation in this type of lists can be done at the beginning, or a given position, or at the ending.

Algorithm

1. START2. If the list is empty, then the program is returned.3. If the list is not empty, we traverse the list using a current pointer that is set to the head pointer and create another pointer previous that points to the last node.4. Suppose the list has only one node, the node is deleted by setting the head pointer to NULL.5. If the list has more than one node and the first node is to be deleted, the head is set to the next node and the previous is linked to the new head.6. If the node to be deleted is the last node, link the preceding node of the last node to head node.7. If the node is neither first nor last, remove the node by linking its preceding node to its succeeding node.8. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//delete first itemstruct node * deleteFirst(){   //save reference to first link   struct node *tempLink = head;   if(head->next == head) {      head = NULL;      return tempLink;   }   //mark next to first link as first   head = head->next;   //return the deleted link   return tempLink;}//display the listvoid printList(){   struct node *ptr = head;   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }}void main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Circular Linked List: ");   //print list   printList();   deleteFirst();   printf("\nList after deleting the first item: ");   printList();}

Output

Circular Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) List after deleting the first item: (5,40) (4,1) (3,30) (2,20)
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//delete first itemstruct node * deleteFirst(){      //save reference to first link   struct node *tempLink = head;   if(head->next == head) {      head = NULL;      return tempLink;   }   //mark next to first link as first   head = head->next;   //return the deleted link   return tempLink;}//display the listvoid printList(){   struct node *ptr = head;   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Circular Linked List: ");   //print list   printList();   deleteFirst();   printf("\nList after deleting the first item: ");   printList();   return 0;}

Output

Circular Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) List after deleting the first item: (5,40) (4,1) (3,30) (2,20)
//Java program for circular linked listimport java.util.*;public class Main {    static class Node {        int data;        int key;        Node next;    }    static Node head = null;    static Node current = null;    static boolean isEmpty() {        return head == null;    }    //insert link at the first location    static void insertFirst(int key, int data) {        //create a link        Node link = new Node();        link.key = key;        link.data = data;        if (isEmpty()) {            head = link;            head.next = head;        } else {            //point it to old first node            link.next = head;            //point first to new first node            head = link;        }    }//delete first item    static Node deleteFirst() {        //save reference to first link        Node tempLink = head;        if (head.next == head) {            head = null;            return tempLink;        }        //mark next to first link as first        head = head.next;        //return the deleted link        return tempLink;    }    //display the list    static void printList() {        Node ptr = head;         //start from the beginning        if (head != null) {            while (ptr.next != ptr) {                System.out.printf("(%d,%d) ", ptr.key, ptr.data);                ptr = ptr.next;            }        }    }    public static void main(String[] args) {        insertFirst(1, 10);        insertFirst(2, 20);        insertFirst(3, 30);        insertFirst(4, 1);        insertFirst(5, 40);        insertFirst(6, 56);        System.out.print("Circular Linked List: ");        //print list        printList();        deleteFirst();  }}

Output

Circular Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) List after deleting the first item: (5,40) (4,1) (3,30) (2,20)
#python program for circular linked listclass Node:    def __init__(self, key, data):        self.key = key        self.data = data        self.next = Nonehead = Nonecurrent = Nonedef is_empty():    return head is None#insert link at the first locationdef insert_first(key, data):    #create a link    global head    new_node = Node(key, data)    if is_empty():        head = new_node        head.next = head    else:        #point it to old first node        new_node.next = head        #point first to the new first node        head = new_node        def print_list():    global head    ptr = head    print("[", end=" ")    #start from the beginning    if head is not None:        while ptr.next != ptr:            print("({}, {})".format(ptr.key, ptr.data), end=" ")            ptr = ptr.next        print("]")def delete_first():    global head    temp_link = head    if head.next == head:        head = None        return temp_link    head = head.next    return temp_link  insert_first(1, 10)insert_first(2, 20)insert_first(3, 30)insert_first(4, 1)insert_first(5, 40)insert_first(6, 56)#printlistprint("Circular Linked List: ")print_list()delete_first()print("\nList after deleting the first item: ")print_list();

Output

Circular Linked List: (6,56) (5,40) (4,1) (3,30) (2,20) List after deleting the first item: (5,40) (4,1) (3,30) (2,20)

Display List Operation

The Display List operation visits every node in the list and prints them all in the output.

Algorithm

1. START2. Walk through all the nodes of the list and print them3. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//display the listvoid printList(){   struct node *ptr = head;   printf("\n[ ");   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }   printf(" ]");}void main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Circular Linked List: ");   //print list   printList();}

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ]
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}//insert link at the first locationvoid insertFirst(int key, int data){      //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//display the listvoid printList(){   struct node *ptr = head;   printf("\n[ ");   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }   printf(" ]");}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Circular Linked List: ");   //print list   printList();   return 0;}

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ]
//Java program for circular link listimport java.util.*;class Node {    int data;    int key;    Node next;}public class Main {    static Node head = null;    static Node current = null;    static boolean isEmpty() {        return head == null;    }    //insert link at the first location    static void insertFirst(int key, int data) {        //create a link        Node link = new Node();        link.key = key;        link.data = data;        if (isEmpty()) {            head = link;            head.next = head;        } else {            //point it to old first node            link.next = head;            //point first to new first node            head = link;        }    }    //display the list    static void printList() {        Node ptr = head;        System.out.print("\n[ ");        //start from the beginning        if (head != null) {            while (ptr.next != ptr) {                System.out.print("(" + ptr.key + "," + ptr.data + ") ");                ptr = ptr.next;            }        }        System.out.print(" ]");    }    public static void main(String[] args) {        insertFirst(1, 10);        insertFirst(2, 20);        insertFirst(3, 30);        insertFirst(4, 1);        insertFirst(5, 40);        insertFirst(6, 56);        System.out.print("Circular Linked List: ");        //print list        printList();    }}

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20) ]
#python program for circular linked listclass Node:    def __init__(self, key, data):        self.key = key        self.data = data        self.next = Nonehead = Nonecurrent = Nonedef is_empty():    return head is None#insert link at the first locationdef insert_first(key, data):    #create a link    global head    new_node = Node(key, data)    if is_empty():        head = new_node        head.next = head    else:        #point it to old first node        new_node.next = head        #point first to the new first node        head = new_node        #display the listdef print_list():    global head    ptr = head    print("[", end=" ")    #start from the beginning    if head is not None:        while ptr.next != ptr:            print("({}, {})".format(ptr.key, ptr.data), end=" ")            ptr = ptr.next        print("]")insert_first(1, 10)insert_first(2, 20)insert_first(3, 30)insert_first(4, 1)insert_first(5, 40)insert_first(6, 56)#printlistprint("Circular Linked List: ")print_list()

Output

Circular Linked List: [ (6,56) (5,40) (4,1) (3,30) (2,20) ]

Complete implementation

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}int length(){   int length = 0;   //if list is empty   if(head == NULL) {      return 0;   }   current = head->next;   while(current != head) {      length++;      current = current->next;   }   return length;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;      //point first to new first node      head = link;   }}//delete first itemstruct node * deleteFirst(){   //save reference to first link   struct node *tempLink = head;   if(head->next == head) {      head = NULL;      return tempLink;   }   //mark next to first link as first   head = head->next;   //return the deleted link   return tempLink;}//display the listvoid printList(){   struct node *ptr = head;   printf("\n[ ");   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         printf("(%d,%d) ",ptr->key,ptr->data);         ptr = ptr->next;      }   }   printf(" ]");}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   printf("Original List: ");   //print list   printList();   while(!isEmpty()) {      struct node *temp = deleteFirst();      printf("\nDeleted value:");      printf("(%d,%d) ",temp->key,temp->data);   }   printf("\nList after deleting all items: ");   printList();}

Output

Original List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ]Deleted value:(6,56) Deleted value:(5,40) Deleted value:(4,1) Deleted value:(3,30) Deleted value:(2,20) Deleted value:(1,10) List after deleting all items: [  ]
#include <iostream>#include <cstring>#include <cstdlib>#include <cstdbool>using namespace std;struct node {   int data;   int key;   struct node *next;};struct node *head = NULL;struct node *current = NULL;bool isEmpty(){   return head == NULL;}int length(){   int length = 0;      //if list is empty   if(head == NULL) {      return 0;   }   current = head->next;   while(current != head) {      length++;      current = current->next;   }   return length;}//insert link at the first locationvoid insertFirst(int key, int data){   //create a link   struct node *link = (struct node*) malloc(sizeof(struct node));   link->key = key;   link->data = data;   if (isEmpty()) {      head = link;      head->next = head;   } else {      //point it to old first node      link->next = head;            //point first to new first node      head = link;   }}//delete first itemstruct node * deleteFirst(){      //save reference to first link   struct node *tempLink = head;   if(head->next == head) {      head = NULL;      return tempLink;   }   //mark next to first link as first   head = head->next;      //return the deleted link   return tempLink;}//display the listvoid printList(){   struct node *ptr = head;   cout << "\n[ ";   //start from the beginning   if(head != NULL) {      while(ptr->next != ptr) {         cout << "(" << ptr->key << "," << ptr->data << ") ";         ptr = ptr->next;      }   }   cout << " ]";}int main(){   insertFirst(1,10);   insertFirst(2,20);   insertFirst(3,30);   insertFirst(4,1);   insertFirst(5,40);   insertFirst(6,56);   cout << "Original List: ";   //print list   printList();   while(!isEmpty()) {      struct node *temp = deleteFirst();      cout << "\n Deleted value:";      cout << "(" << temp->key << "," << temp->data << ") ";   }   cout << "\n List after deleting all items: ";   printList();   return 0;}

Output

Original List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ] Deleted value:(6,56)  Deleted value:(5,40)  Deleted value:(4,1)  Deleted value:(3,30)  Deleted value:(2,20)  Deleted value:(1,10)  List after deleting all items: [  ]
class Node {    int data;    int key;    Node next;    Node(int key, int data) {        this.key = key;        this.data = data;        this.next = null;    }}public class LinkedList {    private Node head;    private Node current;    boolean isEmpty() {        return head == null;    }    int length() {        int length = 0;        //if list is empty        if (head == null) {            return 0;        }        current = head.next;        while (current != head) {            length++;            current = current.next;        }        return length;    }    //insert link at the first location    void insertFirst(int key, int data) {        //create a link        Node link = new Node(key, data);        if (isEmpty()) {            head = link;            head.next = head;        } else {            //point it to old first node            link.next = head;            //point first to new first node            head = link;        }    }    //delete first item    Node deleteFirst() {        if (head.next == head) {            //save reference to first link            Node tempLink = head;            head = null;            return tempLink;        }        Node tempLink = head;        //mark next to first link as first        head = head.next;        //return the deleted link        return tempLink;    }    //display the list    void printList() {        Node ptr = head;        System.out.print("\n[ ");        //start from the beginning        if (head != null) {            while (ptr.next != ptr) {                System.out.print("(" + ptr.key + "," + ptr.data + ") ");                ptr = ptr.next;            }        }        System.out.print(" ]");    }    public static void main(String[] args) {        LinkedList linkedList = new LinkedList();        linkedList.insertFirst(1, 10);        linkedList.insertFirst(2, 20);        linkedList.insertFirst(3, 30);        linkedList.insertFirst(4, 1);        linkedList.insertFirst(5, 40);        linkedList.insertFirst(6, 56);        System.out.print("Original List: ");        linkedList.printList();        //print list        while (!linkedList.isEmpty()) {            Node temp = linkedList.deleteFirst();            System.out.println("\nDeleted value: (" + temp.key + "," + temp.data + ")");        }        System.out.print("\nList after deleting all items: ");        linkedList.printList();    }}

Output

Original List: [ (6,56) (5,40) (4,1) (3,30) (2,20)  ]Deleted value: (6,56)Deleted value: (5,40)Deleted value: (4,1)Deleted value: (3,30)Deleted value: (2,20)Deleted value: (1,10)List after deleting all items: [  ]
class Node:    def __init__(self, key, data):        self.key = key        self.data = data        self.next = Noneclass LinkedList:    def __init__(self):        self.head = None        self.current = None    def is_empty(self):        return self.head is None    def length(self):        length = 0        # If list is empty        if self.head is None:            return 0        self.current = self.head.next        while self.current != self.head:            length += 1            self.current = self.current.next        return length    # insert link at the first location    def insert_first(self, key, data):        # create a link        new_node = Node(key, data)        if self.is_empty():            self.head = new_node            self.head.next = self.head        else:            # point it to old first node            new_node.next = self.head            # point first to new first node            self.head = new_node    # delete first item    def delete_first(self):        # save reference to first link        if self.head.next == self.head:            temp_link = self.head            self.head = None            return temp_link        # mark next to first link as first        temp_link = self.head        self.head = self.head.next        # return the deleted link        return temp_link    # Diplay the list    def print_list(self):        ptr = self.head        print("[", end=" ")        # start from the beginning        if self.head is not None:            while ptr.next != ptr:                print("({}, {})".format(ptr.key, ptr.data), end=" ")                ptr = ptr.next        print("]")# Main functionif __name__ == '__main__':    linked_list = LinkedList()    linked_list.insert_first(1, 10)    linked_list.insert_first(2, 20)    linked_list.insert_first(3, 30)    linked_list.insert_first(4, 1)    linked_list.insert_first(5, 40)    linked_list.insert_first(6, 56)    print("Original List: ", end="")    linked_list.print_list()    while not linked_list.is_empty():        temp = linked_list.delete_first()        print("\nDeleted value: ({}, {})".format(temp.key, temp.data))    # print list    print("List after deleting all items: ", end="")    linked_list.print_list()

Output

Original List: [ (6, 56) (5, 40) (4, 1) (3, 30) (2, 20) ]Deleted value: (6, 56)Deleted value: (5, 40)Deleted value: (4, 1)Deleted value: (3, 30)Deleted value: (2, 20)Deleted value: (1, 10)List after deleting all items: [ ]

Stack Data Structure

A stack is an Abstract Data Type (ADT), that is popularly used in most programming languages. It is named stack because it has the similar operations as the real-world stacks, for example a pack of cards or a pile of plates, etc.

stack example

The stack follows the LIFO (Last in - First out) structure where the last element inserted would be the first element deleted.

Stack Representation

A Stack ADT allows all data operations at one end only. At any given time, we can only access the top element of a stack.

The following diagram depicts a stack and its operations −

Stack Representation

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. Stack can either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to implement stack using arrays, which makes it a fixed size stack implementation.

Basic Operations on Stacks

Stack operations usually are performed for initialization, usage and, de-initialization of the stack ADT.

The most fundamental operations in the stack ADT include: push(), pop(), peek(), isFull(), isEmpty(). These are all built-in operations to carry out data manipulation and to check the status of the stack.

Stack uses pointers that always point to the topmost element within the stack, hence called as thetop pointer.

Insertion: push()

push() is an operation that inserts elements into the stack. The following is an algorithm that describes the push() operation in a simpler way.

Algorithm

1  Checks if the stack is full.2  If the stack is full, produces an error and exit.3  If the stack is not full, increments top to point next empty space.4  Adds data element to the stack location, where top is pointing.5  Returns success.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is full*/int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   int i;   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Stack Elements: \n");      // print stack data   for(i = 0; i < 8; i++) {      printf("%d ", stack[i]);   }   return 0;}

Output

Stack Elements: 44 10 62 123 15 0 0 0
#include <iostream>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is full*/int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   int i;   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Stack Elements: \n");   // print stack data   for(i = 0; i < 8; i++) {      printf("%d ", stack[i]);   }   return 0;}

Output

Stack Elements: 44 10 62 123 15 0 0 0
import java.io.*;import java.util.*; // util imports the stack classpublic class StackExample {   public static void main (String[] args) {      Stack<Integer> stk = new Stack<Integer>();            // inserting elements into the stack      stk.push(52);      stk.push(19);      stk.push(33);      stk.push(14);      stk.push(6);      System.out.print("The stack is: " + stk);   }}

Output

The stack is: [52, 19, 33, 14, 6]
class Stack:   def __init__(self):      self.stack = []   def __str__(self):      return str(self.stack)   def push(self, data):      if data not in self.stack:         self.stack.append(data)         return True      else:         return Falsestk = Stack()stk.push(1)stk.push(2)stk.push(3)stk.push(4)stk.push(5)print("Stack Elements:")print(stk)

Output

Stack Elements:[1, 2, 3, 4, 5]

Note − In Java we have used to built-in methodpush() to perform this operation.

Deletion: pop()

pop() is a data manipulation operation which removes elements from the stack. The following pseudo code describes the pop() operation in a simpler way.

Algorithm

1  Checks if the stack is empty.2  If the stack is empty, produces an error and exit.3  If the stack is not empty, accesses the data element at which top is pointing.4  Decreases the value of top by 1.5  Returns success.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is empty */int isempty(){   if(top == -1)      return 1;   else      return 0;}/* Check if the stack is full*/int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to delete from the stack */int pop(){   int data;   if(!isempty()) {      data = stack[top];      top = top - 1;      return data;   } else {      printf("Could not retrieve data, Stack is empty.\n");   }}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   int i;   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Stack Elements: \n");   // print stack data   for(i = 0; i < 8; i++) {      printf("%d ", stack[i]);   }   /*printf("Element at top of the stack: %d\n" ,peek());*/   printf("\nElements popped: \n");   // print stack data   while(!isempty()) {      int data = pop();      printf("%d ",data);   }   return 0;}

Output

Stack Elements: 44 10 62 123 15 0 0 0 Elements popped: 15 123 62 10 44
#include <iostream>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is empty */int isempty(){   if(top == -1)      return 1;   else      return 0;}/* Check if the stack is full*/int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to delete from the stack */int pop(){   int data;   if(!isempty()) {      data = stack[top];      top = top - 1;      return data;   } else {      printf("Could not retrieve data, Stack is empty.\n");   }}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   int i;   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Stack Elements: \n");   // print stack data   for(i = 0; i < 8; i++) {      printf("%d ", stack[i]);   }      /*printf("Element at top of the stack: %d\n" ,peek());*/   printf("\nElements popped: \n");   // print stack data   while(!isempty()) {      int data = pop();      printf("%d ",data);   }   return 0;}

Output

Stack Elements: 44 10 62 123 15 0 0 0 Elements popped: 15 123 62 10 44
import java.io.*;import java.util.*; // util imports the stack classpublic class StackExample {   public static void main (String[] args) {      Stack<Integer> stk = new Stack<Integer>();            // Inserting elements into the stack      stk.push(52);      stk.push(19);      stk.push(33);      stk.push(14);      stk.push(6);      System.out.print("The stack is: " + stk);            // Deletion from the stack      System.out.print("\nThe popped element is: ");      Integer n = (Integer) stk.pop();      System.out.print(n);   }}

Output

The stack is: [52, 19, 33, 14, 6]The popped element is: 6
class Stack:   def __init__(self):      self.stack = []   def __str__(self):      return str(self.stack)   def push(self, data):      if data not in self.stack:         self.stack.append(data)         return True      else:         return False   def remove(self):      if len(self.stack) <= 0:         return ("No element in the Stack")      else:         return self.stack.pop()stk = Stack()stk.push(1)stk.push(2)stk.push(3)stk.push(4)stk.push(5)print("Stack Elements:")print(stk)print("----Deletion operation in stack----")p = stk.remove()print("The popped element is: " + str(p))print("Updated Stack:")print(stk)

Output

Stack Elements:[1, 2, 3, 4, 5]----Deletion operation in stack----The popped element is: 5Updated Stack:[1, 2, 3, 4]

Note − In Java we are using the built-in method pop().

peek()

Thepeek() is an operation retrieves the topmost element within the stack, without deleting it. This operation is used to check the status of the stack with the help of the top pointer.

Algorithm

1. START2. return the element at the top of the stack3. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is full */int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to return the topmost element in the stack */int peek(){   return stack[top];}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   int i;   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Stack Elements: \n");   // print stack data   for(i = 0; i < 8; i++) {      printf("%d ", stack[i]);   }   printf("\nElement at top of the stack: %d\n" ,peek());   return 0;}

Output

Stack Elements: 44 10 62 123 15 0 0 0 Element at top of the stack: 15
#include <iostream>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is full */int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to return the topmost element in the stack */int peek(){   return stack[top];}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   int i;   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Stack Elements: \n");   // print stack data   for(i = 0; i < 8; i++) {      printf("%d ", stack[i]);   }   printf("\nElement at top of the stack: %d\n" ,peek());   return 0;}

Output

Stack Elements: 44 10 62 123 15 0 0 0 Element at top of the stack: 15
import java.io.*;import java.util.*; // util imports the stack classpublic class StackExample {   public static void main (String[] args) {      Stack<Integer> stk = new Stack<Integer>();            // inserting elements into the stack      stk.push(52);      stk.push(19);      stk.push(33);      stk.push(14);      stk.push(6);      System.out.print("The stack is: " + stk);      Integer pos = (Integer) stk.peek();      System.out.print("\nThe element found is " + pos);   }}

Output

The stack is: [52, 19, 33, 14, 6]The element found is 6
class Stack:   def __init__(self):      self.stack = []   def __str__(self):      return str(self.stack)   def push(self, data):      if data not in self.stack:         self.stack.append(data)         return True      else:         return False   # Use peek to look at the top of the stack   def peek(self):      return self.stack[-1]stk = Stack()stk.push(1)stk.push(2)stk.push(3)stk.push(4)stk.push(5)print("Stack Elements:")print(stk)print("topmost element: ",stk.peek())

Output

Stack Elements:[1, 2, 3, 4, 5]topmost element: 5

isFull()

isFull() operation checks whether the stack is full. This operation is used to check the status of the stack with the help of top pointer.

Algorithm

1. START2. If the size of the stack is equal to the top position of the stack, the stack is full. Return 1.3. Otherwise, return 0.4. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is full */int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Main function */int main(){   printf("Stack full: %s\n" , isfull()?"true":"false");   return 0;}

Output

Stack full: false
#include <iostream>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is full */int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Main function */int main(){   printf("Stack full: %s\n" , isfull()?"true":"false");   return 0;}

Output

Stack full: false
import java.io.*;public class StackExample {   private int arr[];   private int top;   private int capacity;   StackExample(int size) {      arr = new int[size];      capacity = size;      top = -1;   }   public boolean isEmpty() {      return top == -1;   }   public boolean isFull() {      return top == capacity - 1;   }   public void push(int key) {      if (isFull()) {         System.out.println("Stack is Full\n");         return;      }      arr[++top] = key;   }   public static void main (String[] args) {      StackExample stk = new StackExample(5);      stk.push(1); // inserting 1 in the stack      stk.push(2);      stk.push(3);      stk.push(4);      stk.push(5);      System.out.println("Stack Full? " + stk.isFull());   }}

Output

Stack Full? true
#python code for stack(IsFull)MAXSIZE = 8stack = [None] * MAXSIZEtop = -1#Check if the stack is empty def isfull():    if top == MAXSIZE - 1:        return True    else:        return False#main functionprint("Stack full:", isfull())

Output

Stack full: False

isEmpty()

TheisEmpty() operation verifies whether the stack is empty. This operation is used to check the status of the stack with the help of top pointer.

Algorithm

1. START2. If the top value is -1, the stack is empty. Return 1.3. Otherwise, return 0.4. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is empty */int isempty() {   if(top == -1)      return 1;   else      return 0;}/* Main function */int main() {   printf("Stack empty: %s\n" , isempty()?"true":"false");   return 0;}

Output

Stack empty: true
#include <iostream>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is empty */int isempty(){   if(top == -1)      return 1;   else      return 0;}/* Main function */int main(){   printf("Stack empty: %s\n" , isempty()?"true":"false");   return 0;}

Output

Stack empty: true
import java.io.*;import java.util.*; // util imports the stack classpublic class StackExample {   public static void main (String[] args) {      Stack<Integer> stk = new Stack<Integer>();            // Inserting elements into the stack      stk.push(52);      stk.push(19);      stk.push(33);      stk.push(14);      stk.push(6);      System.out.println("Stack empty? "+ stk.isEmpty());   }}

Output

Stack empty? false
#python code for stack(IsFull)MAXSIZE = 8stack = [None] * MAXSIZEtop = -1#Check if the stack is empty def isempty():    if top == -1:        return True    else:        return False  #main functionprint("Stack empty:", isempty())

Output

Stack empty: True

Complete implementation

#include <stdio.h>int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is empty */int isempty(){   if(top == -1)      return 1;   else      return 0;}/* Check if the stack is full */int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to return the topmost element in the stack */int peek(){   return stack[top];}/* Function to delete from the stack */int pop(){   int data;   if(!isempty()) {      data = stack[top];      top = top - 1;      return data;   } else {      printf("Could not retrieve data, Stack is empty.\n");   }}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else {      printf("Could not insert data, Stack is full.\n");   }}/* Main function */int main(){   push(44);   push(10);   push(62);   push(123);   push(15);   printf("Element at top of the stack: %d\n" ,peek());   printf("Elements: \n");   // print stack data   while(!isempty()) {      int data = pop();      printf("%d\n",data);   }   printf("Stack full: %s\n" , isfull()?"true":"false");   printf("Stack empty: %s\n" , isempty()?"true":"false");   return 0;}

Output

Element at top of the stack: 15Elements: 15123621044Stack full: falseStack empty: true
#include <iostream>using namespace std;int MAXSIZE = 8;int stack[8];int top = -1;/* Check if the stack is empty */int isempty(){   if(top == -1)      return 1;   else      return 0;}/* Check if the stack is full */int isfull(){   if(top == MAXSIZE)      return 1;   else      return 0;}/* Function to return the topmost element in the stack */int peek(){   return stack[top];}/* Function to delete from the stack */int pop(){   int data;   if(!isempty()) {      data = stack[top];      top = top - 1;      return data;   } else      cout << "Could not retrieve data, Stack is empty." << endl;}/* Function to insert into the stack */int push(int data){   if(!isfull()) {      top = top + 1;      stack[top] = data;   } else      cout << "Could not insert data, Stack is full." << endl;}/* Main function */int main(){   push(44);   push(10);   push(62);   push(123);   push(15);   cout << "Element at top of the stack: " << peek() << endl;   printf("Elements: \n");   // print stack data   while(!isempty()) {      int data = pop();      cout << data <<endl;   }   printf("Stack full: %s\n" , isfull()?"true":"false");   printf("Stack empty: %s\n" , isempty()?"true":"false");   return 0;}

Output

Element at top of the stack: 15Elements: 15123621044Stack full: falseStack empty: true
import java.io.*;import java.util.*; // util imports the stack classpublic class StackExample {   public static void main (String[] args) {      Stack<Integer> stk = new Stack<Integer>();      // inserting elements into the stack      stk.push(52);      stk.push(19);      stk.push(33);      stk.push(14);      stk.push(6);      System.out.print("The stack is: " + stk);      // deletion from the stack      System.out.print("\nThe popped element is: ");      Integer n = (Integer) stk.pop();      System.out.print(n);      // searching for an element in the stack      Integer pos = (Integer) stk.search(19);      if(pos == -1)         System.out.print("\nThe element 19 not found in stack");      else         System.out.print("\nThe element 19 is found at " + pos);   }}

Output

The stack is: [52, 19, 33, 14, 6]The popped element is: 6The element 19 is found at 3
class Stack:   def __init__(self):      self.stack = []   def add(self, data):      if data not in self.stack:         self.stack.append(data)         return True      else:         return False# Use peek to look at the top of the stack   def peek(self):      return self.stack[-1]# Use list pop method to remove element   def remove(self):      if len(self.stack) <= 0:         return ("No element in the Stack")      else:         return self.stack.pop()stk = Stack()stk.add(1)stk.add(2)stk.add(3)stk.add(4)stk.add(5)print("topmost element: ",stk.peek())print("----Deletion operation in stack----")stk.remove()stk.peek()print("topmost element after deletion: ",stk.peek())

Output

topmost element: 5----Deletion operation in stack----topmost element after deletion: 4

Expression Parsing

The way to write arithmetic expression is known as anotation. An arithmetic expression can be written in three different but equivalent notations, i.e., without changing the essence or output of an expression. These notations are −

  • Infix Notation
  • Prefix (Polish) Notation
  • Postfix (Reverse-Polish) Notation

These notations are named as how they use operator in expression. We shall learn the same here in this chapter.

Infix Notation

We write expression ininfix notation, e.g. a - b &plus; c, where operators are usedin-between operands. It is easy for us humans to read, write, and speak in infix notation but the same does not go well with computing devices. An algorithm to process infix notation could be difficult and costly in terms of time and space consumption.

Prefix Notation

In this notation, operator isprefixed to operands, i.e. operator is written ahead of operands. For example,&plus;ab. This is equivalent to its infix notationa &plus; b. Prefix notation is also known asPolish Notation.

Postfix Notation

This notation style is known asReversed Polish Notation. In this notation style, the operator ispostfixed to the operands i.e., the operator is written after the operands. For example,ab&plus;. This is equivalent to its infix notationa &plus; b.

The following table briefly tries to show the difference in all three notations −

Sr.No.Infix NotationPrefix NotationPostfix Notation
1a &plus; b&plus; a ba b &plus;
2(a &plus; b) ∗ c∗ &plus; a b ca b &plus; c ∗
3a ∗ (b &plus; c)∗ a &plus; b ca b c &plus; ∗
4a / b &plus; c / d&plus; / a b / c da b / c d / &plus;
5(a &plus; b) ∗ (c &plus; d)∗ &plus; a b &plus; c da b &plus; c d &plus; ∗
6((a &plus; b) ∗ c) - d- ∗ &plus; a b c da b &plus; c ∗ d -

Parsing Expressions

As we have discussed, it is not a very efficient way to design an algorithm or program to parse infix notations. Instead, these infix notations are first converted into either postfix or prefix notations and then computed.

To parse any arithmetic expression, we need to take care of operator precedence and associativity also.

Precedence

When an operand is in between two different operators, which operator will take the operand first, is decided by the precedence of an operator over others. For example −

Operator Precendence

As multiplication operation has precedence over addition, b * c will be evaluated first. A table of operator precedence is provided later.

Associativity

Associativity describes the rule where operators with the same precedence appear in an expression. For example, in expression a &plus; b c, both &plus; and have the same precedence, then which part of the expression will be evaluated first, is determined by associativity of those operators. Here, both &plus; and are left associative, so the expression will be evaluated as(a &plus; b) c.

Precedence and associativity determines the order of evaluation of an expression. Following is an operator precedence and associativity table (highest to lowest) −

Sr.No.OperatorPrecedenceAssociativity
1Exponentiation ^HighestRight Associative
2Multiplication ( ∗ ) & Division ( / )Second HighestLeft Associative
3Addition ( &plus; ) & Subtraction ( − )LowestLeft Associative

The above table shows the default behavior of operators. At any point of time in expression evaluation, the order can be altered by using parenthesis. For example −

Ina &plus; b*c, the expression partb*c will be evaluated first, with multiplication as precedence over addition. We here use parenthesis fora &plus; b to be evaluated first, like(a &plus; b)*c.

Postfix Evaluation Algorithm

We shall now look at the algorithm on how to evaluate postfix notation −

Step 1  scan the expression from left to right Step 2  if it is an operand push it to stack Step 3  if it is an operator pull operand from stack and perform operation Step 4  store the output of step 3, back to stack Step 5  scan the expression until all operands are consumed Step 6  pop the stack and perform operation

Complete implementation

#include<stdio.h>#include<string.h>#include<ctype.h>//char stackchar stack[25]; int top = -1; void push(char item) {   stack[++top] = item; } char pop() {   return stack[top--]; } //returns precedence of operatorsint precedence(char symbol) {   switch(symbol) {      case '+':       case '-':         return 2;          break;       case '*':       case '/':         return 3;          break;       case '^':          return 4;          break;       case '(':       case ')':       case '#':         return 1;          break;    } } //check whether the symbol is operator?int isOperator(char symbol) {   switch(symbol) {      case '+':       case '-':       case '*':       case '/':       case '^':       case '(':       case ')':         return 1;       break;          default:         return 0;    } } //converts infix expression to postfixvoid convert(char infix[],char postfix[]) {   int i,symbol,j = 0;    stack[++top] = '#';    for(i = 0;i<strlen(infix);i++) {      symbol = infix[i];       if(isOperator(symbol) == 0) {         postfix[j] = symbol;          j++;       } else {         if(symbol == '(') {            push(symbol);          } else {            if(symbol == ')') {               while(stack[top] != '(') {                  postfix[j] = pop();                   j++;                }                pop();   //pop out (.             } else {               if(precedence(symbol)>precedence(stack[top])) {                  push(symbol);                } else {                  while(precedence(symbol)<=precedence(stack[top])) {                     postfix[j] = pop();                      j++;                   }                   push(symbol);                }            }         }      }   }   while(stack[top] != '#') {      postfix[j] = pop();       j++;    }    postfix[j]='\0';  //null terminate string. } //int stackint stack_int[25]; int top_int = -1; void push_int(int item) {   stack_int[++top_int] = item; } char pop_int() {   return stack_int[top_int--]; } //evaluates postfix expressionint evaluate(char *postfix){   char ch;   int i = 0,operand1,operand2;   while( (ch = postfix[i++]) != '\0') {      if(isdigit(ch)) {         push_int(ch-'0');  // Push the operand       } else {         //Operator,pop two  operands          operand2 = pop_int();         operand1 = pop_int();         switch(ch) {            case '+':               push_int(operand1+operand2);               break;            case '-':               push_int(operand1-operand2);               break;            case '*':               push_int(operand1*operand2);               break;            case '/':               push_int(operand1/operand2);               break;         }      }   }   return stack_int[top_int];}void main() {    char infix[25] = "1*(2+3)",postfix[25];    convert(infix,postfix);    printf("Infix expression is: %s\n" , infix);   printf("Postfix expression is: %s\n" , postfix);   printf("Evaluated expression is: %d\n" , evaluate(postfix));}

Output

Infix expression is: 1*(2+3)Postfix expression is: 123+*Evaluated expression is: 5
// C++ Code for Expression Parsing Using Stack#include <iostream>#include <string>#include <cctype>#include <stack>// char stackstd::stack<char> stack;void push(char item) {    stack.push(item);}char pop() {    char top = stack.top();    stack.pop();    return top;}// returns precedence of operatorsint precedence(char symbol) {    switch(symbol) {        case '+':        case '-':            return 2;        case '*':        case '/':            return 3;        case '^':            return 4;        case '(':        case ')':        case '#':            return 1;    }    return 0;}// check whether the symbol is an operatorint isOperator(char symbol) {    switch(symbol) {        case '+':        case '-':        case '*':        case '/':        case '^':        case '(':        case ')':            return 1;        default:            return 0;    }}// converts infix expression to postfixvoid convert(const std::string& infix, std::string& postfix) {    int j = 0;    stack.push('#');    for (char symbol : infix) {        if (isOperator(symbol) == 0) {            postfix += symbol;            j++;        } else {            if (symbol == '(') {                push(symbol);            } else {                if (symbol == ')') {                    while (stack.top() != '(') {                        postfix += pop();                        j++;                    }                    stack.pop(); // pop out '('                } else {                    if (precedence(symbol) > precedence(stack.top())) {                        push(symbol);                    } else {                        while (precedence(symbol) <= precedence(stack.top())) {                            postfix += pop();                            j++;                        }                        push(symbol);                    }                }            }        }    }    while (stack.top() != '#') {        postfix += pop();        j++;    }    postfix[j] = '\0'; // null terminate string}// evaluates postfix expressionint evaluate(const std::string& postfix) {    std::stack<int> stack_int;    int operand1, operand2;    for (char ch : postfix) {        if (std::isdigit(ch)) {            stack_int.push(ch - '0'); // Push the operand        } else {            // Operator, pop two operands            operand2 = stack_int.top();            stack_int.pop();            operand1 = stack_int.top();            stack_int.pop();            switch (ch) {                case '+':                    stack_int.push(operand1 + operand2);                    break;                case '-':                    stack_int.push(operand1 - operand2);                    break;                case '*':                    stack_int.push(operand1 * operand2);                    break;                case '/':                    stack_int.push(operand1 / operand2);                    break;            }        }    }    return stack_int.top();}int main() {    std::string infix = "1*(2+3)", postfix;    convert(infix, postfix);    std::cout << "Infix expression is: " << infix << std::endl;    std::cout << "Postfix expression is: " << postfix << std::endl;    std::cout << "Evaluated expression is: " << evaluate(postfix) << std::endl;    return 0;}

Output

Infix expression is: 1*(2+3)Postfix expression is: 123+*Evaluated expression is: 5
// Java Code for Expression Parsing Using Stackimport java.util.Stack;public class Main {    // char stack    static Stack<Character> stack = new Stack<>();    static void push(char item) {        stack.push(item);    }    static char pop() {        return stack.pop();    }    // returns precedence of operators    static int precedence(char symbol) {        switch (symbol) {            case '+':            case '-':                return 2;            case '*':            case '/':                return 3;            case '^':                return 4;            case '(':            case ')':            case '#':                return 1;        }        return 0;    }    // check whether the symbol is an operator    static int isOperator(char symbol) {        switch (symbol) {            case '+':            case '-':            case '*':            case '/':            case '^':            case '(':            case ')':                return 1;            default:                return 0;        }    }    // converts infix expression to postfix    static void convert(String infix, StringBuilder postfix) {        int j = 0;        stack.push('#');        for (char symbol : infix.toCharArray()) {            if (isOperator(symbol) == 0) {                postfix.append(symbol);                j++;            } else {                if (symbol == '(') {                    push(symbol);                } else {                    if (symbol == ')') {                        while (stack.peek() != '(') {                            postfix.append(pop());                            j++;                        }                        stack.pop(); // pop out '('                    } else {                        if (precedence(symbol) > precedence(stack.peek())) {                            push(symbol);                        } else {                            while (precedence(symbol) <= precedence(stack.peek())) {                                postfix.append(pop());                                j++;                            }                            push(symbol);                        }                    }                }            }        }        while (stack.peek() != '#') {            postfix.append(pop());            j++;        }    }    // evaluates postfix expression    static int evaluate(String postfix) {        Stack<Integer> stackInt = new Stack<>();        int operand1, operand2;        for (char ch : postfix.toCharArray()) {            if (Character.isDigit(ch)) {                stackInt.push(ch - '0'); // Push the operand            } else {                // Operator, pop two operands                operand2 = stackInt.pop();                operand1 = stackInt.pop();                switch (ch) {                    case '+':                        stackInt.push(operand1 + operand2);                        break;                    case '-':                        stackInt.push(operand1 - operand2);                        break;                    case '*':                        stackInt.push(operand1 * operand2);                        break;                    case '/':                        stackInt.push(operand1 / operand2);                        break;                }            }        }        return stackInt.peek();    }    public static void main(String[] args) {        String infix = "1*(2+3)";        StringBuilder postfix = new StringBuilder();        convert(infix, postfix);        System.out.println("Infix expression is: " + infix);        System.out.println("Postfix expression is: " + postfix);        System.out.println("Evaluated expression is: " + evaluate(postfix.toString()));    }}
Output
Infix expression is: 1*(2+3)Postfix expression is: 123+*Evaluated expression is: 5
class Main:    stack = []    @staticmethod    def push(item):        Main.stack.append(item)    @staticmethod    def pop():        return Main.stack.pop()    #returns precedence of operators    @staticmethod    def precedence(symbol):        if symbol in ['+', '-']:            return 2        elif symbol in ['*', '/']:            return 3        elif symbol == '^':            return 4        elif symbol in ['(', ')', '#']:            return 1        return 0    #check whether the symbol is an operator    @staticmethod    def is_operator(symbol):        return symbol in ['+', '-', '*', '/', '^', '(', ')']    @staticmethod    def convert(infix):        postfix = ""        j = 0        Main.push('#')        for symbol in infix:            if not Main.is_operator(symbol):                postfix += symbol                j += 1            else:                if symbol == '(':                    Main.push(symbol)                else:                    if symbol == ')':                        while Main.stack[-1] != '(':                            postfix += Main.pop()                            j += 1                        Main.pop()  # pop out '('                    else:                        if Main.precedence(symbol) > Main.precedence(Main.stack[-1]):                            Main.push(symbol)                        else:                            while Main.precedence(symbol) <= Main.precedence(Main.stack[-1]):                                postfix += Main.pop()                                j += 1                            Main.push(symbol)        while Main.stack[-1] != '#':            postfix += Main.pop()            j += 1        return postfix    @staticmethod    def evaluate(postfix):        stack_int = []        for ch in postfix:            if ch.isdigit():                stack_int.append(int(ch))            else:                operand2 = stack_int.pop()                operand1 = stack_int.pop()                if ch == '+':                    stack_int.append(operand1 + operand2)                elif ch == '-':                    stack_int.append(operand1 - operand2)                elif ch == '*':                    stack_int.append(operand1 * operand2)                elif ch == '/':                    stack_int.append(operand1 / operand2)        return stack_int[0]    @staticmethod    def main():        infix = "1*(2+3)"        postfix = Main.convert(infix)        print("Infix expression is:", infix)        print("Postfix expression is:", postfix)        print("Evaluated expression is:", Main.evaluate(postfix))Main.main()

Output

Infix expression is: 1*(2+3)Postfix expression is: 123+*Evaluated expression is: 5

Queue Data Structure

Queue, like Stack, is also an abstract data structure. The thing that makes queue different from stack is that a queue is open at both its ends. Hence, it follows FIFO (First-In-First-Out) structure, i.e. the data item inserted first will also be accessed first. The data is inserted into the queue through one end and deleted from it using the other end.

car

A real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exits first. More real-world examples can be seen as queues at the ticket windows and bus-stops.

Representation of Queues

Similar to the stack ADT, a queue ADT can also be implemented using arrays, linked lists, or pointers. As a small example in this tutorial, we implement queues using a one-dimensional array.

Representation of queues

Basic Operations

Queue operations also include initialization of a queue, usage and permanently deleting the data from the memory.

The most fundamental operations in the queue ADT include: enqueue(), dequeue(), peek(), isFull(), isEmpty(). These are all built-in operations to carry out data manipulation and to check the status of the queue.

Queue uses two pointers −front andrear. The front pointer accesses the data from the front end (helping in enqueueing) while the rear pointer accesses data from the rear end (helping in dequeuing).

Insertion operation: enqueue()

Theenqueue() is a data manipulation operation that is used to insert elements into the stack. The following algorithm describes the enqueue() operation in a simpler way.

Algorithm

1  START2  Check if the queue is full.3  If the queue is full, produce overflow error and exit.4  If the queue is not full, increment rear pointer to point the next empty space.5  Add data element to the queue location, where the rear is pointing.6  return success.7  END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isFull(){   return itemCount == MAX;}bool isEmpty(){   return itemCount == 0;}int removeData(){   int data = intArray[front++];   if(front == MAX) {      front = 0;   }   itemCount--;   return data;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int main(){   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   while(!isEmpty()) {      int n = removeData();      printf("%d ",n);   }}

Output

Queue: 3 5 9 1 12 15
#include <iostream>#include <string>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isFull(){   return itemCount == MAX;}bool isEmpty(){   return itemCount == 0;}int removeData(){   int data = intArray[front++];   if(front == MAX) {      front = 0;   }   itemCount--;   return data;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int main(){   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   while(!isEmpty()) {      int n = removeData();      printf("%d ",n);   }}

Output

Queue: 3 5 9 1 12 15
import java.util.LinkedList;import java.util.Queue;public class QueueExample {   public static void main(String[] args) {      Queue<Integer> q = new LinkedList<>();      q.add(6);      q.add(1);      q.add(8);      q.add(4);      q.add(7);      System.out.println("The queue is: " + q);   }}

Output

The queue is: [6, 1, 8, 4, 7]
class Queue:   def __init__(self):      self.queue = list()   def __str__(self):      return str(self.queue)   def addtoqueue(self,data):   # Insert method to add element      if data not in self.queue:         self.queue.insert(0,data)         return True      return Falseq = Queue()q.addtoqueue("36")q.addtoqueue("24")q.addtoqueue("48")q.addtoqueue("12")q.addtoqueue("66")print("Queue:")print(q)

Output

Queue:['66', '12', '48', '24', '36']

Deletion Operation: dequeue()

Thedequeue() is a data manipulation operation that is used to remove elements from the stack. The following algorithm describes the dequeue() operation in a simpler way.

Algorithm

1  START2  Check if the queue is empty.3  If the queue is empty, produce underflow error and exit.4  If the queue is not empty, access the data where front is pointing.5  Increment front pointer to point to the next available data element.6  Return success.7  END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isFull(){   return itemCount == MAX;}bool isEmpty(){   return itemCount == 0;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int removeData(){   int data = intArray[front++];   if(front == MAX) {      front = 0;   }   itemCount--;   return data;}int main(){   int i;      /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   // remove one item   int num = removeData();   printf("\nElement removed: %d\n",num);   printf("Updated Queue: ");   while(!isEmpty()) {      int n = removeData();      printf("%d ",n);   }}

Output

Queue: 3 5 9 1 12 15 Element removed: 3Updated Queue: 5 9 1 12 15
#include <iostream>#include <string>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isFull(){   return itemCount == MAX;}bool isEmpty(){   return itemCount == 0;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int removeData(){   int data = intArray[front++];   if(front == MAX) {      front = 0;   }   itemCount--;   return data;}int main(){   int i;      /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);      // remove one item   int num = removeData();   printf("\nElement removed: %d\n",num);   printf("Updated Queue: ");   while(!isEmpty()) {      int n = removeData();      printf("%d ",n);   }}

Output

Queue: 3 5 9 1 12 15 Element removed: 3Updated Queue: 5 9 1 12 15
import java.util.LinkedList;import java.util.Queue;public class QueueExample {   public static void main(String[] args) {      Queue<Integer> q = new LinkedList<>();      q.add(6);      q.add(1);      q.add(8);      q.add(4);      q.add(7);      System.out.println("The queue is: " + q);      int n = q.remove();      System.out.println("The element deleted is: " + n);      System.out.println("Queue after deletion: " + q);   }}

Output

The queue is: [6, 1, 8, 4, 7]The element deleted is: 6Queue after deletion: [1, 8, 4, 7]
class Queue:   def __init__(self):      self.queue = list()   def __str__(self):      return str(self.queue)   def addtoqueue(self,data):   # Insert method to add element      if data not in self.queue:         self.queue.insert(0,data)         return True      return False   def removefromqueue(self):      if len(self.queue)>0:         return self.queue.pop()      return ("Queue is empty")q = Queue()q.addtoqueue("36")q.addtoqueue("24")q.addtoqueue("48")q.addtoqueue("12")q.addtoqueue("66")print("Queue:")print(q)print("Element deleted from queue: ",q.removefromqueue())

Output

Queue:['66', '12', '48', '24', '36']Element deleted from queue:  36

The peek() Operation

The peek() is an operation which is used to retrieve the frontmost element in the queue, without deleting it. This operation is used to check the status of the queue with the help of the pointer.

Algorithm

1  START2  Return the element at the front of the queue3  END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;int peek(){   return intArray[front];}bool isFull(){   return itemCount == MAX;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int main(){   int i;      /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   printf("\nElement at front: %d\n",peek());}

Output

Queue: 3 5 9 1 12 15 Element at front: 3
#include <iostream>#include <string>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;int peek(){   return intArray[front];}bool isFull(){   return itemCount == MAX;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int main(){   int i;   /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   printf("\nElement at front: %d\n",peek());}

Output

Queue: 3 5 9 1 12 15 Element at front: 3
import java.util.LinkedList;import java.util.Queue;public class QueueExample {   public static void main(String[] args) {      Queue<Integer> q = new LinkedList<>();      q.add(6);      q.add(1);      q.add(8);      q.add(4);      q.add(7);      System.out.println("The queue is: " + q);   }}

Output

The queue is: [6, 1, 8, 4, 7]
class Queue:   def __init__(self):      self.queue = list()   def __str__(self):      return str(self.queue)   def addtoqueue(self,data):      # Insert method to add element      if data not in self.queue:         self.queue.insert(0,data)         return True      return False   def peek(self):      return self.queue[-1]q = Queue()q.addtoqueue("36")q.addtoqueue("24")q.addtoqueue("48")q.addtoqueue("12")q.addtoqueue("66")print("Queue:")print(q)print("The frontmost element of the queue: ",q.peek())

Output

Queue:['66', '12', '48', '24', '36']The frontmost element of the queue:  36

The isFull() Operation

The isFull() operation verifies whether the stack is full.

Algorithm

1  START2  If the count of queue elements equals the queue size, return true3  Otherwise, return false4  END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isFull(){   return itemCount == MAX;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int main(){   int i;   /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   printf("\n");   if(isFull()) {      printf("Queue is full!\n");   }}

Output

Queue: 3 5 9 1 12 15 Queue is full!
#include <iostream>#include <string>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isFull(){   return itemCount == MAX;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int main(){   int i;      /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   insert(15);   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   printf("\n");   if(isFull()) {      printf("Queue is full!\n");   }}

Output

Queue: 3 5 9 1 12 15 Queue is full!
import java.io.*;public class QueueExample {   private int intArray[];   private int front;   private int rear;   private int itemCount;   private int MAX;   QueueExample(int size) {      intArray = new int[size];      front = 0;      rear = -1;      MAX = size;      itemCount = 0;   }   public boolean isFull() {      return itemCount == MAX;   }   public void insert(int key) {      if(!isFull()) {         if(rear == MAX-1) {            rear = -1;         }         intArray[++rear] = key;         itemCount++;      }   }   public static void main (String[] args) {      QueueExample q = new QueueExample(5);      q.insert(1); // inserting 1 in the stack      q.insert(2);      q.insert(3);      q.insert(4);      q.insert(5);      System.out.println("Stack Full? " + q.isFull());   }}

Output

Stack Full? true
#python code for isFull in QueueMAX = 6intArray = [None] * MAXfront = 0rear = -1itemCount = 0def isFull():    return itemCount == MAXdef insert(data):    global rear, itemCount    if not isFull():        if rear == MAX-1:            rear = -1        rear += 1        intArray[rear] = data        itemCount += 1#inserting 5 items into the Queueinsert(3)insert(5)insert(9)insert(1)insert(12)insert(15)print("Queue: ", end="")for i in range(MAX):    print(intArray[i], end=" ")print()if isFull():    print("Queue is full!")

Output

Queue: 3 5 9 1 12 15 Queue is full!

The isEmpty() operation

The isEmpty() operation verifies whether the stack is empty. This operation is used to check the status of the stack with the help of top pointer.

Algorithm

1  START2  If the count of queue elements equals zero, return true3  Otherwise, return false4  END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isEmpty(){   return itemCount == 0;}int main(){   int i;   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   printf("\n");   if(isEmpty()) {      printf("Queue is Empty!\n");   }}

Output

Queue: 0 0 0 0 0 0 Queue is Empty!
#include <iostream>#include <string>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;bool isEmpty(){   return itemCount == 0;}int main(){   int i;   printf("Queue: ");   for(i = 0; i < MAX; i++)      printf("%d ", intArray[i]);   printf("\n");   if(isEmpty()) {      printf("Queue is Empty!\n");   }}

Output

Queue: 0 0 0 0 0 0 Queue is Empty!
import java.io.*;public class QueueExample {   private int intArray[];   private int front;   private int rear;   private int itemCount;   private int MAX;   QueueExample(int size) {      intArray = new int[size];      front = 0;      rear = -1;      MAX = size;      itemCount = 0;   }   public boolean isEmpty() {      return itemCount == 0;   }   public static void main (String[] args) {      QueueExample q = new QueueExample(5);      System.out.println("Stack Empty? " + q.isEmpty());   }}

Output

Stack Empty? true
#python code for isFull in QueueMAX = 6intArray = [None] * MAXfront = 0rear = -1itemCount = 0def isEmpty():    return itemCount == 0print("Queue: ", end="")for i in range(MAX):    print(intArray[i], end=" ")print()if isEmpty():    print("Queue is empty!")

Output

Queue: None None None None None None Queue is empty!

Implementation of Queue

In this chapter, the algorithm implementation of the Queue data structure is performed in four programming languages.

#include <stdio.h>#include <string.h>#include <stdlib.h>#include <stdbool.h>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;int peek(){   return intArray[front];}bool isEmpty(){   return itemCount == 0;}bool isFull(){   return itemCount == MAX;}int size(){   return itemCount;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int removeData(){   int data = intArray[front++];   if(front == MAX) {      front = 0;   }   itemCount--;   return data;}int main(){      /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   // front : 0   // rear : 4   // ------------------   // index : 0 1 2 3 4   // ------------------   // queue : 3 5 9 1 12   insert(15);   // front : 0   // rear : 5   // ---------------------   // index : 0 1 2 3 4 5   // ---------------------   // queue : 3 5 9 1 12 15   if(isFull()) {      printf("Queue is full!\n");   }   // remove one item   int num = removeData();   printf("Element removed: %d\n",num);   // front : 1   // rear : 5   // -------------------   // index : 1 2 3 4 5   // -------------------   // queue : 5 9 1 12 15   // insert more items   insert(16);      // front : 1   // rear : -1   // ----------------------   // index : 0 1 2 3 4 5   // ----------------------   // queue : 16 5 9 1 12 15   // As queue is full, elements will not be inserted.   insert(17);   insert(18);   // ----------------------   // index : 0 1 2 3 4 5   // ----------------------   // queue : 16 5 9 1 12 15   printf("Element at front: %d\n",peek());   printf("----------------------\n");   printf("index : 5 4 3 2 1 0\n");   printf("----------------------\n");   printf("Queue: ");   while(!isEmpty()) {      int n = removeData();      printf("%d ",n);   }}

Output

Queue is full!Element removed: 3Element at front: 5----------------------index : 5 4 3 2 1 0----------------------Queue: 5 9 1 12 15 16
#include <iostream>#include <string>#define MAX 6int intArray[MAX];int front = 0;int rear = -1;int itemCount = 0;int peek(){   return intArray[front];}bool isEmpty(){   return itemCount == 0;}bool isFull(){   return itemCount == MAX;}int size(){   return itemCount;}void insert(int data){   if(!isFull()) {      if(rear == MAX-1) {         rear = -1;      }      intArray[++rear] = data;      itemCount++;   }}int removeData(){   int data = intArray[front++];   if(front == MAX) {      front = 0;   }   itemCount--;   return data;}int main(){      /* insert 5 items */   insert(3);   insert(5);   insert(9);   insert(1);   insert(12);   // front : 0   // rear : 4   // ------------------   // index : 0 1 2 3 4   // ------------------   // queue : 3 5 9 1 12   insert(15);   // front : 0   // rear : 5   // ---------------------   // index : 0 1 2 3 4 5   // ---------------------   // queue : 3 5 9 1 12 15   if(isFull()) {      printf("Queue is full!\n");   }   // remove one item   int num = removeData();   printf("Element removed: %d\n",num);   // front : 1   // rear : 5   // -------------------   // index : 1 2 3 4 5   // -------------------   // queue : 5 9 1 12 15   // insert more items   insert(16);   // front : 1   // rear : -1   // ----------------------   // index : 0 1 2 3 4 5   // ----------------------   // queue : 16 5 9 1 12 15   // As queue is full, elements will not be inserted.   insert(17);   insert(18);   // ----------------------   // index : 0 1 2 3 4 5   // ----------------------   // queue : 16 5 9 1 12 15   printf("Element at front: %d\n",peek());   printf("----------------------\n");   printf("index : 5 4 3 2 1 0\n");   printf("----------------------\n");   printf("Queue: ");   while(!isEmpty()) {      int n = removeData();      printf("%d ",n);   }}

Output

Queue is full!Element removed: 3Element at front: 5----------------------index : 5 4 3 2 1 0----------------------Queue: 5 9 1 12 15 16
import java.util.LinkedList;import java.util.Queue;public class QueueExample {   public static void main(String[] args) {      Queue<Integer> q = new LinkedList<>();      q.add(6);      q.add(1);      q.add(8);      q.add(4);      q.add(7);      System.out.println("The queue is: " + q);      int n = q.remove();      System.out.println("The element deleted is: " + n);      System.out.println("Queue after deletion: " + q);      int size = q.size();      System.out.println("Size of the queue is: " + size);   }}

Output

The queue is: [6, 1, 8, 4, 7]The element deleted is: 6Queue after deletion: [1, 8, 4, 7]Size of the queue is: 4
class Queue:   def __init__(self):      self.queue = list()   def addtoqueue(self,data):   # Insert method to add element      if data not in self.queue:         self.queue.insert(0,data)         return True      return False   def size(self):      return len(self.queue)   def removefromqueue(self):      if len(self.queue)>0:         return self.queue.pop()      return ("Queue is empty")q = Queue()q.addtoqueue("36")q.addtoqueue("24")q.addtoqueue("48")q.addtoqueue("12")q.addtoqueue("66")print("size of the queue: ",q.size())print("Element deleted from queue: ",q.removefromqueue())print("size of the queue after deletion: ",q.size())

Output

size of the queue:  5Element deleted from queue:  36size of the queue after deletion:  4

Graph Data Structure

A graph is an abstract data type (ADT) that consists of a set of objects that are connected to each other via links. These objects are calledvertices and the links are callededges.

Usually, a graph is represented as G = {V, E}, where G is the graph space, V is the set of vertices and E is the set of edges. If E is empty, the graph is known as aforest.

Before we proceed further, let's familiarize ourselves with some important terms −

  • Vertex − Each node of the graph is represented as a vertex. In the following example, the labelled circle represents vertices. Thus, A to G are vertices. We can represent them using an array as shown in the following image. Here A can be identified by index 0. B can be identified using index 1 and so on.

  • Edge − Edge represents a path between two vertices or a line between two vertices. In the following example, the lines from A to B, B to C, and so on represents edges. We can use a two-dimensional array to represent an array as shown in the following image. Here AB can be represented as 1 at row 0, column 1, BC as 1 at row 1, column 2 and so on, keeping other combinations as 0.

  • Adjacency − Two node or vertices are adjacent if they are connected to each other through an edge. In the following example, B is adjacent to A, C is adjacent to B, and so on.

  • Path − Path represents a sequence of edges between the two vertices. In the following example, ABCD represents a path from A to D.

graph

Operations of Graphs

The primary operations of a graph include creating a graph with vertices and edges, and displaying the said graph. However, one of the most common and popular operation performed using graphs are Traversal, i.e. visiting every vertex of the graph in a specific order.

There are two types of traversals in Graphs −

  • Depth First Search Traversal

  • Breadth First Search Traversal

Depth First Search Traversal

Depth First Search is a traversal algorithm that visits all the vertices of a graph in the decreasing order of its depth. In this algorithm, an arbitrary node is chosen as the starting point and the graph is traversed back and forth by marking unvisited adjacent nodes until all the vertices are marked.

The DFS traversal uses the stack data structure to keep track of the unvisited nodes.

Breadth First Search Traversal

Breadth First Search is a traversal algorithm that visits all the vertices of a graph present at one level of the depth before moving to the next level of depth. In this algorithm, an arbitrary node is chosen as the starting point and the graph is traversed by visiting the adjacent vertices on the same depth level and marking them until there is no vertex left.

The DFS traversal uses the queue data structure to keep track of the unvisited nodes.

Representation of Graphs

While representing graphs, we must carefully depict the elements (vertices and edges) present in the graph and the relationship between them. Pictorially, a graph is represented with a finite set of nodes and connecting links between them. However, we can also represent the graph in other most commonly used ways, like −

  • Adjacency Matrix

  • Adjacency List

Adjacency Matrix

The Adjacency Matrix is a VV matrix where the values are filled with either 0 or 1. If the link exists between Vi and Vj, it is recorded 1; otherwise, 0.

For the given graph below, let us construct an adjacency matrix −

Adjacency_Matrix

The adjacency matrix is −

adjacency_matrix

Adjacency List

The adjacency list is a list of the vertices directly connected to the other vertices in the graph.

Adjacency_Matrix

The adjacency list is −

adjacency list

Types of graph

There are two basic types of graph −

  • Directed Graph

  • Undirected Graph

Directed graph, as the name suggests, consists of edges that possess a direction that goes either away from a vertex or towards the vertex. Undirected graphs have edges that are not directed at all.

Directed Graph

Directed Graph

Undirected_Grap

Undirected Graph

Spanning Tree

Aspanning tree is a subset of an undirected graph that contains all the vertices of the graph connected with the minimum number of edges in the graph. Precisely, the edges of the spanning tree is a subset of the edges in the original graph.

If all the vertices are connected in a graph, then there exists at least one spanning tree. In a graph, there may exist more than one spanning tree.

Properties

  • A spanning tree does not have any cycle.

  • Any vertex can be reached from any other vertex.

Example

In the following graph, the highlighted edges form a spanning tree.

Spanning Tree

Minimum Spanning Tree

AMinimum Spanning Tree (MST) is a subset of edges of a connected weighted undirected graph that connects all the vertices together with the minimum possible total edge weight. To derive an MST, Prims algorithm or Kruskals algorithm can be used. Hence, we will discuss Prims algorithm in this chapter.

As we have discussed, one graph may have more than one spanning tree. If there are n number of vertices, the spanning tree should have number of edges. In this context, if each edge of the graph is associated with a weight and there exists more than one spanning tree, we need to find the minimum spanning tree of the graph.

Moreover, if there exist any duplicate weighted edges, the graph may have multiple minimum spanning tree.

Minimum Spanning Tree

In the above graph, we have shown a spanning tree though its not the minimum spanning tree. The cost of this spanning tree is(5+7+3+3+5+8+3+4)=38.

Shortest Path

The shortest path in a graph is defined as the minimum cost route from one vertex to another. This is most commonly seen in weighted directed graphs but are also applicable to undirected graphs.

A popular real-world application of finding the shortest path in a graph is a map. Navigation is made easier and simpler with the various shortest path algorithms where destinations are considered vertices of the graph and routes are the edges. The two common shortest path algorithms are −

  • Dijkstras Shortest Path Algorithm

  • Bellman Fords Shortest Path Algorithm

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include<stdlib.h>#include <stdlib.h>#define V 5 // Maximum number of vertices in the graphstruct graph {       // declaring graph data structure   struct vertex *point[V];};struct vertex {       // declaring vertices   int end;   struct vertex *next;};struct Edge {       // declaring edges   int end, start;};struct graph *create_graph (struct Edge edges[], int x){   int i;   struct graph *graph = (struct graph *) malloc (sizeof (struct graph));   for (i = 0; i < V; i++) {      graph->point[i] = NULL;   }   for (i = 0; i < x; i++) {      int start = edges[i].start;      int end = edges[i].end;      struct vertex *v = (struct vertex *) malloc (sizeof (struct vertex));      v->end = end;      v->next = graph->point[start];      graph->point[start] = v;   }   return graph;}int main (){   struct Edge edges[] = { {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 4}, {2, 4}, {2, 3}, {3, 1} };   int n = sizeof (edges) / sizeof (edges[0]);   struct graph *graph = create_graph (edges, n);   int i;   for (i = 0; i < V; i++) {      struct vertex *ptr = graph->point[i];      while (ptr != NULL) {         printf ("(%d -> %d)\t", i, ptr->end);         ptr = ptr->next;      }      printf ("\n");   }   return 0;}

Output

(1 -> 3)(1 -> 0)(2 -> 1)(2 -> 0)(3 -> 2)(3 -> 0)(4 -> 2)(4 -> 1)
#include <bits/stdc++.h>using namespace std;#define V 5 // Maximum number of vertices in the graphstruct graph {       // declaring graph data structure   struct vertex *point[V];};struct vertex {       // declaring vertices   int end;   struct vertex *next;};struct Edge {       // declaring edges   int end, start;};struct graph *create_graph (struct Edge edges[], int x){   int i;   struct graph *graph = (struct graph *) malloc (sizeof (struct graph));   for (i = 0; i < V; i++) {      graph->point[i] = NULL;   }   for (i = 0; i < x; i++) {      int start = edges[i].start;      int end = edges[i].end;      struct vertex *v = (struct vertex *) malloc (sizeof (struct vertex));      v->end = end;      v->next = graph->point[start];      graph->point[start] = v;   }   return graph;}int main (){   struct Edge edges[] = { {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 4}, {2, 4}, {2, 3}, {3, 1} };   int n = sizeof (edges) / sizeof (edges[0]);   struct graph *graph = create_graph (edges, n);   int i;   for (i = 0; i < V; i++) {      struct vertex *ptr = graph->point[i];      while (ptr != NULL) {         cout << "(" << i << " -> " << ptr->end << ")\t";         ptr = ptr->next;      }      cout << endl;   }   return 0;}

Output

(1 -> 3)(1 -> 0)(2 -> 1)(2 -> 0)(3 -> 2)(3 -> 0)(4 -> 2)(4 -> 1)
import java.util.*;//class to store edges of the graphclass Edge {      int src, dest;   Edge(int src, int dest) {      this.src = src;      this.dest = dest;   }}// Graph classpublic class Graph {      // node of adjacency list   static class vertex {      int v;      vertex(int v) {        this.v = v;      }   };   // define adjacency list to represent the graph   List<List<vertex>> adj_list = new ArrayList<>();      //Graph Constructor   public Graph(List<Edge> edges){            // adjacency list memory allocation      for (int i = 0; i < edges.size(); i++)      adj_list.add(i, new ArrayList<>());            // add edges to the graph      for (Edge e : edges){                // allocate new node in adjacency List from src to dest        adj_list.get(e.src).add(new vertex(e.dest));      }   }   public static void main (String[] args) {            // define edges of the graph      List<Edge> edges = Arrays.asList(new Edge(0, 1),new Edge(0, 2),      new Edge(0, 3),new Edge(1, 2), new Edge(1, 4),      new Edge(2, 4), new Edge(2, 3),new Edge(3, 1));            // call graph class Constructor to construct a graph      Graph graph = new Graph(edges);            // print the graph as an adjacency list      int src = 0;      int lsize = graph.adj_list.size();      System.out.println("The graph created is:");      while (src < lsize) {               //traverse through the adjacency list and print the edges         for (vertex edge : graph.adj_list.get(src)) {            System.out.print(src + " -> " + edge.v + "\t");         }         System.out.println();         src++;      }   }}

Output

The graph created is:0 -> 10 -> 20 -> 31 -> 21 -> 42 -> 42 -> 33 -> 1
#Python code for Graph Data StrutureV = 5#Maximum number of vertices in th graph#Declaring verticesclass Vertex:    def __init__(self, end):        self.end = end        self.next = None#Declaring Edgesclass Edge:    def __init__(self, start, end):        self.start = start        self.end = end#Declaring graph data structureclass Graph:    def __init__(self):        self.point = [None] * Vdef create_graph(edges, x):    graph = Graph()    for i in range(V):        graph.point[i] = None    for i in range(x):        start = edges[i].start        end = edges[i].end        v = Vertex(end)        v.next = graph.point[start]        graph.point[start] = v    return graphedges = [Edge(0, 1), Edge(0, 2), Edge(0, 3), Edge(1, 2), Edge(1, 4), Edge(2, 4), Edge(2, 3), Edge(3, 1)]n = len(edges)graph = create_graph(edges, n)#Rangefor i in range(V):    ptr = graph.point[i]    while ptr is not None:        print("({} -> {})".format(i, ptr.end), end="\t")        ptr = ptr.next    print()

Output

(0 -> 3)(0 -> 2)(0 -> 1)(1 -> 4)(1 -> 2)(2 -> 3)(2 -> 4)(3 -> 1)

Depth First Traversal

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack to remember to get the next vertex to start a search, when a dead end occurs in any iteration.

Depth First Travesal

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, then to F and lastly to C. It employs the following rules.

  • Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

  • Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices from the stack, which do not have adjacent vertices.)

  • Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

StepTraversalDescription
1Depth First Search Step OneInitialize the stack.
2Depth First Search Step TwoMarkS as visited and put it onto the stack. Explore any unvisited adjacent node fromS. We have three nodes and we can pick any of them. For this example, we shall take the node in an alphabetical order.
3Depth First Search Step ThreeMarkA as visited and put it onto the stack. Explore any unvisited adjacent node from A. BothS andD are adjacent toA but we are concerned for unvisited nodes only.
4Depth First Search Step FourVisitD and mark it as visited and put onto the stack. Here, we haveB andC nodes, which are adjacent toD and both are unvisited. However, we shall again choose in an alphabetical order.
5Depth First Search Step FiveWe chooseB, mark it as visited and put onto the stack. HereB does not have any unvisited adjacent node. So, we popB from the stack.
6Depth First Search Step SixWe check the stack top for return to the previous node and check if it has any unvisited nodes. Here, we findD to be on the top of the stack.
7Depth First Search Step SevenOnly unvisited adjacent node is fromD isC now. So we visitC, mark it as visited and put it onto the stack.

AsC does not have any unvisited adjacent node so we keep popping the stack until we find a node that has an unvisited adjacent node. In this case, there's none and we keep popping until the stack is empty.

Example

#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define MAX 5struct Vertex {   char label;   bool visited;};//stack variablesint stack[MAX]; int top = -1; //graph variables//array of verticesstruct Vertex* lstVertices[MAX];//adjacency matrixint adjMatrix[MAX][MAX];//vertex countint vertexCount = 0;//stack functionsvoid push(int item) {    stack[++top] = item; } int pop() {    return stack[top--]; } int peek() {   return stack[top];}bool isStackEmpty() {   return top == -1;}//graph functions//add vertex to the vertex listvoid addVertex(char label) {   struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));   vertex->label = label;     vertex->visited = false;        lstVertices[vertexCount++] = vertex;}//add edge to edge arrayvoid addEdge(int start,int end) {   adjMatrix[start][end] = 1;   adjMatrix[end][start] = 1;}//display the vertexvoid displayVertex(int vertexIndex) {   printf("%c ",lstVertices[vertexIndex]->label);}       //get the adjacent unvisited vertexint getAdjUnvisitedVertex(int vertexIndex) {   int i;   for(i = 0; i < vertexCount; i++) {      if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) {         return i;      }   }   return -1;}void depthFirstSearch() {   int i;   //mark first node as visited   lstVertices[0]->visited = true;   //display the vertex   displayVertex(0);      //push vertex index in stack   push(0);   while(!isStackEmpty()) {      //get the unvisited vertex of vertex which is at top of the stack      int unvisitedVertex = getAdjUnvisitedVertex(peek());      //no adjacent vertex found      if(unvisitedVertex == -1) {         pop();      } else {         lstVertices[unvisitedVertex]->visited = true;         displayVertex(unvisitedVertex);         push(unvisitedVertex);      }   }   //stack is empty, search is complete, reset the visited flag           for(i = 0;i < vertexCount;i++) {      lstVertices[i]->visited = false;   }        }int main() {   int i, j;   for(i = 0; i < MAX; i++) {   // set adjacency      for(j = 0; j < MAX; j++) // matrix to 0         adjMatrix[i][j] = 0;   }   addVertex('S');   // 0   addVertex('A');   // 1   addVertex('B');   // 2   addVertex('C');   // 3   addVertex('D');   // 4   addEdge(0, 1);    // S - A   addEdge(0, 2);    // S - B   addEdge(0, 3);    // S - C   addEdge(1, 4);    // A - D   addEdge(2, 4);    // B - D   addEdge(3, 4);    // C - D   printf("Depth First Search: ");   depthFirstSearch();    return 0;   }

Output

Depth First Search: S A D B C
//C++ code for Depth First Traversal#include <iostream>#include <array>#include <vector>constexpr int MAX = 5;struct Vertex {   char label;   bool visited;};//stack variablesstd::array<int, MAX> stack;int top = -1;//graph variables//array of vertices std::array<Vertex*, MAX> lstVertices;//adjacency matrixstd::array<std::array<int, MAX>, MAX> adjMatrix;//vertex countint vertexCount = 0;//stack functionsvoid push(int item) {   stack[++top] = item;}int pop() {   return stack[top--];}int peek() {   return stack[top];}bool isStackEmpty() {   return top == -1;}//graph functions//add vertex to the vertex listvoid addVertex(char label) {   Vertex* vertex = new Vertex;   vertex->label = label;   vertex->visited = false;   lstVertices[vertexCount++] = vertex;}//add edge to edge arrayvoid addEdge(int start, int end) {   adjMatrix[start][end] = 1;   adjMatrix[end][start] = 1;}//display the vertexvoid displayVertex(int vertexIndex) {   std::cout << lstVertices[vertexIndex]->label << " ";}//get the adjacent unvisited vertexint getAdjUnvisitedVertex(int vertexIndex) {   for (int i = 0; i < vertexCount; i++) {      if (adjMatrix[vertexIndex][i] == 1 && !lstVertices[i]->visited) {         return i;      }   }   return -1;}//mark first node as visitedvoid depthFirstSearch() {   lstVertices[0]->visited = true;   //display the vertex   displayVertex(0);   //push vertex index in stack   push(0);   while (!isStackEmpty()) {       //get the unvisited vertex of vertex which is at top of the stack      int unvisitedVertex = getAdjUnvisitedVertex(peek());      //no adjacent vertex found      if (unvisitedVertex == -1) {         pop();      } else {         lstVertices[unvisitedVertex]->visited = true;         displayVertex(unvisitedVertex);         push(unvisitedVertex);      }   }   //stack is empty, search is complete, reset the visited flag   for (int i = 0; i < vertexCount; i++) {      lstVertices[i]->visited = false;   }}int main() {   for (int i = 0; i < MAX; i++) {   //set adjacency      for (int j = 0; j < MAX; j++) {    // matrix to 0         adjMatrix[i][j] = 0;      }   }   addVertex('S');   addVertex('A');   addVertex('B');   addVertex('C');   addVertex('D');   addEdge(0, 1);   addEdge(0, 2);   addEdge(0, 3);   addEdge(1, 4);   addEdge(2, 4);   addEdge(3, 4);   std::cout << "Depth First Search: ";   depthFirstSearch();   return 0;}

Output

Depth First Search: S A D B C
//Java program for Depth First Traversalpublic class DepthFirstSearch {    private static final int MAX = 5;    private static class Vertex {        char label;        boolean visited;    }    private static int[] stack = new int[MAX];    private static int top = -1;    private static Vertex[] lstVertices = new Vertex[MAX];    private static int[][] adjMatrix = new int[MAX][MAX];    private static int vertexCount = 0;    private static void push(int item) {        stack[++top] = item;    }    private static int pop() {        return stack[top--];    }    private static int peek() {        return stack[top];    }    private static boolean isStackEmpty() {        return top == -1;    }    private static void addVertex(char label) {        Vertex vertex = new Vertex();        vertex.label = label;        vertex.visited = false;        lstVertices[vertexCount++] = vertex;    }    private static void addEdge(int start, int end) {        adjMatrix[start][end] = 1;        adjMatrix[end][start] = 1;    }    private static void displayVertex(int vertexIndex) {        System.out.print(lstVertices[vertexIndex].label + " ");    }    private static int getAdjUnvisitedVertex(int vertexIndex) {        for (int i = 0; i < vertexCount; i++) {            if (adjMatrix[vertexIndex][i] == 1 && !lstVertices[i].visited) {                return i;            }        }        return -1;    }    private static void depthFirstSearch() {        lstVertices[0].visited = true;        displayVertex(0);        push(0);        while (!isStackEmpty()) {            int unvisitedVertex = getAdjUnvisitedVertex(peek());            if (unvisitedVertex == -1) {                pop();            } else {                lstVertices[unvisitedVertex].visited = true;                displayVertex(unvisitedVertex);                push(unvisitedVertex);            }        }        for (int i = 0; i < vertexCount; i++) {            lstVertices[i].visited = false;        }    }    public static void main(String[] args) {        for (int i = 0; i < MAX; i++) {            for (int j = 0; j < MAX; j++) {                adjMatrix[i][j] = 0;            }        }        addVertex('S');   // 0        addVertex('A');   // 1        addVertex('B');   // 2        addVertex('C');   // 3        addVertex('D');   // 4        addEdge(0, 1);    // S - A        addEdge(0, 2);    // S - B        addEdge(0, 3);    // S - C        addEdge(1, 4);    // A - D        addEdge(2, 4);    // B - D        addEdge(3, 4);    // C - D        System.out.print("Depth First Search: ");        depthFirstSearch();    }}

Output

Depth First Search: S A D B C
#Python program for Depth First TraversalMAX = 5class Vertex:    def __init__(self, label):        self.label = label        self.visited = False#stack variablesstack = []top = -1#graph variables#array of verticeslstVertices = [None] * MAX#adjacency matrixadjMatrix = [[0] * MAX for _ in range(MAX)]#vertex countvertexCount = 0#stack functionsdef push(item):    global top    top += 1    stack.append(item)def pop():    global top    item = stack[top]    del stack[top]    top -= 1    return itemdef peek():    return stack[top]def isStackEmpty():    return top == -1#graph functions#add vertex to the vertex listdef addVertex(label):    global vertexCount    vertex = Vertex(label)    lstVertices[vertexCount] = vertex    vertexCount += 1#add edge to edge arraydef addEdge(start, end):    adjMatrix[start][end] = 1    adjMatrix[end][start] = 1#Display the Vertexdef displayVertex(vertexIndex):    print(lstVertices[vertexIndex].label, end=' ')def getAdjUnvisitedVertex(vertexIndex):    for i in range(vertexCount):        if adjMatrix[vertexIndex][i] == 1 and not lstVertices[i].visited:            return i    return -1def depthFirstSearch():    lstVertices[0].visited = True    displayVertex(0)    push(0)    while not isStackEmpty():        unvisitedVertex = getAdjUnvisitedVertex(peek())        if unvisitedVertex == -1:            pop()        else:            lstVertices[unvisitedVertex].visited = True            displayVertex(unvisitedVertex)            push(unvisitedVertex)    for i in range(vertexCount):        lstVertices[i].visited = Falsefor i in range(MAX):    for j in range(MAX):        adjMatrix[i][j] = 0addVertex('S')   # 0addVertex('A')   # 1addVertex('B')   # 2addVertex('C')   # 3addVertex('D')   # 4addEdge(0, 1)    # S - AaddEdge(0, 2)    # S - BaddEdge(0, 3)    # S - CaddEdge(1, 4)    # A - DaddEdge(2, 4)    # B - DaddEdge(3, 4)    # C - Dprint("Depth First Search:", end=' ')depthFirstSearch()

Output

Depth First Search: S A D B C

Breadth First Traversal

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a queue to remember to get the next vertex to start a search, when a dead end occurs in any iteration.

Breadth First Traversal

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C and G lastly to D. It employs the following rules.

  • Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue.

  • Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

  • Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

StepTraversalDescription
1Breadth First Search Step OneInitialize the queue.
2Breadth First Search Step TwoWe start from visitingS (starting node), and mark it as visited.
3Breadth First Search Step ThreeWe then see an unvisited adjacent node fromS. In this example, we have three nodes but alphabetically we chooseA, mark it as visited and enqueue it.
4Breadth First Search Step FourNext, the unvisited adjacent node fromS isB. We mark it as visited and enqueue it.
5Breadth First Search Step FiveNext, the unvisited adjacent node fromS isC. We mark it as visited and enqueue it.
6Breadth First Search Step SixNow,S is left with no unvisited adjacent nodes. So, we dequeue and findA.
7Breadth First Search Step SevenFromA we haveD as unvisited adjacent node. We mark it as visited and enqueue it.

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep on dequeuing in order to get all unvisited nodes. When the queue gets emptied, the program is over.

Example

#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define MAX 5struct Vertex {   char label;   bool visited;};//queue variablesint queue[MAX];int rear = -1;int front = 0;int queueItemCount = 0;//graph variables//array of verticesstruct Vertex* lstVertices[MAX];//adjacency matrixint adjMatrix[MAX][MAX];//vertex countint vertexCount = 0;//queue functionsvoid insert(int data) {   queue[++rear] = data;   queueItemCount++;}int removeData() {   queueItemCount--;   return queue[front++]; }bool isQueueEmpty() {   return queueItemCount == 0;}//graph functions//add vertex to the vertex listvoid addVertex(char label) {   struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));   vertex->label = label;     vertex->visited = false;        lstVertices[vertexCount++] = vertex;}//add edge to edge arrayvoid addEdge(int start,int end) {   adjMatrix[start][end] = 1;   adjMatrix[end][start] = 1;}//display the vertexvoid displayVertex(int vertexIndex) {   printf("%c ",lstVertices[vertexIndex]->label);}       //get the adjacent unvisited vertexint getAdjUnvisitedVertex(int vertexIndex) {   int i;   for(i = 0; i<vertexCount; i++) {      if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false)         return i;   }   return -1;}void breadthFirstSearch() {   int i;   //mark first node as visited   lstVertices[0]->visited = true;   //display the vertex   displayVertex(0);      //insert vertex index in queue   insert(0);   int unvisitedVertex;   while(!isQueueEmpty()) {      //get the unvisited vertex of vertex which is at front of the queue      int tempVertex = removeData();         //no adjacent vertex found      while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) {             lstVertices[unvisitedVertex]->visited = true;         displayVertex(unvisitedVertex);         insert(unvisitedVertex);                     }   }      //queue is empty, search is complete, reset the visited flag           for(i = 0;i<vertexCount;i++) {      lstVertices[i]->visited = false;   }    }int main() {   int i, j;   for(i = 0; i<MAX; i++) { // set adjacency       for(j = 0; j<MAX; j++) // matrix to 0         adjMatrix[i][j] = 0;   }   addVertex('S');   // 0   addVertex('A');   // 1   addVertex('B');   // 2   addVertex('C');   // 3   addVertex('D');   // 4   addEdge(0, 1);    // S - A   addEdge(0, 2);    // S - B   addEdge(0, 3);    // S - C   addEdge(1, 4);    // A - D   addEdge(2, 4);    // B - D   addEdge(3, 4);    // C - D   printf("\nBreadth First Search: ");   breadthFirstSearch();   return 0;}

Output

Breadth First Search: S A B C D
//C++ code for Breadth First Traversal#include <iostream>#include <stdlib.h>#include <stdbool.h>#define MAX 5struct Vertex {   char label;   bool visited;};//queue variablesint queue[MAX];int rear = -1;int front = 0;int queueItemCount = 0;//graph variables//array of verticesstruct Vertex* lstVertices[MAX];//adjacency matrixint adjMatrix[MAX][MAX];//vertex countint vertexCount = 0;//queue functionsvoid insert(int data) {   queue[++rear] = data;   queueItemCount++;}int removeData() {   queueItemCount--;   return queue[front++]; }bool isQueueEmpty() {   return queueItemCount == 0;}//graph functions//add vertex to the vertex listvoid addVertex(char label) {   struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));   vertex->label = label;     vertex->visited = false;        lstVertices[vertexCount++] = vertex;}//add edge to edge arrayvoid addEdge(int start,int end) {   adjMatrix[start][end] = 1;   adjMatrix[end][start] = 1;}//display the vertexvoid displayVertex(int vertexIndex) {   std::cout << lstVertices[vertexIndex]->label << " ";}       //get the adjacent unvisited vertexint getAdjUnvisitedVertex(int vertexIndex) {   int i;   for(i = 0; i<vertexCount; i++) {      if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false)         return i;   }   return -1;}void breadthFirstSearch() {   int i;   //mark first node as visited   lstVertices[0]->visited = true;  //display the vertex   displayVertex(0);      //insert vertex index in queue   insert(0);   int unvisitedVertex;   while(!isQueueEmpty()) {      //get the unvisited vertex of vertex which is at front of the queue      int tempVertex = removeData();         //no adjacent vertex found      while((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) {             lstVertices[unvisitedVertex]->visited = true;         displayVertex(unvisitedVertex);         insert(unvisitedVertex);                     }   }      //queue is empty, search is complete, reset the visited flag           for(i = 0;i<vertexCount;i++) {      lstVertices[i]->visited = false;   }    }int main() {   int i, j;   for(i = 0; i<MAX; i++) { // set adjacency       for(j = 0; j<MAX; j++) // matrix to 0         adjMatrix[i][j] = 0;   }   addVertex('S');   // 0   addVertex('A');   // 1   addVertex('B');   // 2   addVertex('C');   // 3   addVertex('D');   // 4   addEdge(0, 1);    // S - A   addEdge(0, 2);    // S - B   addEdge(0, 3);    // S - C   addEdge(1, 4);    // A - D   addEdge(2, 4);    // B - D   addEdge(3, 4);    // C - D   std::cout << "Breadth First Search: ";   breadthFirstSearch();   return 0;}

Output

Breadth First Search: S A B C D
//Java code for Breadth First Traversalimport java.util.LinkedList;import java.util.Queue;class Vertex {    char label;    boolean visited;    public Vertex(char label) {        this.label = label;        visited = false;    }}public class Graph {    private static final int MAX = 5;    private Vertex[] lstVertices;    private int[][] adjMatrix;    private int vertexCount;    public Graph() {        lstVertices = new Vertex[MAX];        adjMatrix = new int[MAX][MAX];        vertexCount = 0;    }    private void addVertex(char label) {        Vertex vertex = new Vertex(label);        lstVertices[vertexCount++] = vertex;    }    private void addEdge(int start, int end) {        adjMatrix[start][end] = 1;        adjMatrix[end][start] = 1;    }    private void displayVertex(int vertexIndex) {        System.out.print(lstVertices[vertexIndex].label + " ");    }    private int getAdjUnvisitedVertex(int vertexIndex) {        for (int i = 0; i < vertexCount; i++) {            if (adjMatrix[vertexIndex][i] == 1 && !lstVertices[i].visited)                return i;        }        return -1;    }    private void breadthFirstSearch() {        lstVertices[0].visited = true;        displayVertex(0);        Queue<Integer> queue = new LinkedList<>();        queue.add(0);        while (!queue.isEmpty()) {            int tempVertex = queue.poll();            int unvisitedVertex;            while ((unvisitedVertex = getAdjUnvisitedVertex(tempVertex)) != -1) {                lstVertices[unvisitedVertex].visited = true;                displayVertex(unvisitedVertex);                queue.add(unvisitedVertex);            }        }        // Reset the visited flag        for (int i = 0; i < vertexCount; i++) {            lstVertices[i].visited = false;        }    }    public static void main(String[] args) {        Graph graph = new Graph();        for (int i = 0; i < MAX; i++) {            for (int j = 0; j < MAX; j++)                graph.adjMatrix[i][j] = 0;        }        graph.addVertex('S');   // 0        graph.addVertex('A');   // 1        graph.addVertex('B');   // 2        graph.addVertex('C');   // 3        graph.addVertex('D');   // 4        graph.addEdge(0, 1);    // S - A        graph.addEdge(0, 2);    // S - B        graph.addEdge(0, 3);    // S - C        graph.addEdge(1, 4);    // A - D        graph.addEdge(2, 4);    // B - D        graph.addEdge(3, 4);    // C - D        System.out.print("Breadth First Search: ");        graph.breadthFirstSearch();    }}

Output

Breadth First Search: S A B C D
#Python program for Breadth First Search# defining MAX 5MAX = 5class Vertex:   def __init__(self, label):      self.label = label      self.visited = False# queue variablesqueue = [0] * MAXrear = -1front = 0queueItemCount = 0# graph variables#array of verticeslstVertices = [None] * MAX#adjacency matrixadjMatrix = [[0] * MAX for _ in range(MAX)]#vertex countvertexCount = 0# queue functionsdef insert(data):   global rear, queueItemCount   rear += 1   queue[rear] = data   queueItemCount += 1def removeData():   global front, queueItemCount   queueItemCount -= 1   data = queue[front]   front += 1   return datadef isQueueEmpty():   return queueItemCount == 0# graph functions#add vertex to the vertex listdef addVertex(label):   global vertexCount   vertex = Vertex(label)   lstVertices[vertexCount] = vertex   vertexCount += 1#add edge to edge arraydef addEdge(start, end):   adjMatrix[start][end] = 1   adjMatrix[end][start] = 1#Display the vertexdef displayVertex(vertexIndex):   print(lstVertices[vertexIndex].label, end=" ")#Get the adjacent unvisited vertexdef getAdjUnvisitedVertex(vertexIndex):   for i in range(vertexCount):      if adjMatrix[vertexIndex][i] == 1 and not lstVertices[i].visited:         return i   return -1def breadthFirstSearch():    #mark first node as visited   lstVertices[0].visited = True   #Display the vertex   displayVertex(0)   #insert vertex index in queue   insert(0)   while not isQueueEmpty():    #get the unvisited vertex of vertex which is at front of the queue      tempVertex = removeData()           #no adjacent vertex found      unvisitedVertex = getAdjUnvisitedVertex(tempVertex)      while unvisitedVertex != -1:         lstVertices[unvisitedVertex].visited = True         displayVertex(unvisitedVertex)         insert(unvisitedVertex)         unvisitedVertex = getAdjUnvisitedVertex(tempVertex)         #queue is empty, search is complete, reset the visited flag    for i in range(vertexCount):      lstVertices[i].visited = False# main functionif __name__ == "__main__":    #set adjacency   for i in range(MAX):       #matrix to 0       for j in range(MAX):         adjMatrix[i][j] = 0   addVertex('S')   addVertex('A')   addVertex('B')   addVertex('C')   addVertex('D')   addEdge(0, 1)   addEdge(0, 2)   addEdge(0, 3)   addEdge(1, 4)   addEdge(2, 4)   addEdge(3, 4)   print("Breadth First Search: ", end="")   breadthFirstSearch()

Output

Breadth First Search: S A B C D

Spanning Tree

A spanning tree is a subset of Graph G, which has all the vertices covered with minimum possible number of edges. Hence, a spanning tree does not have cycles and it cannot be disconnected..

By this definition, we can draw a conclusion that every connected and undirected Graph G has at least one spanning tree. A disconnected graph does not have any spanning tree, as it cannot be spanned to all its vertices.

Spanning Trees

We found three spanning trees off one complete graph. A complete undirected graph can have maximumnn-2 number of spanning trees, wheren is the number of nodes. In the above addressed example,n is 3, hence33−2 = 3 spanning trees are possible.

General Properties of Spanning Tree

We now understand that one graph can have more than one spanning tree. Following are a few properties of the spanning tree connected to graph G −

  • A connected graph G can have more than one spanning tree.

  • All possible spanning trees of graph G, have the same number of edges and vertices.

  • The spanning tree does not have any cycle (loops).

  • Removing one edge from the spanning tree will make the graph disconnected, i.e. the spanning tree isminimally connected.

  • Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree ismaximally acyclic.

Mathematical Properties of Spanning Tree

  • Spanning tree hasn-1 edges, wheren is the number of nodes (vertices).

  • From a complete graph, by removing maximume - n &plus; 1 edges, we can construct a spanning tree.

  • A complete graph can have maximumnn-2 number of spanning trees.

Thus, we can conclude that spanning trees are a subset of connected Graph G and disconnected graphs do not have spanning tree.

Application of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph. Common application of spanning trees are −

  • Civil Network Planning

  • Computer Network Routing Protocol

  • Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge graph and now plans to deploy telephone lines in such a way that in minimum lines we can connect to all city nodes. This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight than all other spanning trees of the same graph. In real-world situations, this weight can be measured as distance, congestion, traffic load or any arbitrary value denoted to the edges.

Minimum Spanning-Tree Algorithm

We shall learn about two most important spanning tree algorithms here −

Both are greedy algorithms.

Tree Data Structure

A tree is a non-linear abstract data type with a hierarchy-based structure. It consists of nodes (where the data is stored) that are connected via links. The tree data structure stems from a single node called a root node and has subtrees connected to the root.

Tree Data Structure

Important Terms

Following are the important terms with respect to tree.

  • Path − Path refers to the sequence of nodes along the edges of a tree.

  • Root − The node at the top of the tree is called root. There is only one root per tree and one path from the root node to any node.

  • Parent − Any node except the root node has one edge upward to a node called parent.

  • Child − The node below a given node connected by its edge downward is called its child node.

  • Leaf − The node which does not have any child node is called the leaf node.

  • Subtree − Subtree represents the descendants of a node.

  • Visiting − Visiting refers to checking the value of a node when control is on the node.

  • Traversing − Traversing means passing through nodes in a specific order.

  • Levels − Level of a node represents the generation of a node. If the root node is at level 0, then its next child node is at level 1, its grandchild is at level 2, and so on.

  • Keys − Key represents a value of a node based on which a search operation is to be carried out for a node.

Types of Trees

There are three types of trees −

  • General Trees

  • Binary Trees

  • Binary Search Trees

General Trees

General trees are unordered tree data structures where the root node has minimum 0 or maximum n subtrees.

The General trees have no constraint placed on their hierarchy. The root node thus acts like the superset of all the other subtrees.

General Trees

Binary Trees

Binary Trees are general trees in which the root node can only hold up to maximum 2 subtrees: left subtree and right subtree. Based on the number of children, binary trees are divided into three types.

Full Binary Tree

  • A full binary tree is a binary tree type where every node has either 0 or 2 child nodes.

Complete Binary Tree

  • A complete binary tree is a binary tree type where all the leaf nodes must be on the same level. However, root and internal nodes in a complete binary tree can either have 0, 1 or 2 child nodes.

Perfect Binary Tree

  • A perfect binary tree is a binary tree type where all the leaf nodes are on the same level and every node except leaf nodes have 2 children.

Binary Trees

Binary Search Trees

Binary Search Trees possess all the properties of Binary Trees including some extra properties of their own, based on some constraints, making them more efficient than binary trees.

The data in the Binary Search Trees (BST) is always stored in such a way that the values in the left subtree are always less than the values in the root node and the values in the right subtree are always greater than the values in the root node, i.e. left subtree < root node right subtree.

binary serach tree

Advantages of BST

  • Binary Search Trees are more efficient than Binary Trees since time complexity for performing various operations reduces.

  • Since the order of keys is based on just the parent node, searching operation becomes simpler.

  • The alignment of BST also favors Range Queries, which are executed to find values existing between two keys. This helps in the Database Management System.

Disadvantages of BST

The main disadvantage of Binary Search Trees is that if all elements in nodes are either greater than or lesser than the root node, the tree becomes skewed. Simply put, the tree becomes slanted to one side completely.

Thisskewness will make the tree a linked list rather than a BST, since the worst case time complexity for searching operation becomes O(n).

To overcome this issue of skewness in the Binary Search Trees, the concept ofBalanced Binary Search Trees was introduced.

Balanced Binary Search Trees

Consider a Binary Search Tree with m as the height of the left subtree and n as the height of the right subtree. If the value of (m-n) is equal to 0,1 or -1, the tree is said to be aBalanced Binary Search Tree.

The trees are designed in a way that they self-balance once the height difference exceeds 1. Binary Search Trees use rotations as self-balancing algorithms. There are four different types of rotations: Left Left, Right Right, Left Right, Right Left.

There are various types of self-balancing binary search trees −

  • AVL Trees

  • Red Black Trees

  • B Trees

  • B+ Trees

  • Splay Trees

  • Priority Search Trees

Tree Traversal

Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all nodes are connected via edges (links) we always start from the root (head) node. That is, we cannot randomly access a node in a tree. There are three ways which we use to traverse a tree −

  • In-order Traversal

  • Pre-order Traversal

  • Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the values it contains.

In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-tree. We should always remember that every node may represent a subtree itself.

If a binary tree is traversedin-order, the output will produce sorted key values in an ascending order.

In-order Traversal

We start fromA, and following in-order traversal, we move to its left subtreeB.B is also traversed in-order. The process goes on until all the nodes are visited. The output of in-order traversal of this tree will be −

D B E A F C G

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void inorder_traversal(struct node* root){   if(root != NULL) {      inorder_traversal(root->leftChild);      printf("%d ",root->data);      inorder_traversal(root->rightChild);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nInorder traversal: ");   inorder_traversal(root);   return 0;}

Output

Inorder traversal: 10 14 19 27 31 35 42
#include <iostream>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void inorder_traversal(struct node* root){   if(root != NULL) {      inorder_traversal(root->leftChild);      printf("%d ",root->data);      inorder_traversal(root->rightChild);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nInorder traversal: ");   inorder_traversal(root);   return 0;}

Output

Inorder traversal: 10 14 19 27 31 35 42
class Node {   int data;   Node leftChild;   Node rightChild;   public Node(int key) {      data = key;      leftChild = rightChild = null;   }}public class TreeDataStructure {   Node root = null;   void inorder_traversal(Node node) {      if(node != null) {         inorder_traversal(node.leftChild);         System.out.print(node.data + " ");         inorder_traversal(node.rightChild);      }   }   public static void main(String args[]) {      TreeDataStructure tree = new TreeDataStructure();      tree.root = new Node(27);      tree.root.leftChild = new Node(12);      tree.root.rightChild = new Node(3);      tree.root.leftChild.leftChild = new Node(44);      tree.root.leftChild.rightChild = new Node(17);      tree.root.rightChild.leftChild = new Node(56);      System.out.println("\nInorder traversal: ");      tree.inorder_traversal(tree.root);   }}

Output

Inorder traversal: 44 12 17 27 56 3
class Node:   def __init__(self, key):      self.leftChild = None      self.rightChild = None      self.data = key# Create a function to perform inorder tree traversaldef InorderTraversal(root):   if root:      InorderTraversal(root.leftChild)      print(root.data)      InorderTraversal(root.rightChild)# Main classif __name__ == "__main__":   root = Node(3)   root.leftChild = Node(26)   root.rightChild = Node(42)   root.leftChild.leftChild = Node(54)   root.leftChild.rightChild = Node(65)   root.rightChild.leftChild = Node(12)   # Function call   print("\nInorder traversal of binary tree is")   InorderTraversal(root)

Output

Inorder traversal of binary tree is54266531242

Pre-order Traversal

In this traversal method, the root node is visited first, then the left subtree and finally the right subtree.

Pre-order Traversal

We start fromA, and following pre-order traversal, we first visitA itself and then move to its left subtreeB.B is also traversed pre-order. The process goes on until all the nodes are visited. The output of pre-order traversal of this tree will be −

A → B → D → E → C → F → G

Algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void pre_order_traversal(struct node* root){   if(root != NULL) {      printf("%d ",root->data);      pre_order_traversal(root->leftChild);      pre_order_traversal(root->rightChild);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nPreorder traversal: ");   pre_order_traversal(root);   return 0;}

Output

Preorder traversal: 27 14 10 19 35 31 42
#include <iostream>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void pre_order_traversal(struct node* root){   if(root != NULL) {      printf("%d ",root->data);      pre_order_traversal(root->leftChild);      pre_order_traversal(root->rightChild);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nPreorder traversal: ");   pre_order_traversal(root);   return 0;}

Output

Preorder traversal: 27 14 10 19 35 31 42
class Node {   int data;   Node leftChild;   Node rightChild;   public Node(int key) {      data = key;      leftChild = rightChild = null;   }}public class TreeDataStructure {   Node root = null;   void pre_order_traversal(Node node) {      if(node != null) {         System.out.print(node.data + " ");         pre_order_traversal(node.leftChild);         pre_order_traversal(node.rightChild);      }   }   public static void main(String args[]) {      TreeDataStructure tree = new TreeDataStructure();      tree.root = new Node(27);      tree.root.leftChild = new Node(12);      tree.root.rightChild = new Node(3);      tree.root.leftChild.leftChild = new Node(44);      tree.root.leftChild.rightChild = new Node(17);      tree.root.rightChild.leftChild = new Node(56);      System.out.println("\nPreorder traversal: ");      tree.pre_order_traversal(tree.root);   }}

Output

Preorder traversal: 27 12 44 17 3 56
class Node:   def __init__(self, key):      self.leftChild = None      self.rightChild = None      self.data = key# Create a function to perform postorder tree traversaldef PreorderTraversal(root):   if root:      print(root.data)      PreorderTraversal(root.leftChild)      PreorderTraversal(root.rightChild)# Main classif __name__ == "__main__":   root = Node(3)   root.leftChild = Node(26)   root.rightChild = Node(42)   root.leftChild.leftChild = Node(54)   root.leftChild.rightChild = Node(65)   root.rightChild.leftChild = Node(12)   print("\nPreorder traversal of binary tree is")   PreorderTraversal(root)

Output

Preorder traversal of binary tree is32654654212

Post-order Traversal

In this traversal method, the root node is visited last, hence the name. First we traverse the left subtree, then the right subtree and finally the root node.

Post-order Traversal

We start fromA, and following pre-order traversal, we first visit the left subtreeB.B is also traversed post-order. The process goes on until all the nodes are visited. The output of post-order traversal of this tree will be

D → E → B → F → G → C → A

Algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void post_order_traversal(struct node* root){   if(root != NULL) {      post_order_traversal(root->leftChild);      post_order_traversal(root->rightChild);      printf("%d ", root->data);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nPost order traversal: ");   post_order_traversal(root);   return 0;}

Output

Post order traversal: 10 19 14 31 42 35 27
#include <iostream>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void post_order_traversal(struct node* root){   if(root != NULL) {      post_order_traversal(root->leftChild);      post_order_traversal(root->rightChild);      printf("%d ", root->data);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nPost order traversal: ");   post_order_traversal(root);   return 0;}

Output

Post order traversal: 10 19 14 31 42 35 27
class Node {   int data;   Node leftChild;   Node rightChild;   public Node(int key) {      data = key;      leftChild = rightChild = null;   }}public class TreeDataStructure {   Node root = null;   void post_order_traversal(Node node) {      if(node != null) {         post_order_traversal(node.leftChild);         post_order_traversal(node.rightChild);         System.out.print(node.data + " ");      }   }   public static void main(String args[]) {      TreeDataStructure tree = new TreeDataStructure();      tree.root = new Node(27);      tree.root.leftChild = new Node(12);      tree.root.rightChild = new Node(3);      tree.root.leftChild.leftChild = new Node(44);      tree.root.leftChild.rightChild = new Node(17);      tree.root.rightChild.leftChild = new Node(56);      System.out.println("\nPost order traversal: ");      tree.post_order_traversal(tree.root);   }}

Output

Post order traversal: 44 17 12 56 3 27
class Node:   def __init__(self, key):      self.leftChild = None      self.rightChild = None      self.data = key# Create a function to perform preorder tree traversaldef PostorderTraversal(root):   if root:      PostorderTraversal(root.leftChild)      PostorderTraversal(root.rightChild)      print(root.data)# Main classif __name__ == "__main__":   root = Node(3)   root.leftChild = Node(26)   root.rightChild = Node(42)   root.leftChild.leftChild = Node(54)   root.leftChild.rightChild = Node(65)   root.rightChild.leftChild = Node(12)   print("\nPostorder traversal of binary tree is")   PostorderTraversal(root)

Output

Postorder traversal of binary tree is54652612423

To check the C implementation of tree traversing, pleaseclick here

Implementation

Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all nodes are connected via edges (links) we always start from the root (head) node. That is, we cannot randomly access a node in a tree. There are three ways which we use to traverse a tree −

  • In-order Traversal

  • Pre-order Traversal

  • Post-order Traversal

We shall now see the implementation of tree traversal in C programming language here using the following binary tree −

Tree Traversal

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;//if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void pre_order_traversal(struct node* root){   if(root != NULL) {      printf("%d ",root->data);      pre_order_traversal(root->leftChild);      pre_order_traversal(root->rightChild);   }}void inorder_traversal(struct node* root){   if(root != NULL) {      inorder_traversal(root->leftChild);      printf("%d ",root->data);      inorder_traversal(root->rightChild);   }}void post_order_traversal(struct node* root){   if(root != NULL) {      post_order_traversal(root->leftChild);      post_order_traversal(root->rightChild);      printf("%d ", root->data);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nPreorder traversal: ");   pre_order_traversal(root);   printf("\nInorder traversal: ");   inorder_traversal(root);   printf("\nPost order traversal: ");   post_order_traversal(root);   return 0;}

Output

Preorder traversal: 27 14 10 19 35 31 42 Inorder traversal: 10 14 19 27 31 35 42 Post order traversal: 10 19 14 31 42 35 27
#include <iostream>struct node {   int data;   struct node *leftChild;   struct node *rightChild;};struct node *root = NULL;void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;            //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void pre_order_traversal(struct node* root){   if(root != NULL) {      printf("%d ",root->data);      pre_order_traversal(root->leftChild);      pre_order_traversal(root->rightChild);   }}void inorder_traversal(struct node* root){   if(root != NULL) {      inorder_traversal(root->leftChild);      printf("%d ",root->data);      inorder_traversal(root->rightChild);   }}void post_order_traversal(struct node* root){   if(root != NULL) {      post_order_traversal(root->leftChild);      post_order_traversal(root->rightChild);      printf("%d ", root->data);   }}int main(){   int i;   int array[7] = { 27, 14, 35, 10, 19, 31, 42 };   for(i = 0; i < 7; i++)      insert(array[i]);   printf("\nPreorder traversal: ");   pre_order_traversal(root);   printf("\nInorder traversal: ");   inorder_traversal(root);   printf("\nPost order traversal: ");   post_order_traversal(root);   return 0;}

Output

Preorder traversal: 27 14 10 19 35 31 42 Inorder traversal: 10 14 19 27 31 35 42 Post order traversal: 10 19 14 31 42 35 27
class Node {   int data;   Node leftChild;   Node rightChild;   public Node(int key) {      data = key;      leftChild = rightChild = null;   }}public class TreeDataStructure {   Node root = null;   void inorder_traversal(Node node) {      if(node != null) {         inorder_traversal(node.leftChild);         System.out.print(node.data + " ");         inorder_traversal(node.rightChild);      }   }   void pre_order_traversal(Node node) {      if(node != null) {         System.out.print(node.data + " ");         pre_order_traversal(node.leftChild);         pre_order_traversal(node.rightChild);      }   }   void post_order_traversal(Node node) {      if(node != null) {         post_order_traversal(node.leftChild);         post_order_traversal(node.rightChild);         System.out.print(node.data + " ");      }   }   public static void main(String args[]) {      TreeDataStructure tree = new TreeDataStructure();      tree.root = new Node(27);      tree.root.leftChild = new Node(12);      tree.root.rightChild = new Node(3);      tree.root.leftChild.leftChild = new Node(44);      tree.root.leftChild.rightChild = new Node(17);      tree.root.rightChild.leftChild = new Node(56);      System.out.println("\nInorder traversal: ");      tree.inorder_traversal(tree.root);      System.out.println("\nPreorder traversal: ");      tree.pre_order_traversal(tree.root);      System.out.println("\nPost order traversal: ");      tree.post_order_traversal(tree.root);   }}

Output

Inorder traversal: 44 12 17 27 56 3 Preorder traversal: 27 12 44 17 3 56 Post order traversal: 44 17 12 56 3 27
class Node:   def __init__(self, key):      self.leftChild = None      self.rightChild = None      self.data = key# Create a function to perform inorder tree traversaldef InorderTraversal(root):   if root:      InorderTraversal(root.leftChild)      print(root.data)      InorderTraversal(root.rightChild)# Create a function to perform preorder tree traversaldef PostorderTraversal(root):   if root:      PostorderTraversal(root.leftChild)      PostorderTraversal(root.rightChild)      print(root.data)# Create a function to perform postorder tree traversaldef PreorderTraversal(root):   if root:      print(root.data)      PreorderTraversal(root.leftChild)      PreorderTraversal(root.rightChild)# Main classif __name__ == "__main__":   root = Node(3)   root.leftChild = Node(26)   root.rightChild = Node(42)   root.leftChild.leftChild = Node(54)   root.leftChild.rightChild = Node(65)   root.rightChild.leftChild = Node(12)   # Function call   print("\nInorder traversal of binary tree is")   InorderTraversal(root)   print("\nPreorder traversal of binary tree is")   PreorderTraversal(root)   print("\nPostorder traversal of binary tree is")   PostorderTraversal(root)

Output

Inorder traversal of binary tree is54266531242Preorder traversal of binary tree is32654654212Postorder traversal of binary tree is54652612423

Binary Search Tree

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties −

  • The left sub-tree of a node has a key less than or equal to its parent node's key.

  • The right sub-tree of a node has a key greater than or equal to its parent node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-tree and can be defined as −

left_subtree (keys)  node (key)  right_subtree (keys)

Representation

BST is a collection of nodes arranged in a way where they maintain BST properties. Each node has a key and an associated value. While searching, the desired key is compared to the keys in BST and if found, the associated value is retrieved.

Following is a pictorial representation of BST −

Tree Traversal

We observe that the root node key (27) has all less-valued keys on the left sub-tree and the higher valued keys on the right sub-tree.

Basic Operations

Following are the basic operations of a tree −

  • Search − Searches an element in a tree.

  • Insert − Inserts an element in a tree.

  • Pre-order Traversal − Traverses a tree in a pre-order manner.

  • In-order Traversal − Traverses a tree in an in-order manner.

  • Post-order Traversal − Traverses a tree in a post-order manner.

Defining a Node

Define a node that stores some data, and references to its left and right child nodes.

struct node {   int data;   struct node *leftChild;   struct node *rightChild;};

Search Operation

Whenever an element is to be searched, start searching from the root node. Then if the data is less than the key value, search for the element in the left subtree. Otherwise, search for the element in the right subtree. Follow the same algorithm for each node.

Algorithm

1. START2. Check whether the tree is empty or not3. If the tree is empty, search is not possible4. Otherwise, first search the root of the tree.5. If the key does not match with the value in the root, search its subtrees.6. If the value of the key is less than the root value, search the left subtree7. If the value of the key is greater than the root value, search the right subtree.8. If the key is not found in the tree, return unsuccessful search.9. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node *root = NULL;struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->data = item;   temp->leftChild = temp->rightChild = NULL;   return temp;}void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;      //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;                  //go to left of the tree         if(data < parent->data) {            current = current->leftChild;                        //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;                        //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}struct node* search(int data){   struct node *current = root;   printf("\nVisiting elements: ");   while(current->data != data) {      if(current != NULL) {         printf("%d ",current->data);                  //go to left tree         if(current->data > data) {            current = current->leftChild;         }//else go to right tree         else {            current = current->rightChild;         }                  //not found         if(current == NULL) {            return NULL;         }      }   }   return current;}void printTree(struct node* Node){   if(Node == NULL)      return;   printTree(Node->leftChild);   printf(" --%d", Node->data);   printTree(Node->rightChild);}int main(){   insert(55);   insert(20);   insert(90);   insert(50);   insert(35);   insert(15);   insert(65);   printf("Insertion done\n");   printTree(root);   struct node* k;   k = search(35);   if(k != NULL)      printf("\nElement %d found", k->data);   else      printf("\nElement not found");   return 0;}

Output

Insertion done --15 --20 --35 --50 --55 --65 --90Visiting elements: 55 20 50 Element 35 found
#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node *root = NULL;struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->data = item;   temp->leftChild = temp->rightChild = NULL;   return temp;}void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;      //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;                  //go to left of the tree         if(data < parent->data) {            current = current->leftChild;                        //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;                        //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}struct node* search(int data){   struct node *current = root;   printf("\nVisiting elements: ");   while(current->data != data) {      if(current != NULL) {         printf("%d ",current->data);                  //go to left tree         if(current->data > data) {            current = current->leftChild;         }//else go to right tree         else {            current = current->rightChild;         }                  //not found         if(current == NULL) {            return NULL;         }      }   }   return current;}void printTree(struct node* Node){   if(Node == NULL)      return;   printTree(Node->leftChild);   printf(" --%d", Node->data);   printTree(Node->rightChild);}int main(){   insert(55);   insert(20);   insert(90);   insert(50);   insert(35);   insert(15);   insert(65);   printf("Insertion done\n");   printTree(root);   struct node* k;   k = search(35);   if(k != NULL)      printf("\nElement %d found", k->data);   else      printf("\nElement not found");   return 0;}

Output

Insertion done --15 --20 --35 --50 --55 --65 --90Visiting elements: 55 20 50 Element 35 found
import java.util.Scanner;class BSTNode {   BSTNode left, right;   int data;   public BSTNode(int n) {      left = null;      right = null;      data = n;   }}public class BST {   static BSTNode root;   public BST() {      root = null;   }   private BSTNode insert(BSTNode node, int data) {      if(node == null)         node = new BSTNode(data);      else {         if(data <= node.data)            node.left = insert(node.left, data);         else            node.right = insert(node.right, data);      }      return node;   }   private boolean search(BSTNode r, int val) {      boolean found = false;      while ((r != null) && !found) {         int rval = r.data;         if(val < rval)            r = r.left;         else if (val > rval)            r = r.right;         else {            found = true;            break;         }         found = search(r, val);      }      return found;   }   void printTree(BSTNode node, String prefix) {      if(node == null)         return;      printTree(node.left , " " + prefix);      System.out.println(prefix + "--" + node.data);      printTree(node.right , prefix + " ");   }   public static void main(String args[]) {      Scanner sc = new Scanner(System.in);      BST bst = new BST();      root = bst.insert(root, 55);      root = bst.insert(root, 20);      root = bst.insert(root, 90);      root = bst.insert(root, 80);      root = bst.insert(root, 50);      root = bst.insert(root, 35);      root = bst.insert(root, 15);      root = bst.insert(root, 65);      bst.printTree(root, " ");      System.out.println("Element found = " + bst.search(root, 80));   }}

Output

--15  --20--35   --50 --55    --65   --80  --90Element found = true
class Node:   def __init__(self, data):      self.left = None      self.right = None      self.data = data# Insert method to create nodes   def insert(self, data):      if self.data:         if data < self.data:            if self.left is None:               self.left = Node(data)            else:               self.left.insert(data)         elif data > self.data:            if self.right is None:               self.right = Node(data)            else:               self.right.insert(data)         else:            self.data = data# search method to compare the value with nodes   def search(self, key):      if key < self.data:         if self.left is None:            return str(key)+" Not Found"         return self.left.search(key)      elif key > self.data:         if self.right is None:            return str(key)+" Not Found"         return self.right.search(key)      else:         print(str(self.data) + ' is found')root = Node(54)root.insert(34)root.insert(46)root.insert(12)root.insert(23)root.insert(5)print(root.search(17))print(root.search(12))

Output

17 Not Found12 is foundNone

Insert Operation

Whenever an element is to be inserted, first locate its proper location. Start searching from the root node, then if the data is less than the key value, search for the empty location in the left subtree and insert the data. Otherwise, search for the empty location in the right subtree and insert the data.

Algorithm

1  START2  If the tree is empty, insert the first element as the root node of the tree. The following elements are added as the leaf nodes.3  If an element is less than the root value, it is added into the left subtree as a leaf node.4  If an element is greater than the root value, it is added into the right subtree as a leaf node.5  The final leaf nodes of the tree point to NULL values as their child nodes.6  END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node *root = NULL;struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->data = item;   temp->leftChild = temp->rightChild = NULL;   return temp;}void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;      //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;                  //go to left of the tree         if(data < parent->data) {            current = current->leftChild;                        //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;                        //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void printTree(struct node* Node){   if(Node == NULL)      return;   printTree(Node->leftChild);   printf(" --%d", Node->data);   printTree(Node->rightChild);}int main(){   insert(55);   insert(20);   insert(90);   insert(50);   insert(35);   insert(15);   insert(65);   printf("Insertion done\n");   printTree(root);   return 0;}

Output

Insertion done --15 --20 --35 --50 --55 --65 --90
#include <iostream>struct node {   int data;   struct node *leftChild, *rightChild;};struct node *root = NULL;struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->data = item;   temp->leftChild = temp->rightChild = NULL;   return temp;}void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;      //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;                  //go to left of the tree         if(data < parent->data) {            current = current->leftChild;                        //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;                        //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}void printTree(struct node* Node){   if(Node == NULL)      return;   printTree(Node->leftChild);   printf(" --%d", Node->data);   printTree(Node->rightChild);}int main(){   insert(55);   insert(20);   insert(90);   insert(50);   insert(35);   insert(15);   insert(65);   printf("Insertion done\n");   printTree(root);   return 0;}

Output

Insertion done --15 --20 --35 --50 --55 --65 --90
import java.util.Scanner;class BSTNode {   BSTNode left, right;   int data;   public BSTNode(int n) {      left = null;      right = null;      data = n;   }}public class BST {   static BSTNode root;   public BST() {      root = null;   }   private BSTNode insert(BSTNode node, int data) {      if(node == null)         node = new BSTNode(data);      else {         if(data <= node.data)            node.left = insert(node.left, data);         else            node.right = insert(node.right, data);      }      return node;   }   void printTree(BSTNode node, String prefix) {      if(node == null)         return;      printTree(node.left , " " + prefix);      System.out.println(prefix + "--" + node.data);      printTree(node.right , prefix + " ");   }   public static void main(String args[]) {      Scanner sc = new Scanner(System.in);      BST bst = new BST();      root = bst.insert(root, 55);      root = bst.insert(root, 20);      root = bst.insert(root, 90);      root = bst.insert(root, 80);      root = bst.insert(root, 50);      root = bst.insert(root, 35);      root = bst.insert(root, 15);      root = bst.insert(root, 65);      bst.printTree(root, " ");   }}

Output

--15  --20--35   --50 --55    --65   --80  --90
class Node:   def __init__(self, data):      self.left = None      self.right = None      self.data = data# Insert method to create nodes   def insert(self, data):      if self.data:         if data < self.data:            if self.left is None:               self.left = Node(data)            else:               self.left.insert(data)         elif data > self.data:            if self.right is None:               self.right = Node(data)            else:               self.right.insert(data)         else:            self.data = dataroot = Node(54)root.insert(34)root.insert(46)root.insert(12)root.insert(23)root.insert(5)print("Insertion Done")

Output

Insertion Done

Inorder Traversal

The inorder traversal operation in a Binary Search Tree visits all its nodes in the following order −

  • Firstly, we traverse the left child of the root node/current node, if any.

  • Next, traverse the current node.

  • Lastly, traverse the right child of the current node, if any.

Algorithm

1. START2. Traverse the left subtree, recursively3. Then, traverse the root node4. Traverse the right subtree, recursively.5. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int key;   struct node *left, *right;};struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->key = item;   temp->left = temp->right = NULL;   return temp;}// Inorder Traversalvoid inorder(struct node *root){   if (root != NULL) {      inorder(root->left);      printf("%d -> ", root->key);      inorder(root->right);   }}// Insertion operationstruct node *insert(struct node *node, int key){   if (node == NULL) return newNode(key);   if (key < node->key)      node->left = insert(node->left, key);   else      node->right = insert(node->right, key);   return node;}int main(){   struct node *root = NULL;   root = insert(root, 55);   root = insert(root, 20);   root = insert(root, 90);   root = insert(root, 50);   root = insert(root, 35);   root = insert(root, 15);   root = insert(root, 65);   printf("Inorder traversal: ");   inorder(root);}

Output

Inorder traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->
#include <iostream>struct node {   int key;   struct node *left, *right;};struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->key = item;   temp->left = temp->right = NULL;   return temp;}// Inorder Traversalvoid inorder(struct node *root){   if (root != NULL) {     inorder(root->left);     printf("%d -> ", root->key);     inorder(root->right);   }}// Insertion operationstruct node *insert(struct node *node, int key){   if (node == NULL) return newNode(key);   if (key < node->key)     node->left = insert(node->left, key);   else     node->right = insert(node->right, key);   return node;}int main(){   struct node *root = NULL;   root = insert(root, 55);   root = insert(root, 20);   root = insert(root, 90);   root = insert(root, 50);   root = insert(root, 35);   root = insert(root, 15);   root = insert(root, 65);   printf("Inorder traversal: ");   inorder(root);}

Output

Inorder traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->
class Node {   int data;   Node leftChild;   Node rightChild;   public Node(int key) {      data = key;      leftChild = rightChild = null;   }}public class TreeDataStructure {   Node root = null;   void inorder_traversal(Node node) {      if(node != null) {         inorder_traversal(node.leftChild);         System.out.print(node.data + " ");         inorder_traversal(node.rightChild);      }   }   public static void main(String args[]) {      TreeDataStructure tree = new TreeDataStructure();      tree.root = new Node(27);      tree.root.leftChild = new Node(12);      tree.root.rightChild = new Node(30);      tree.root.leftChild.leftChild = new Node(4);      tree.root.leftChild.rightChild = new Node(17);      tree.root.rightChild.leftChild = new Node(56);      System.out.println("\nInorder traversal: ");      tree.inorder_traversal(tree.root);   }}

Output

Inorder traversal:4 12 17 27 56 30
class Node:   def __init__(self, data):      self.left = None      self.right = None      self.data = data# Insert method to create nodes   def insert(self, data):      if self.data:         if data < self.data:            if self.left is None:               self.left = Node(data)            else:               self.left.insert(data)         elif data > self.data:            if self.right is None:               self.right = Node(data)            else:               self.right.insert(data)         else:            self.data = data# Print the tree   def Inorder(self):      if self.left:         self.left.Inorder()         print(self.data)      if self.right:         self.right.Inorder()root = Node(54)root.insert(34)root.insert(46)root.insert(12)root.insert(23)root.insert(5)print("Inorder Traversal of Binary Search Tree: ")root.Inorder()

Output

Inorder Traversal of Binary Search Tree: 123454

Preorder Traversal

The preorder traversal operation in a Binary Search Tree visits all its nodes. However, the root node in it is first printed, followed by its left subtree and then its right subtree.

Algorithm

1. START2. Traverse the root node first.3. Then traverse the left subtree, recursively4. Later, traverse the right subtree, recursively.5. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int key;   struct node *left, *right;};struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->key = item;   temp->left = temp->right = NULL;   return temp;}// Preorder Traversalvoid preorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->key);      preorder(root->left);      preorder(root->right);   }}// Insertion operationstruct node *insert(struct node *node, int key){   if (node == NULL) return newNode(key);   if (key < node->key)      node->left = insert(node->left, key);   else      node->right = insert(node->right, key);   return node;}int main(){   struct node *root = NULL;   root = insert(root, 55);   root = insert(root, 20);   root = insert(root, 90);   root = insert(root, 50);   root = insert(root, 35);   root = insert(root, 15);   root = insert(root, 65);   printf("Preorder traversal: ");   preorder(root);}

Output

Preorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
#include <iostream>struct node {   int key;   struct node *left, *right;};struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->key = item;   temp->left = temp->right = NULL;   return temp;}// Preorder Traversalvoid preorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->key);      preorder(root->left);      preorder(root->right);   }}// Insertion operationstruct node *insert(struct node *node, int key){   if (node == NULL) return newNode(key);   if (key < node->key)      node->left = insert(node->left, key);   else      node->right = insert(node->right, key);   return node;}int main(){   struct node *root = NULL;   root = insert(root, 55);   root = insert(root, 20);   root = insert(root, 90);   root = insert(root, 50);   root = insert(root, 35);   root = insert(root, 15);   root = insert(root, 65);   printf("Preorder traversal: ");   preorder(root);}

Output

Preorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
class Node {    int data;    Node leftChild;    Node rightChild;    public Node(int key) {        data = key;        leftChild = rightChild = null;    }}public class TreeDataStructure {    Node root = null;    void preorder_traversal(Node node) {        if(node != null) {            System.out.print(node.data + " ");            preorder_traversal(node.leftChild);            preorder_traversal(node.rightChild);        }    }    public static void main(String args[]) {        TreeDataStructure tree = new TreeDataStructure();        tree.root = new Node(27);        tree.root.leftChild = new Node(12);        tree.root.rightChild = new Node(30);        tree.root.leftChild.leftChild = new Node(4);        tree.root.leftChild.rightChild = new Node(17);        tree.root.rightChild.leftChild = new Node(56);        System.out.println("\nPreorder traversal: ");        tree.preorder_traversal(tree.root);    }}

Output

Preorder traversal: 27 12 4 17 30 56
class Node:   def __init__(self, data):      self.left = None      self.right = None      self.data = data# Insert method to create nodes   def insert(self, data):      if self.data:         if data < self.data:            if self.left is None:               self.left = Node(data)            else:               self.left.insert(data)         elif data > self.data:            if self.right is None:               self.right = Node(data)            else:               self.right.insert(data)         else:            self.data = data# Print the tree   def Preorder(self):      print(self.data)      if self.left:         self.left.Preorder()      if self.right:         self.right.Preorder()root = Node(54)root.insert(34)root.insert(46)root.insert(12)root.insert(23)root.insert(5)print("Preorder Traversal of Binary Search Tree: ")root.Preorder()

Output

Preorder Traversal of Binary Search Tree: 54341252346

Postorder Traversal

Like the other traversals, postorder traversal also visits all the nodes in a Binary Search Tree and displays them. However, the left subtree is printed first, followed by the right subtree and lastly, the root node.

Algorithm

1. START2. Traverse the left subtree, recursively3. Traverse the right subtree, recursively.4. Then, traverse the root node5. END

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int key;   struct node *left, *right;};struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->key = item;   temp->left = temp->right = NULL;   return temp;}// Postorder Traversalvoid postorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->key);      postorder(root->left);      postorder(root->right);   }}// Insertion operationstruct node *insert(struct node *node, int key){   if (node == NULL) return newNode(key);   if (key < node->key)      node->left = insert(node->left, key);   else      node->right = insert(node->right, key);   return node;}int main(){   struct node *root = NULL;   root = insert(root, 55);   root = insert(root, 20);   root = insert(root, 90);   root = insert(root, 50);   root = insert(root, 35);   root = insert(root, 15);   root = insert(root, 65);   printf("Postorder traversal: ");   postorder(root);}

Output

Postorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 > 65 ->
#include <iostream>struct node {   int key;   struct node *left, *right;};struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->key = item;   temp->left = temp->right = NULL;   return temp;}// Postorder Traversalvoid postorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->key);      postorder(root->left);      postorder(root->right);   }}// Insertion operationstruct node *insert(struct node *node, int key){   if (node == NULL) return newNode(key);   if (key < node->key)      node->left = insert(node->left, key);   else      node->right = insert(node->right, key);   return node;}int main(){   struct node *root = NULL;   root = insert(root, 55);   root = insert(root, 20);   root = insert(root, 90);   root = insert(root, 50);   root = insert(root, 35);   root = insert(root, 15);   root = insert(root, 65);   printf("Postorder traversal: ");   postorder(root);}

Output

Postorder traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 ->
class Node {    int data;    Node leftChild;    Node rightChild;    public Node(int key) {        data = key;        leftChild = rightChild = null;    }}public class TreeDataStructure {    Node root = null;    void postorder_traversal(Node node) {        if(node != null) {            postorder_traversal(node.leftChild);            postorder_traversal(node.rightChild);            System.out.print(node.data + " ");        }    }    public static void main(String args[]) {        TreeDataStructure tree = new TreeDataStructure();        tree.root = new Node(27);        tree.root.leftChild = new Node(12);        tree.root.rightChild = new Node(30);        tree.root.leftChild.leftChild = new Node(4);        tree.root.leftChild.rightChild = new Node(17);        tree.root.rightChild.leftChild = new Node(56);        System.out.println("\nPostorder traversal: ");        tree.postorder_traversal(tree.root);    }}

Output

Postorder traversal: 4 17 12 56 30 27
class Node:   def __init__(self, data):      self.left = None      self.right = None      self.data = data# Insert method to create nodes   def insert(self, data):      if self.data:         if data < self.data:            if self.left is None:               self.left = Node(data)            else:               self.left.insert(data)         elif data > self.data:            if self.right is None:               self.right = Node(data)            else:               self.right.insert(data)      else:         self.data = data# Print the tree   def Postorder(self):      if self.left:         self.left.Postorder()      if self.right:         self.right.Postorder()      print(self.data)root = Node(54)root.insert(34)root.insert(46)root.insert(12)root.insert(23)root.insert(5)print("Postorder Traversal of Binary Search Tree: ")root.Postorder()

Output

Postorder Traversal of Binary Search Tree: 52312463454

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node *root = NULL;struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->data = item;   temp->leftChild = temp->rightChild = NULL;   return temp;}void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;   //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;                        //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}struct node* search(int data){   struct node *current = root;   printf("\n\nVisiting elements: ");   while(current->data != data) {      if(current != NULL) {         printf("%d ",current->data);         //go to left tree         if(current->data > data) {            current = current->leftChild;         }//else go to right tree         else {            current = current->rightChild;         }         //not found         if(current == NULL) {            return NULL;         }      }   }   return current;}// Inorder Traversalvoid inorder(struct node *root){   if (root != NULL) {      inorder(root->leftChild);      printf("%d -> ", root->data);      inorder(root->rightChild);   }}// Preorder Traversalvoid preorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->data);      preorder(root->leftChild);      preorder(root->rightChild);   }}// Postorder Traversalvoid postorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->data);      postorder(root->leftChild);      postorder(root->rightChild);   }}int main(){   insert(55);   insert(20);   insert(90);   insert(50);   insert(35);   insert(15);   insert(65);   printf("Insertion done\n");   printf("\nPreorder Traversal: ");   preorder(root);   printf("\nInorder Traversal: ");   inorder(root);   printf("\nPostorder Traversal: ");   postorder(root);   struct node* k;   k = search(35);   if(k != NULL)      printf("\nElement %d found", k->data);   else      printf("\nElement not found");   return 0;}

Output

Insertion donePreorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Inorder Traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 -> Postorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Visiting elements: 55 20 50 Element 35 found
#include <iostream>struct node {   int data;   struct node *leftChild, *rightChild;};struct node *root = NULL;struct node *newNode(int item){   struct node *temp = (struct node *)malloc(sizeof(struct node));   temp->data = item;   temp->leftChild = temp->rightChild = NULL;   return temp;}void insert(int data){   struct node *tempNode = (struct node*) malloc(sizeof(struct node));   struct node *current;   struct node *parent;   tempNode->data = data;   tempNode->leftChild = NULL;   tempNode->rightChild = NULL;      //if tree is empty   if(root == NULL) {      root = tempNode;   } else {      current = root;      parent = NULL;      while(1) {         parent = current;         //go to left of the tree         if(data < parent->data) {            current = current->leftChild;            //insert to the left            if(current == NULL) {               parent->leftChild = tempNode;               return;            }         }//go to right of the tree         else {            current = current->rightChild;                        //insert to the right            if(current == NULL) {               parent->rightChild = tempNode;               return;            }         }      }   }}struct node* search(int data){   struct node *current = root;   printf("\n\nVisiting elements: ");   while(current->data != data) {      if(current != NULL) {         printf("%d ",current->data);                  //go to left tree         if(current->data > data) {            current = current->leftChild;         }//else go to right tree         else {            current = current->rightChild;         }                  //not found         if(current == NULL) {            return NULL;         }      }   }   return current;}// Inorder Traversalvoid inorder(struct node *root){   if (root != NULL) {      inorder(root->leftChild);      printf("%d -> ", root->data);      inorder(root->rightChild);   }}// Preorder Traversalvoid preorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->data);      preorder(root->leftChild);      preorder(root->rightChild);   }}// Postorder Traversalvoid postorder(struct node *root){   if (root != NULL) {      printf("%d -> ", root->data);      postorder(root->leftChild);      postorder(root->rightChild);   }}int main(){   insert(55);   insert(20);   insert(90);   insert(50);   insert(35);   insert(15);   insert(65);   printf("Insertion done\n");   printf("\nPreorder Traversal: ");   preorder(root);   printf("\nInorder Traversal: ");   inorder(root);   printf("\nPostorder Traversal: ");   postorder(root);   struct node* k;   k = search(35);   if(k != NULL)      printf("\nElement %d found", k->data);   else      printf("\nElement not found");   return 0;}

Output

Insertion donePreorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Inorder Traversal: 15 -> 20 -> 35 -> 50 -> 55 -> 65 -> 90 ->Postorder Traversal: 55 -> 20 -> 15 -> 50 -> 35 -> 90 -> 65 -> Visiting elements: 55 20 50 Element 35 found
import java.util.Scanner;class BSTNode {   BSTNode left, right;   int data;   public BSTNode(int n) {      left = null;      right = null;      data = n;   }}public class BST {   static BSTNode root;   public BST() {      root = null;   }   public boolean isEmpty() {      return root == null;   }   private BSTNode insert(BSTNode node, int data) {      if(node == null)         node = new BSTNode(data);      else {         if(data <= node.data)            node.left = insert(node.left, data);         else            node.right = insert(node.right, data);      }      return node;   }   public void delete(int k) {      if(isEmpty ())         System.out.println("TREE EMPTY");      else if(search (k) == false)         System.out.println("SORRY " + k + " IS NOT PRESENT");      else {         root=delete(root,k);         System.out.println(k + " DELETED FROM THE TREE");      }   }   public BSTNode delete(BSTNode root, int k) {      BSTNode p, p2, n;      if(root.data == k) {         BSTNode lt, rt;         lt = root.left;         rt = root.right;         if(lt == null && rt == null) {            return null;         } else if(lt == null) {            p = rt;            return p;         } else if(rt == null) {            p = lt;            return p;         } else {            p2 = rt;            p = rt;            while(p.left != null)               p = p.left;            p.left = lt;            return p2;         }      }      if (k < root.data) {         n = delete(root.left, k);         root.left = n;      } else {         n = delete(root.right, k);         root.right = n;      }      return root;   }   public boolean search(int val) {      return search(root, val);   }   private boolean search(BSTNode r, int val) {      boolean found = false;      while ((r != null) && !found) {         int rval = r.data;         if(val < rval)            r = r.left;         else if (val > rval)            r = r.right;         else {            found = true;            break;         }         found = search(r, val);      }      return found;   }   void printTree(BSTNode node, String prefix) {      if(node == null)         return;      printTree(node.left , " " + prefix);      System.out.println(prefix + "--" + node.data);      printTree(node.right , prefix + " ");   }   public static void main(String args[]) {      Scanner sc = new Scanner(System.in);      BST bst = new BST();      root = bst.insert(root, 55);      root = bst.insert(root, 20);      root = bst.insert(root, 90);      root = bst.insert(root, 80);      root = bst.insert(root, 50);      root = bst.insert(root, 35);      root = bst.insert(root, 15);      root = bst.insert(root, 65);      bst.printTree(root, " ");      bst.delete(55);      System.out.println("Element found = " + bst.search(80));      System.out.println("Is Tree Empty? " + bst.isEmpty());   }}

Output

--15  --20--35   --50 --55    --65   --80  --9055 DELETED FROM THE TREEElement found = trueIs Tree Empty? false
class Node:   def __init__(self, data):     self.left = None     self.right = None     self.data = data# Insert method to create nodes   def insert(self, data):     if self.data:       if data < self.data:         if self.left is None:            self.left = Node(data)         else:            self.left.insert(data)       elif data > self.data:         if self.right is None:            self.right = Node(data)         else:            self.right.insert(data)       else:         self.data = data# search method to compare the value with nodes   def search(self, key):     if key < self.data:       if self.left is None:         return str(key)+" Not Found"       return self.left.search(key)     elif key > self.data:       if self.right is None:         return str(key)+" Not Found"       return self.right.search(key)     else:       print(str(self.data) + ' is found')# Print the tree   def Inorder(self):     if self.left:       self.left.Inorder()     print(self.data)     if self.right:       self.right.Inorder()# Print the tree   def Preorder(self):     print(self.data)     if self.left:       self.left.Preorder()     if self.right:       self.right.Preorder()# Print the tree   def Postorder(self):     if self.left:       self.left.Postorder()     if self.right:       self.right.Postorder()     print(self.data)root = Node(54)root.insert(34)root.insert(46)root.insert(12)root.insert(23)root.insert(5)print("Preorder Traversal of Binary Search Tree: ")root.Preorder()print("Inorder Traversal of Binary Search Tree: ")root.Inorder()print("Postorder Traversal of Binary Search Tree: ")root.Postorder()print(root.search(17))print(root.search(12))

Output

Preorder Traversal of Binary Search Tree: 54341252346Inorder Traversal of Binary Search Tree: 51223344654Postorder Traversal of Binary Search Tree: 5231246345417 Not Found12 is foundNone

AVL Trees

The first type of self-balancing binary search tree to be invented is the AVL tree. The name AVL tree is coined after its inventor's names − Adelson-Velsky and Landis.

In AVL trees, the difference between the heights of left and right subtrees, known as theBalance Factor, must be at most one. Once the difference exceeds one, the tree automatically executes the balancing algorithm until the difference becomes one again.

BALANCE FACTOR = HEIGHT(LEFT SUBTREE)  HEIGHT(RIGHT SUBTREE)

There are usually four cases of rotation in the balancing algorithm of AVL trees: LL, RR, LR, RL.

LL Rotations

LL rotation is performed when the node is inserted into the right subtree leading to an unbalanced tree. This is a single left rotation to make the tree balanced again −

LL Rotations

Fig : LL Rotation

The node where the unbalance occurs becomes the left child and the newly added node becomes the right child with the middle node as the parent node.

RR Rotations

RR rotation is performed when the node is inserted into the left subtree leading to an unbalanced tree. This is a single right rotation to make the tree balanced again −

RR_Rotations

Fig : RR Rotation

The node where the unbalance occurs becomes the right child and the newly added node becomes the left child with the middle node as the parent node.

LR Rotations

LR rotation is the extended version of the previous single rotations, also called a double rotation. It is performed when a node is inserted into the right subtree of the left subtree. The LR rotation is a combination of the left rotation followed by the right rotation. There are multiple steps to be followed to carry this out.

  • Consider an example with A as the root node, B as the left child of A and C as the right child of B.

  • Since the unbalance occurs at A, a left rotation is applied on the child nodes of A, i.e. B and C.

  • After the rotation, the C node becomes the left child of A and B becomes the left child of C.

  • The unbalance still persists, therefore a right rotation is applied at the root node A and the left child C.

  • After the final right rotation, C becomes the root node, A becomes the right child and B is the left child.

LR_Rotation

Fig : LR Rotation

RL Rotations

RL rotation is also the extended version of the previous single rotations, hence it is called a double rotation and it is performed if a node is inserted into the left subtree of the right subtree. The RL rotation is a combination of the right rotation followed by the left rotation. There are multiple steps to be followed to carry this out.

  • Consider an example with A as the root node, B as the right child of A and C as the left child of B.

  • Since the unbalance occurs at A, a right rotation is applied on the child nodes of A, i.e. B and C.

  • After the rotation, the C node becomes the right child of A and B becomes the right child of C.

  • The unbalance still persists, therefore a left rotation is applied at the root node A and the right child C.

  • After the final left rotation, C becomes the root node, A becomes the left child and B is the right child.

RL Rotations

Fig : RL Rotation

Basic Operations of AVL Trees

The basic operations performed on the AVL Tree structures include all the operations performed on a binary search tree, since the AVL Tree at its core is actually just a binary search tree holding all its properties. Therefore, basic operations performed on an AVL Tree are −Insertion andDeletion.

Insertion

The data is inserted into the AVL Tree by following the Binary Search Tree property of insertion, i.e. the left subtree must contain elements less than the root value and right subtree must contain all the greater elements. However, in AVL Trees, after the insertion of each element, the balance factor of the tree is checked; if it does not exceed 1, the tree is left as it is. But if the balance factor exceeds 1, a balancing algorithm is applied to readjust the tree such that balance factor becomes less than or equal to 1 again.

Algorithm

The following steps are involved in performing the insertion operation of an AVL Tree −

Step 1 − Create a node

Step 2 − Check if the tree is empty

Step 3 − If the tree is empty, the new node created will become the root node of the AVL Tree.

Step 4 − If the tree is not empty, we perform the Binary Search Tree insertion operation and check the balancing factor of the node in the tree.

Step 5 − Suppose the balancing factor exceeds 1, we apply suitable rotations on the said node and resume the insertion from Step 4.

START   if node == null then:      return new node   if key < node.key then:      node.left = insert (node.left, key)   else if (key > node.key) then:      node.right = insert (node.right, key)   else      return node   node.height = 1 + max (height (node.left), height (node.right))   balance = getBalance (node)   if balance > 1 and key < node.left.key then:      rightRotate   if balance < -1 and key > node.right.key then:      leftRotate   if balance > 1 and key > node.left.key then:      node.left = leftRotate (node.left)      rightRotate   if balance < -1 and key < node.right.key then:      node.right = rightRotate (node.right)      leftRotate (node)   return nodeEND

Insertion Example

Let us understand the insertion operation by constructing an example AVL tree with 1 to 7 integers.

Starting with the first element 1, we create a node and measure the balance, i.e., 0.

AVL1

Since both the binary search property and the balance factor are satisfied, we insert another element into the tree.

AVL2

The balance factor for the two nodes are calculated and is found to be -1 (Height of left subtree is 0 and height of the right subtree is 1). Since it does not exceed 1, we add another element to the tree.

3rd element

Now, after adding the third element, the balance factor exceeds 1 and becomes 2. Therefore, rotations are applied. In this case, the RR rotation is applied since the imbalance occurs at two right nodes.

RR rotation applied

The tree is rearranged as −

tree rearranged

Similarly, the next elements are inserted and rearranged using these rotations. After rearrangement, we achieve the tree as −

balance

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct Node {   int data;   struct Node *leftChild;   struct Node *rightChild;   int height;};int max(int a, int b);int height(struct Node *N){   if (N == NULL)      return 0;   return N->height;}int max(int a, int b){   return (a > b) ? a : b;}struct Node *newNode(int data){   struct Node *node = (struct Node *) malloc(sizeof(struct Node));   node->data = data;   node->leftChild = NULL;   node->rightChild = NULL;   node->height = 1;   return (node);}struct Node *rightRotate(struct Node *y){   struct Node *x = y->leftChild;   struct Node *T2 = x->rightChild;   x->rightChild = y;   y->leftChild = T2;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   return x;}struct Node *leftRotate(struct Node *x){   struct Node *y = x->rightChild;   struct Node *T2 = y->leftChild;   y->leftChild = x;   x->rightChild = T2;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   return y;}int getBalance(struct Node *N){   if (N == NULL)      return 0;   return height(N->leftChild) - height(N->rightChild);}struct Node *insertNode(struct Node *node, int data){   if (node == NULL)      return (newNode(data));   if (data < node->data)      node->leftChild = insertNode(node->leftChild, data);   else if (data > node->data)      node->rightChild = insertNode(node->rightChild, data);   else      return node;   node->height = 1 + max(height(node->leftChild),                     height(node->rightChild));   int balance = getBalance(node);   if (balance > 1 && data < node->leftChild->data)      return rightRotate(node);   if (balance < -1 && data > node->rightChild->data)      return leftRotate(node);   if (balance > 1 && data > node->leftChild->data) {      node->leftChild = leftRotate(node->leftChild);      return rightRotate(node);   }   if (balance < -1 && data < node->rightChild->data) {      node->rightChild = rightRotate(node->rightChild);      return leftRotate(node);   }   return node;}struct Node *minValueNode(struct Node *node){   struct Node *current = node;   while (current->leftChild != NULL)      current = current->leftChild;   return current;}void printTree(struct Node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct Node *root = NULL;   root = insertNode(root, 22);   root = insertNode(root, 14);   root = insertNode(root, 72);   root = insertNode(root, 44);   root = insertNode(root, 25);   root = insertNode(root, 63);   root = insertNode(root, 98);   printf("AVL Tree: ");   printTree(root);   return 0;}

Output

AVL Tree: 14 22 25 44 63 72 98
#include <iostream>struct Node {   int data;   struct Node *leftChild;   struct Node *rightChild;   int height;};int max(int a, int b);int height(struct Node *N){   if (N == NULL)      return 0;   return N->height;}int max(int a, int b){   return (a > b) ? a : b;}struct Node *newNode(int data){   struct Node *node = (struct Node *) malloc(sizeof(struct Node));   node->data = data;   node->leftChild = NULL;   node->rightChild = NULL;   node->height = 1;   return (node);}struct Node *rightRotate(struct Node *y){   struct Node *x = y->leftChild;   struct Node *T2 = x->rightChild;   x->rightChild = y;   y->leftChild = T2;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   return x;}struct Node *leftRotate(struct Node *x){   struct Node *y = x->rightChild;   struct Node *T2 = y->leftChild;   y->leftChild = x;   x->rightChild = T2;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   return y;}int getBalance(struct Node *N){   if (N == NULL)      return 0;   return height(N->leftChild) - height(N->rightChild);}struct Node *insertNode(struct Node *node, int data){   if (node == NULL)      return (newNode(data));   if (data < node->data)      node->leftChild = insertNode(node->leftChild, data);   else if (data > node->data)      node->rightChild = insertNode(node->rightChild, data);   else      return node;   node->height = 1 + max(height(node->leftChild),                     height(node->rightChild));   int balance = getBalance(node);   if (balance > 1 && data < node->leftChild->data)      return rightRotate(node);   if (balance < -1 && data > node->rightChild->data)      return leftRotate(node);   if (balance > 1 && data > node->leftChild->data) {      node->leftChild = leftRotate(node->leftChild);      return rightRotate(node);   }   if (balance < -1 && data < node->rightChild->data) {      node->rightChild = rightRotate(node->rightChild);      return leftRotate(node);   }   return node;}struct Node *minValueNode(struct Node *node){   struct Node *current = node;   while (current->leftChild != NULL)      current = current->leftChild;   return current;}void printTree(struct Node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->leftChild);   }}int main(){   struct Node *root = NULL;   root = insertNode(root, 22);   root = insertNode(root, 14);   root = insertNode(root, 72);   root = insertNode(root, 44);   root = insertNode(root, 25);   root = insertNode(root, 63);   root = insertNode(root, 98);   printf("AVL Tree: ");   printTree(root);   return 0;}

Output

AVL Tree: 14 22 14 44 14 22 14
import java.util.*;import java.io.*;class Node {   int key, height;   Node left, right;   Node (int d) {      key = d;      height = 1;   }}public class AVLTree {   Node root;   int height (Node N) {      if (N == null)         return 0;      return N.height;   }   int max (int a, int b) {      return (a > b) ? a : b;   }   Node rightRotate (Node y) {      Node x = y.left;      Node T2 = x.right;      x.right = y;      y.left = T2;      y.height = max (height (y.left), height (y.right)) + 1;      x.height = max (height (x.left), height (x.right)) + 1;      return x;   }   Node leftRotate (Node x) {      Node y = x.right;      Node T2 = y.left;      y.left = x;      x.right = T2;      x.height = max (height (x.left), height (x.right)) + 1;      y.height = max (height (y.left), height (y.right)) + 1;      return y;   }   int getBalance (Node N) {      if (N == null)         return 0;      return height (N.left) - height (N.right);   }   Node insert (Node node, int key) {      if (node == null)         return (new Node (key));      if (key < node.key)         node.left = insert (node.left, key);      else if (key > node.key)         node.right = insert (node.right, key);      else         return node;      node.height = 1 + max (height (node.left), height (node.right));      int balance = getBalance (node);      if (balance > 1 && key < node.left.key)         return rightRotate (node);      if (balance < -1 && key > node.right.key)         return leftRotate (node);      if (balance > 1 && key > node.left.key) {         node.left = leftRotate (node.left);         return rightRotate (node);      }      if (balance < -1 && key < node.right.key) {         node.right = rightRotate (node.right);         return leftRotate (node);      }      return node;   }   void printTree(Node root){   if (root == null)      return;   if (root != null) {      printTree(root.left);      System.out.print(root.key + " ");      printTree(root.left);   }}   public static void main(String args[]) {      AVLTree tree = new AVLTree();      tree.root = tree.insert(tree.root, 10);       tree.root = tree.insert(tree.root, 11);       tree.root = tree.insert(tree.root, 12);       tree.root = tree.insert(tree.root, 13);       tree.root = tree.insert(tree.root, 14);       tree.root = tree.insert(tree.root, 15);       System.out.println("AVL Tree: ");      tree.printTree(tree.root);   }}

Output

AVL Tree: 10 11 10 13 10 11 10
class Node(object):   def __init__(self, data):      self.data = data      self.left = None      self.right = None      self.height = 1class AVLTree(object):   def insert(self, root, key):      if not root:         return Node(key)      elif key < root.data:         root.left = self.insert(root.left, key)      else:         root.right = self.insert(root.right, key)      root.h = 1 + max(self.getHeight(root.left),         self.getHeight(root.right))      b = self.getBalance(root)      if b > 1 and key < root.left.data:         return self.rightRotate(root)      if b < -1 and key > root.right.data:         return self.leftRotate(root)      if b > 1 and key > root.left.data:         root.left = self.lefttRotate(root.left)         return self.rightRotate(root)      if b < -1 and key < root.right.data:         root.right = self.rightRotate(root.right)         return self.leftRotate(root)      return root   def leftRotate(self, z):      y = z.right      T2 = y.left      y.left = z      z.right = T2      z.height = 1 + max(self.getHeight(z.left),         self.getHeight(z.right))      y.height = 1 + max(self.getHeight(y.left),         self.getHeight(y.right))      return y   def rightRotate(self, z):      y = z.left      T3 = y.right      y.right = z      z.left = T3      z.height = 1 + max(self.getHeight(z.left),         self.getHeight(z.right))      y.height = 1 + max(self.getHeight(y.left),         self.getHeight(y.right))      return y   def getHeight(self, root):      if not root:         return 0      return root.height   def getBalance(self, root):      if not root:         return 0      return self.getHeight(root.left) - self.getHeight(root.right)   def Inorder(self, root):      if root.left:         self.Inorder(root.left)      print(root.data)      if root.right:         self.Inorder(root.right)Tree = AVLTree()root = Noneroot = Tree.insert(root, 10)root = Tree.insert(root, 13)root = Tree.insert(root, 11)root = Tree.insert(root, 14)root = Tree.insert(root, 12)root = Tree.insert(root, 15)# Inorder Traversalprint("Inorder traversal of the AVL tree is")Tree.Inorder(root)

Output

Inorder traversal of the AVL tree is101112131415

Deletion

Deletion in the AVL Trees take place in three different scenarios −

  • Scenario 1 (Deletion of a leaf node) − If the node to be deleted is a leaf node, then it is deleted without any replacement as it does not disturb the binary search tree property. However, the balance factor may get disturbed, so rotations are applied to restore it.

  • Scenario 2 (Deletion of a node with one child) − If the node to be deleted has one child, replace the value in that node with the value in its child node. Then delete the child node. If the balance factor is disturbed, rotations are applied.

  • Scenario 3 (Deletion of a node with two child nodes) − If the node to be deleted has two child nodes, find the inorder successor of that node and replace its value with the inorder successor value. Then try to delete the inorder successor node. If the balance factor exceeds 1 after deletion, apply balance algorithms.

START   if root == null: return root   if key < root.key:      root.left = delete Node   else if key > root.key:      root.right = delete Node   else:      if root.left == null or root.right == null then:         Node temp = null         if (temp == root.left)            temp = root.right         else            temp = root.left         if temp == null then:            temp = root            root = null         else            root = temp         else:            temp = minimum valued node            root.key = temp.key            root.right = delete Node      if (root == null) then:         return root         root.height = max (height (root.left), height (root.right)) + 1         balance = getBalance      if balance > 1 and getBalance (root.left) >= 0:         rightRotate      if balance > 1 and getBalance (root.left) < 0:         root.left = leftRotate (root.left);         rightRotate      if balance < -1 and getBalance (root.right) <= 0:         leftRotate      if balance < -1 and getBalance (root.right) > 0:         root.right = rightRotate (root.right);         leftRotate      return rootEND

Deletion Example

Using the same tree given above, let us perform deletion in three scenarios −

balance
  • Deleting element 7 from the tree above −

Since the element 7 is a leaf, we normally remove the element without disturbing any other node in the tree

remove 7th element
  • Deleting element 6 from the output tree achieved −

However, element 6 is not a leaf node and has one child node attached to it. In this case, we replace node 6 with its child node: node 5.

replace node

The balance of the tree becomes 1, and since it does not exceed 1 the tree is left as it is. If we delete the element 5 further, we would have to apply the left rotations; either LL or LR since the imbalance occurs at both 1-2-4 and 3-2-4.

balance2

The balance factor is disturbed after deleting the element 5, therefore we apply LL rotation (we can also apply the LR rotation here).

apply LR rotation

Once the LL rotation is applied on path 1-2-4, the node 3 remains as it was supposed to be the right child of node 2 (which is now occupied by node 4). Hence, the node is added to the right subtree of the node 2 and as the left child of the node 4.

balance minus one
  • Deleting element 2 from the remaining tree −

As mentioned in scenario 3, this node has two children. Therefore, we find its inorder successor that is a leaf node (say, 3) and replace its value with the inorder successor.

balance zero

The balance of the tree still remains 1, therefore we leave the tree as it is without performing any rotations.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct Node {   int data;   struct Node *leftChild;   struct Node *rightChild;   int height;};int max(int a, int b);int height(struct Node *N){   if (N == NULL)      return 0;   return N->height;}int max(int a, int b){   return (a > b) ? a : b;}struct Node *newNode(int data){   struct Node *node = (struct Node *) malloc(sizeof(struct Node));   node->data = data;   node->leftChild = NULL;   node->rightChild = NULL;   node->height = 1;   return (node);}struct Node *rightRotate(struct Node *y){   struct Node *x = y->leftChild;   struct Node *T2 = x->rightChild;   x->rightChild = y;   y->leftChild = T2;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   return x;}struct Node *leftRotate(struct Node *x){   struct Node *y = x->rightChild;   struct Node *T2 = y->leftChild;   y->leftChild = x;   x->rightChild = T2;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   return y;}int getBalance(struct Node *N){   if (N == NULL)      return 0;   return height(N->leftChild) - height(N->rightChild);}struct Node *insertNode(struct Node *node, int data){   if (node == NULL)      return (newNode(data));   if (data < node->data)      node->leftChild = insertNode(node->leftChild, data);   else if (data > node->data)      node->rightChild = insertNode(node->rightChild, data);   else      return node;   node->height = 1 + max(height(node->leftChild),                     height(node->rightChild));   int balance = getBalance(node);   if (balance > 1 && data < node->leftChild->data)      return rightRotate(node);   if (balance < -1 && data > node->rightChild->data)      return leftRotate(node);   if (balance > 1 && data > node->leftChild->data) {      node->leftChild = leftRotate(node->leftChild);      return rightRotate(node);   }   if (balance < -1 && data < node->rightChild->data) {      node->rightChild = rightRotate(node->rightChild);      return leftRotate(node);   }   return node;}struct Node *minValueNode(struct Node *node){   struct Node *current = node;   while (current->leftChild != NULL)      current = current->leftChild;   return current;}struct Node *deleteNode(struct Node *root, int data){   if (root == NULL)      return root;   if (data < root->data)      root->leftChild = deleteNode(root->leftChild, data);   else if (data > root->data)      root->rightChild = deleteNode(root->rightChild, data);   else {      if ((root->leftChild == NULL) || (root->rightChild == NULL)) {         struct Node *temp = root->leftChild ? root->leftChild : root->rightChild;         if (temp == NULL) {            temp = root;            root = NULL;         } else            *root = *temp;         free(temp);      } else {         struct Node *temp = minValueNode(root->rightChild);         root->data = temp->data;         root->rightChild = deleteNode(root->rightChild, temp->data);      }   }   if (root == NULL)      return root;   root->height = 1 + max(height(root->leftChild),                     height(root->rightChild));   int balance = getBalance(root);   if (balance > 1 && getBalance(root->leftChild) >= 0)      return rightRotate(root);   if (balance > 1 && getBalance(root->leftChild) < 0) {      root->leftChild = leftRotate(root->leftChild);      return rightRotate(root);   }   if (balance < -1 && getBalance(root->rightChild) <= 0)      return leftRotate(root);   if (balance < -1 && getBalance(root->rightChild) > 0) {      root->rightChild = rightRotate(root->rightChild);      return leftRotate(root);   }   return root;}// Print the treevoid printTree(struct Node *root){   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct Node *root = NULL;   root = insertNode(root, 22);   root = insertNode(root, 14);   root = insertNode(root, 72);   root = insertNode(root, 44);   root = insertNode(root, 25);   root = insertNode(root, 63);   root = insertNode(root, 98);   printf("AVL Tree: ");   printTree(root);   root = deleteNode(root, 25);   printf("\nAfter deletion: ");   printTree(root);   return 0;}

Output

AVL Tree: 14 22 25 44 63 72 98 After deletion: 14 22 44 63 72 98
#include <iostream>struct Node {   int data;   struct Node *leftChild;   struct Node *rightChild;   int height;};int max(int a, int b);int height(struct Node *N){   if (N == NULL)      return 0;   return N->height;}int max(int a, int b){   return (a > b) ? a : b;}struct Node *newNode(int data){   struct Node *node = (struct Node *) malloc(sizeof(struct Node));   node->data = data;   node->leftChild = NULL;   node->rightChild = NULL;   node->height = 1;   return (node);}struct Node *rightRotate(struct Node *y){   struct Node *x = y->leftChild;   struct Node *T2 = x->rightChild;   x->rightChild = y;   y->leftChild = T2;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   return x;}struct Node *leftRotate(struct Node *x){   struct Node *y = x->rightChild;   struct Node *T2 = y->leftChild;   y->leftChild = x;   x->rightChild = T2;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   return y;}int getBalance(struct Node *N){   if (N == NULL)      return 0;   return height(N->leftChild) - height(N->rightChild);}struct Node *insertNode(struct Node *node, int data){   if (node == NULL)      return (newNode(data));   if (data < node->data)      node->leftChild = insertNode(node->leftChild, data);   else if (data > node->data)      node->rightChild = insertNode(node->rightChild, data);   else      return node;   node->height = 1 + max(height(node->leftChild),                     height(node->rightChild));   int balance = getBalance(node);   if (balance > 1 && data < node->leftChild->data)      return rightRotate(node);   if (balance < -1 && data > node->rightChild->data)      return leftRotate(node);   if (balance > 1 && data > node->leftChild->data) {      node->leftChild = leftRotate(node->leftChild);      return rightRotate(node);   }   if (balance < -1 && data < node->rightChild->data) {      node->rightChild = rightRotate(node->rightChild);      return leftRotate(node);   }   return node;}struct Node *minValueNode(struct Node *node){   struct Node *current = node;   while (current->leftChild != NULL)      current = current->leftChild;   return current;}struct Node *deleteNode(struct Node *root, int data){   if (root == NULL)      return root;   if (data < root->data)      root->leftChild = deleteNode(root->leftChild, data);   else if (data > root->data)      root->rightChild = deleteNode(root->rightChild, data);   else {      if ((root->leftChild == NULL) || (root->rightChild == NULL)) {         struct Node *temp = root->leftChild ? root->leftChild : root->rightChild;         if (temp == NULL) {            temp = root;            root = NULL;         } else            *root = *temp;         free(temp);      } else {         struct Node *temp = minValueNode(root->rightChild);         root->data = temp->data;         root->rightChild = deleteNode(root->rightChild, temp->data);      }   }   if (root == NULL)      return root;   root->height = 1 + max(height(root->leftChild),                     height(root->rightChild));   int balance = getBalance(root);   if (balance > 1 && getBalance(root->leftChild) >= 0)      return rightRotate(root);   if (balance > 1 && getBalance(root->leftChild) < 0) {      root->leftChild = leftRotate(root->leftChild);      return rightRotate(root);   }   if (balance < -1 && getBalance(root->rightChild) <= 0)      return leftRotate(root);   if (balance < -1 && getBalance(root->rightChild) > 0) {      root->rightChild = rightRotate(root->rightChild);      return leftRotate(root);   }   return root;}// Print the treevoid printTree(struct Node *root){   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct Node *root = NULL;   root = insertNode(root, 22);   root = insertNode(root, 14);   root = insertNode(root, 72);   root = insertNode(root, 44);   root = insertNode(root, 25);   root = insertNode(root, 63);   root = insertNode(root, 98);   printf("AVL Tree: ");   printTree(root);   root = deleteNode(root, 25);   printf("\nAfter deletion: ");   printTree(root);   return 0;}

Output

AVL Tree: 14 22 25 44 63 72 98 After deletion: 14 22 44 63 72 98
import java.util.*;import java.io.*;class Node {   int key, height;   Node left, right;   Node (int d) {      key = d;      height = 1;   }}public class AVLTree {   Node root;   int height (Node N) {      if (N == null)         return 0;      return N.height;   }   int max (int a, int b) {      return (a > b) ? a : b;   }   Node rightRotate (Node y) {      Node x = y.left;      Node T2 = x.right;      x.right = y;      y.left = T2;      y.height = max (height (y.left), height (y.right)) + 1;      x.height = max (height (x.left), height (x.right)) + 1;      return x;   }   Node leftRotate (Node x) {      Node y = x.right;      Node T2 = y.left;      y.left = x;      x.right = T2;      x.height = max (height (x.left), height (x.right)) + 1;      y.height = max (height (y.left), height (y.right)) + 1;      return y;   }   int getBalance (Node N) {      if (N == null)         return 0;      return height (N.left) - height (N.right);   }   Node minValueNode (Node node) {      Node current = node;      while (current.left != null)         current = current.left;      return current;   }   Node deleteNode (Node root, int key) {      if (root == null)         return root;      if (key < root.key)         root.left = deleteNode (root.left, key);      else if (key > root.key)         root.right = deleteNode (root.right, key);      else {         if ((root.left == null) || (root.right == null)) {            Node temp = null;            if (temp == root.left)               temp = root.right;            else               temp = root.left;            if (temp == null) {               temp = root;               root = null;            } else               root = temp;         } else {            Node temp = minValueNode (root.right);            root.key = temp.key;            root.right = deleteNode (root.right, temp.key);         }      }      if (root == null)         return root;      root.height = max (height (root.left), height (root.right)) + 1;      int balance = getBalance (root);      if (balance > 1 && getBalance (root.left) >= 0)         return rightRotate (root);      if (balance > 1 && getBalance (root.left) < 0) {         root.left = leftRotate (root.left);         return rightRotate (root);      }      if (balance < -1 && getBalance (root.right) <= 0)         return leftRotate (root);      if (balance < -1 && getBalance (root.right) > 0) {         root.right = rightRotate (root.right);         return leftRotate (root);      }      return root;   }   public void printTree(Node root) {      if (root == null) return;      printTree(root.left);      System.out.print(root.key + " ");      printTree(root.right);   }   public static void main (String[]args) {      AVLTree tree = new AVLTree();      tree.root = new Node(13);      tree.root.left = new Node(12);      tree.root.left.left = new Node(11);      tree.root.left.left.left = new Node(10);      tree.root.right = new Node(14);      tree.root.right.right = new Node(15);      System.out.println("The AVL Tree is: ");      tree.printTree(tree.root);      tree.root = tree.deleteNode (tree.root, 10);      System.out.println("\n----------------------------------------------\n");      System.out.println("The AVL Tree after deleting 10 is: ");      tree.printTree(tree.root);      System.out.println ("");   }}

Output

The AVL Tree is: 10 11 12 13 14 15 ----------------------------------------------The AVL Tree after deleting 10 is: 11 12 13 14 15
class Node(object):   def __init__(self, data):      self.data = data      self.left = None      self.right = None      self.height = 1class AVLTree(object):   def insert(self, root, key):      if not root:         return Node(key)      elif key < root.data:         root.left = self.insert(root.left, key)      else:         root.right = self.insert(root.right, key)      root.h = 1 + max(self.getHeight(root.left),         self.getHeight(root.right))      b = self.getBalance(root)      if b > 1 and key < root.left.data:         return self.rightRotate(root)      if b < -1 and key > root.right.data:         return self.leftRotate(root)      if b > 1 and key > root.left.data:         root.left = self.lefttRotate(root.left)         return self.rightRotate(root)      if b < -1 and key < root.right.data:          root.right = self.rightRotate(root.right)          return self.leftRotate(root)      return root   def delete(self, root, key):      if not root:         return root      elif key < root.data:         root.left = self.delete(root.left, key)      elif key > root.data:         root.right = self.delete(root.right, key)      else:         if root.left is None:            temp = root.right            root = None            return temp         elif root.right is None:            temp = root.left            root = None            return temp         temp = self.getMindataueNode(root.right)         root.data = temp.data         root.right = self.delete(root.right, temp.data)      if root is None:         return root      root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))      balance = self.getBalance(root)      if balance > 1 and self.getBalance(root.left) >= 0:         return self.rightRotate(root)      if balance < -1 and self.getBalance(root.right) <= 0:         return self.leftRotate(root)      if balance > 1 and self.getBalance(root.left) < 0:         root.left = self.leftRotate(root.left)         return self.rightRotate(root)      if balance < -1 and self.getBalance(root.right) > 0:         root.right = self.rightRotate(root.right)         return self.leftRotate(root)      return root   def leftRotate(self, z):      y = z.right      T2 = y.left      y.left = z      z.right = T2      z.height = 1 + max(self.getHeight(z.left),         self.getHeight(z.right))      y.height = 1 + max(self.getHeight(y.left),         self.getHeight(y.right))      return y   def rightRotate(self, z):      y = z.left      T3 = y.right      y.right = z      z.left = T3      z.height = 1 + max(self.getHeight(z.left),         self.getHeight(z.right))      y.height = 1 + max(self.getHeight(y.left),         self.getHeight(y.right))      return y   def getHeight(self, root):      if not root:         return 0      return root.height   def getBalance(self, root):      if not root:         return 0      return self.getHeight(root.left) - self.getHeight(root.right)   def Inorder(self, root):      if root.left:         self.Inorder(root.left)      print(root.data)      if root.right:         self.Inorder(root.right)Tree = AVLTree()root = Noneroot = Tree.insert(root, 10)root = Tree.insert(root, 13)root = Tree.insert(root, 11)root = Tree.insert(root, 14)root = Tree.insert(root, 12)root = Tree.insert(root, 15)# Inorder Traversalprint("Inorder traversal of the AVL tree is")Tree.Inorder(root)root = Tree.delete(root, 14)print("Inorder traversal of the modified AVL tree is")Tree.Inorder(root)

Output

Inorder traversal of the AVL tree is101112131415Inorder traversal of the modified AVL tree is1011121315

Implementation of AVL Trees

In the following implementation, we consider the inputs in ascending order and store them in AVL Trees by calculating the balance factor and applying rotations.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct Node {   int data;   struct Node *leftChild;   struct Node *rightChild;   int height;};int max(int a, int b);int height(struct Node *N){   if (N == NULL)      return 0;   return N->height;}int max(int a, int b){   return (a > b) ? a : b;}struct Node *newNode(int data){   struct Node *node = (struct Node *) malloc(sizeof(struct Node));   node->data = data;   node->leftChild = NULL;   node->rightChild = NULL;   node->height = 1;   return (node);}struct Node *rightRotate(struct Node *y){   struct Node *x = y->leftChild;   struct Node *T2 = x->rightChild;   x->rightChild = y;   y->leftChild = T2;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   return x;}struct Node *leftRotate(struct Node *x){   struct Node *y = x->rightChild;   struct Node *T2 = y->leftChild;   y->leftChild = x;   x->rightChild = T2;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   return y;}int getBalance(struct Node *N){   if (N == NULL)      return 0;   return height(N->leftChild) - height(N->rightChild);}struct Node *insertNode(struct Node *node, int data){   if (node == NULL)      return (newNode(data));   if (data < node->data)      node->leftChild = insertNode(node->leftChild, data);   else if (data > node->data)      node->rightChild = insertNode(node->rightChild, data);   else      return node;   node->height = 1 + max(height(node->leftChild),                     height(node->rightChild));   int balance = getBalance(node);   if (balance > 1 && data < node->leftChild->data)      return rightRotate(node);   if (balance < -1 && data > node->rightChild->data)      return leftRotate(node);   if (balance > 1 && data > node->leftChild->data) {      node->leftChild = leftRotate(node->leftChild);      return rightRotate(node);   }   if (balance < -1 && data < node->rightChild->data) {      node->rightChild = rightRotate(node->rightChild);      return leftRotate(node);   }   return node;}struct Node *minValueNode(struct Node *node){   struct Node *current = node;   while (current->leftChild != NULL)      current = current->leftChild;   return current;}struct Node *deleteNode(struct Node *root, int data){   if (root == NULL)      return root;   if (data < root->data)      root->leftChild = deleteNode(root->leftChild, data);   else if (data > root->data)      root->rightChild = deleteNode(root->rightChild, data);   else {      if ((root->leftChild == NULL) || (root->rightChild == NULL)) {         struct Node *temp = root->leftChild ? root->leftChild : root->rightChild;         if (temp == NULL) {            temp = root;            root = NULL;         } else            *root = *temp;         free(temp);      } else {         struct Node *temp = minValueNode(root->rightChild);         root->data = temp->data;         root->rightChild = deleteNode(root->rightChild, temp->data);      }   }   if (root == NULL)      return root;   root->height = 1 + max(height(root->leftChild),                     height(root->rightChild));   int balance = getBalance(root);   if (balance > 1 && getBalance(root->leftChild) >= 0)      return rightRotate(root);   if (balance > 1 && getBalance(root->leftChild) < 0) {      root->leftChild = leftRotate(root->leftChild);      return rightRotate(root);   }   if (balance < -1 && getBalance(root->rightChild) <= 0)      return leftRotate(root);   if (balance < -1 && getBalance(root->rightChild) > 0) {      root->rightChild = rightRotate(root->rightChild);      return leftRotate(root);   }   return root;}// Print the treevoid printTree(struct Node *root){   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct Node *root = NULL;   root = insertNode(root, 22);   root = insertNode(root, 14);   root = insertNode(root, 72);   root = insertNode(root, 44);   root = insertNode(root, 25);   root = insertNode(root, 63);   root = insertNode(root, 98);   printf("AVL Tree: ");   printTree(root);   root = deleteNode(root, 25);   printf("\nAfter deletion: ");   printTree(root);   return 0;}

Output

AVL Tree: 14 22 25 44 63 72 98 After deletion: 14 22 44 63 72 98
#include <iostream>struct Node {   int data;   struct Node *leftChild;   struct Node *rightChild;   int height;};int max(int a, int b);int height(struct Node *N){   if (N == NULL)      return 0;   return N->height;}int max(int a, int b){   return (a > b) ? a : b;}struct Node *newNode(int data){   struct Node *node = (struct Node *) malloc(sizeof(struct Node));   node->data = data;   node->leftChild = NULL;   node->rightChild = NULL;   node->height = 1;   return (node);}struct Node *rightRotate(struct Node *y){   struct Node *x = y->leftChild;   struct Node *T2 = x->rightChild;   x->rightChild = y;   y->leftChild = T2;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   return x;}struct Node *leftRotate(struct Node *x){   struct Node *y = x->rightChild;   struct Node *T2 = y->leftChild;   y->leftChild = x;   x->rightChild = T2;   x->height = max(height(x->leftChild), height(x->rightChild)) + 1;   y->height = max(height(y->leftChild), height(y->rightChild)) + 1;   return y;}int getBalance(struct Node *N){   if (N == NULL)      return 0;   return height(N->leftChild) - height(N->rightChild);}struct Node *insertNode(struct Node *node, int data){   if (node == NULL)      return (newNode(data));   if (data < node->data)      node->leftChild = insertNode(node->leftChild, data);   else if (data > node->data)      node->rightChild = insertNode(node->rightChild, data);   else      return node;   node->height = 1 + max(height(node->leftChild),                     height(node->rightChild));   int balance = getBalance(node);   if (balance > 1 && data < node->leftChild->data)      return rightRotate(node);   if (balance < -1 && data > node->rightChild->data)      return leftRotate(node);   if (balance > 1 && data > node->leftChild->data) {      node->leftChild = leftRotate(node->leftChild);      return rightRotate(node);   }   if (balance < -1 && data < node->rightChild->data) {      node->rightChild = rightRotate(node->rightChild);      return leftRotate(node);   }   return node;}struct Node *minValueNode(struct Node *node){   struct Node *current = node;   while (current->leftChild != NULL)      current = current->leftChild;   return current;}struct Node *deleteNode(struct Node *root, int data){   if (root == NULL)      return root;   if (data < root->data)      root->leftChild = deleteNode(root->leftChild, data);   else if (data > root->data)      root->rightChild = deleteNode(root->rightChild, data);   else {      if ((root->leftChild == NULL) || (root->rightChild == NULL)) {         struct Node *temp = root->leftChild ? root->leftChild : root->rightChild;         if (temp == NULL) {            temp = root;            root = NULL;         } else            *root = *temp;         free(temp);      } else {         struct Node *temp = minValueNode(root->rightChild);         root->data = temp->data;         root->rightChild = deleteNode(root->rightChild, temp->data);      }   }   if (root == NULL)      return root;   root->height = 1 + max(height(root->leftChild),                     height(root->rightChild));   int balance = getBalance(root);   if (balance > 1 && getBalance(root->leftChild) >= 0)      return rightRotate(root);   if (balance > 1 && getBalance(root->leftChild) < 0) {      root->leftChild = leftRotate(root->leftChild);      return rightRotate(root);   }   if (balance < -1 && getBalance(root->rightChild) <= 0)      return leftRotate(root);   if (balance < -1 && getBalance(root->rightChild) > 0) {      root->rightChild = rightRotate(root->rightChild);      return leftRotate(root);   }   return root;}// Print the treevoid printTree(struct Node *root){   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct Node *root = NULL;   root = insertNode(root, 22);   root = insertNode(root, 14);   root = insertNode(root, 72);   root = insertNode(root, 44);   root = insertNode(root, 25);   root = insertNode(root, 63);   root = insertNode(root, 98);   printf("AVL Tree: ");   printTree(root);   root = deleteNode(root, 25);   printf("\nAfter deletion: ");   printTree(root);   return 0;}

Output

AVL Tree: 14 22 25 44 63 72 98 After deletion: 14 22 44 63 72 98
import java.util.*;import java.io.*;class Node {   int key, height;   Node left, right;   Node (int d) {      key = d;      height = 1;   }}public class AVLTree {   Node root;   int height (Node N) {      if (N == null)         return 0;      return N.height;   }   int max (int a, int b) {      return (a > b) ? a : b;   }   Node rightRotate (Node y) {      Node x = y.left;      Node T2 = x.right;      x.right = y;      y.left = T2;      y.height = max (height (y.left), height (y.right)) + 1;      x.height = max (height (x.left), height (x.right)) + 1;      return x;   }   Node leftRotate (Node x) {      Node y = x.right;      Node T2 = y.left;      y.left = x;      x.right = T2;      x.height = max (height (x.left), height (x.right)) + 1;      y.height = max (height (y.left), height (y.right)) + 1;      return y;   }   int getBalance (Node N) {      if (N == null)         return 0;      return height (N.left) - height (N.right);   }   Node insert (Node node, int key) {      if (node == null)         return (new Node (key));      if (key < node.key)         node.left = insert (node.left, key);      else if (key > node.key)         node.right = insert (node.right, key);      else         return node;      node.height = 1 + max (height (node.left), height (node.right));      int balance = getBalance (node);      if (balance > 1 && key < node.left.key)         return rightRotate (node);      if (balance < -1 && key > node.right.key)         return leftRotate (node);      if (balance > 1 && key > node.left.key) {         node.left = leftRotate (node.left);         return rightRotate (node);      }      if (balance < -1 && key < node.right.key) {         node.right = rightRotate (node.right);         return leftRotate (node);      }      return node;   }   Node minValueNode (Node node) {      Node current = node;      while (current.left != null)         current = current.left;      return current;   }   Node deleteNode (Node root, int key) {      if (root == null)         return root;      if (key < root.key)         root.left = deleteNode (root.left, key);      else if (key > root.key)         root.right = deleteNode (root.right, key);      else {         if ((root.left == null) || (root.right == null)) {            Node temp = null;            if (temp == root.left)               temp = root.right;            else               temp = root.left;            if (temp == null) {               temp = root;               root = null;            } else               root = temp;         } else {            Node temp = minValueNode (root.right);            root.key = temp.key;            root.right = deleteNode (root.right, temp.key);         }      }      if (root == null)         return root;      root.height = max (height (root.left), height (root.right)) + 1;      int balance = getBalance (root);      if (balance > 1 && getBalance (root.left) >= 0)         return rightRotate (root);      if (balance > 1 && getBalance (root.left) < 0) {         root.left = leftRotate (root.left);         return rightRotate (root);      }      if (balance < -1 && getBalance (root.right) <= 0)         return leftRotate (root);      if (balance < -1 && getBalance (root.right) > 0) {         root.right = rightRotate (root.right);         return leftRotate (root);      }      return root;   }   public void printTree(Node root) {      if (root == null) return;      printTree(root.left);      System.out.println(root.key);      printTree(root.right);   }   public static void main (String[]args) {      AVLTree tree = new AVLTree();      tree.root = tree.insert (tree.root, 10);      tree.root = tree.insert (tree.root, 11);      tree.root = tree.insert (tree.root, 12);      tree.root = tree.insert (tree.root, 13);      tree.root = tree.insert (tree.root, 14);      tree.root = tree.insert (tree.root, 15);      System.out.println("The AVL Tree is: ");      tree.printTree(tree.root);      tree.root = tree.deleteNode (tree.root, 10);      System.out.println("\n----------------------------------------------\n");      System.out.println("The AVL Tree after deleting 10 is: ");      tree.printTree(tree.root);      System.out.println ("");   }}

Output

The AVL Tree is:101112131415----------------------------------------------The AVL Tree after deleting 10 is:1112131415
class Node(object):   def __init__(self, data):      self.data = data      self.left = None      self.right = None      self.height = 1class AVLTree(object):   def insert(self, root, key):      if not root:         return Node(key)      elif key < root.data:         root.left = self.insert(root.left, key)      else:         root.right = self.insert(root.right, key)      root.h = 1 + max(self.getHeight(root.left),         self.getHeight(root.right))      b = self.getBalance(root)      if b > 1 and key < root.left.data:         return self.rightRotate(root)      if b < -1 and key > root.right.data:         return self.leftRotate(root)      if b > 1 and key > root.left.data:         root.left = self.lefttRotate(root.left)         return self.rightRotate(root)      if b < -1 and key < root.right.data:         root.right = self.rightRotate(root.right)         return self.leftRotate(root)      return root   def delete(self, root, key):      if not root:         return root      elif key < root.data:         root.left = self.delete(root.left, key)      elif key > root.data:         root.right = self.delete(root.right, key)      else:         if root.left is None:            temp = root.right            root = None            return temp         elif root.right is None:            temp = root.left            root = None            return temp         temp = self.getMindataueNode(root.right)         root.data = temp.data         root.right = self.delete(root.right, temp.data)      if root is None:         return root      root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))      balance = self.getBalance(root)      if balance > 1 and self.getBalance(root.left) >= 0:         return self.rightRotate(root)      if balance < -1 and self.getBalance(root.right) <= 0:         return self.leftRotate(root)      if balance > 1 and self.getBalance(root.left) < 0:         root.left = self.leftRotate(root.left)         return self.rightRotate(root)      if balance < -1 and self.getBalance(root.right) > 0:         root.right = self.rightRotate(root.right)         return self.leftRotate(root)      return root   def leftRotate(self, z):      y = z.right      T2 = y.left      y.left = z      z.right = T2      z.height = 1 + max(self.getHeight(z.left),         self.getHeight(z.right))      y.height = 1 + max(self.getHeight(y.left),         self.getHeight(y.right))      return y   def rightRotate(self, z):      y = z.left      T3 = y.right      y.right = z      z.left = T3      z.height = 1 + max(self.getHeight(z.left),         self.getHeight(z.right))      y.height = 1 + max(self.getHeight(y.left),         self.getHeight(y.right))      return y   def getHeight(self, root):      if not root:         return 0      return root.height   def getBalance(self, root):      if not root:         return 0      return self.getHeight(root.left) - self.getHeight(root.right)   def Inorder(self, root):      if root.left:         self.Inorder(root.left)      print(root.data)      if root.right:         self.Inorder(root.right)Tree = AVLTree()root = Noneroot = Tree.insert(root, 10)root = Tree.insert(root, 13)root = Tree.insert(root, 11)root = Tree.insert(root, 14)root = Tree.insert(root, 12)root = Tree.insert(root, 15)# Inorder Traversalprint("Inorder traversal of the AVL tree is")Tree.Inorder(root)root = Tree.delete(root, 14)print("Inorder traversal of the modified AVL tree is")Tree.Inorder(root)

Output

Inorder traversal of the AVL tree is101112131415Inorder traversal of the modified AVL tree is1011121315

Red Black Trees

Red-Black Trees are another type of the Balanced Binary Search Trees with two coloured nodes: Red and Black. It is a self-balancing binary search tree that makes use of these colours to maintain the balance factor during the insertion and deletion operations. Hence, during the Red-Black Tree operations, the memory uses 1 bit of storage to accommodate the colour information of each node

In Red-Black trees, also known as RB trees, there are different conditions to follow while assigning the colours to the nodes.

  • The root node is always black in colour.

  • No two adjacent nodes must be red in colour.

  • Every path in the tree (from the root node to the leaf node) must have the same amount of black coloured nodes.

Even though AVL trees are more balanced than RB trees, with the balancing algorithm in AVL trees being stricter than that of RB trees, multiple and faster insertion and deletion operations are made more efficient through RB trees.

RB trees

Fig: RB trees

Basic Operations of Red-Black Trees

The operations on Red-Black Trees include all the basic operations usually performed on a Binary Search Tree. Some of the basic operations of an RB Tree include −

  • Insertion

  • Deletion

  • Search

Insertion operation of a Red-Black tree follows the same insertion algorithm of a binary search tree. The elements are inserted following the binary search property and as an addition, the nodes are color coded as red and black to balance the tree according to the red-black tree properties.

Follow the procedure given below to insert an element into a red-black tree by maintaining both binary search tree and red black tree properties.

Case 1 − Check whether the tree is empty; make the current node as the root and color the node black if it is empty.

Case 2 − But if the tree is not empty, we create a new node and color it red. Here we face two different cases −

  • If the parent of the new node is a black colored node, we exit the operation and tree is left as it is.

  • If the parent of this new node is red and the color of the parents sibling is either black or if it does not exist, we apply a suitable rotation and recolor accordingly.

  • If the parent of this new node is red and color of the parents sibling is red, recolor the parent, the sibling and grandparent nodes to black. The grandparent is recolored only if it isnot the root node; if it is the root node recolor only the parent and the sibling.

Insertion Example

Let us construct an RB Tree for the first 7 integer numbers to understand the insertion operation in detail −

The tree is checked to be empty so the first node added is a root and is colored black.

first node

Now, the tree is not empty so we create a new node and add the next integer with color red,

new node

The nodes do not violate the binary search tree and RB tree properties, hence we move ahead to add another node.

The tree is not empty; we create a new red node with the next integer to it. But the parent of the new node is not a black colored node,

third node

The tree right now violates both the binary search tree and RB tree properties; since parents sibling is NULL, we apply a suitable rotation and recolor the nodes.

suitable rotation

Now that the RB Tree property is restored, we add another node to the tree −

RB Tree property

The tree once again violates the RB Tree balance property, so we check for the parents sibling node color, red in this case, so we just recolor the parent and the sibling.

RB Tree balance property

We next insert the element 5, which makes the tree violate the RB Tree balance property once again.

insert element 5

And since the sibling is NULL, we apply suitable rotation and recolor.

sibling is NULL

Now, we insert element 6, but the RB Tree property is violated and one of the insertion cases need to be applied −

insert element 6

The parents sibling is red, so we recolor the parent, parents sibling and the grandparent nodes since the grandparent is not the root node.

recolor parent

Now, we add the last element, 7, but the parent node of this new node is red.

add last element

Since the parents sibling is NULL, we apply suitable rotations (RR rotation)

RB Tree achieved

The final RB Tree is achieved.

Deletion

The deletion operation on red black tree must be performed in such a way that it must restore all the properties of a binary search tree and a red black tree. Follow the steps below to perform the deletion operation on the red black tree −

Firstly, we perform deletion based on the binary search tree properties.

Case 1 − If either the node to be deleted or the nodes parent is red, just delete it.

Case 2 − If the node is a double black, just remove the double black (double black occurs when the node to be deleted is a black colored leaf node, as it adds up the NULL nodes which are considered black colored nodes too)

Case 3 − If the double blacks sibling node is also a black node and its child nodes are also black in color, follow the steps below −

  • Remove double black

  • Recolor its parent to black (if the parent is a red node, it becomes black; if the parent is already a black node, it becomes double black)

  • Recolor the parents sibling with red

  • If double black node still exists, we apply other cases.

Case 4 − If the double black nodes sibling is red, we perform the following steps −

  • Swap the colors of the parent node and the parents sibling node.

  • Rotate parent node in the double blacks direction

  • Reapply other cases that are suitable.

Case 5 − If the double blacks sibling is a black node but the siblings child node that is closest to the double black is red, follows the steps below −

  • Swap the colors of double blacks sibling and the siblings child in question

  • Rotate the sibling node is the opposite direction of double black (i.e. if the double black is a right child apply left rotations and vice versa)

  • Apply case 6.

Case 6 − If the double blacks sibling is a black node but the siblings child node that is farther to the double black is red, follows the steps below −

  • Swap the colors of double blacks parent and sibling nodes

  • Rotate the parent in double blacks direction (i.e. if the double black is a right child apply right rotations and vice versa)

  • Remove double black

  • Change the color of red child node to black.

Deletion Example

Considering the same constructed Red-Black Tree above, let us delete few elements from the tree.

RB Tree achieved

Delete elements 4, 5, 3 from the tree.

To delete the element 4, let us perform the binary search deletion first.

delete element 4

After performing the binary search deletion, the RB Tree property is not disturbed, therefore the tree is left as it is.

Then, we delete the element 5 using the binary search deletion

delete element 5

But the RB property is violated after performing the binary search deletion, i.e., all the paths in the tree do not hold same number of black nodes; so we swap the colors to balance the tree.

RB property violated

Then, we delete the node 3 from the tree obtained −

Applying binary search deletion, we delete node 3 normally as it is a leaf node. And we get a double node as 3 is a black colored node.

delete node 3

We apply case 3 deletion as double blacks sibling node is black and its child nodes are also black. Here, we remove the double black, recolor the double blacks parent and sibling.

RB Tree property maintained

All the desired nodes are deleted and the RB Tree property is maintained.

Search

The search operation in red-black tree follows the same algorithm as that of a binary search tree. The tree is traversed and each node is compared with the key element to be searched; if found it returns a successful search. Otherwise, it returns an unsuccessful search.

Complete implementation

Output

// C++ program for Red black trees algorithmn#include <iostream>using namespace std;struct Node {  int data;  Node *parent;  Node *left;  Node *right;  int color;};typedef Node *NodePtr;class RedBlackTree {   private:  NodePtr root;  NodePtr TNULL;  void initializeNULLNode(NodePtr node, NodePtr parent) {    node->data = 0;    node->parent = parent;    node->left = nullptr;    node->right = nullptr;    node->color = 0;  }  // Preorder  void preOrderHelper(NodePtr node) {    if (node != TNULL) {      cout << node->data << " ";      preOrderHelper(node->left);      preOrderHelper(node->right);    }  }  // Inorder  void inOrderHelper(NodePtr node) {    if (node != TNULL) {      inOrderHelper(node->left);      cout << node->data << " ";      inOrderHelper(node->right);    }  }  // Post order  void postOrderHelper(NodePtr node) {    if (node != TNULL) {      postOrderHelper(node->left);      postOrderHelper(node->right);      cout << node->data << " ";    }  }  NodePtr searchTreeHelper(NodePtr node, int key) {    if (node == TNULL || key == node->data) {      return node;    }    if (key < node->data) {      return searchTreeHelper(node->left, key);    }    return searchTreeHelper(node->right, key);  }  // For balancing the tree after deletion  void deleteFix(NodePtr x) {    NodePtr s;    while (x != root && x->color == 0) {      if (x == x->parent->left) {        s = x->parent->right;        if (s->color == 1) {          s->color = 0;          x->parent->color = 1;          leftRotate(x->parent);          s = x->parent->right;        }        if (s->left->color == 0 && s->right->color == 0) {          s->color = 1;          x = x->parent;        } else {          if (s->right->color == 0) {            s->left->color = 0;            s->color = 1;            rightRotate(s);            s = x->parent->right;          }          s->color = x->parent->color;          x->parent->color = 0;          s->right->color = 0;          leftRotate(x->parent);          x = root;        }      } else {        s = x->parent->left;        if (s->color == 1) {          s->color = 0;          x->parent->color = 1;          rightRotate(x->parent);          s = x->parent->left;        }        if (s->right->color == 0 && s->right->color == 0) {          s->color = 1;          x = x->parent;        } else {          if (s->left->color == 0) {            s->right->color = 0;            s->color = 1;            leftRotate(s);            s = x->parent->left;          }          s->color = x->parent->color;          x->parent->color = 0;          s->left->color = 0;          rightRotate(x->parent);          x = root;        }      }    }    x->color = 0;  }  void rbTransplant(NodePtr u, NodePtr v) {    if (u->parent == nullptr) {      root = v;    } else if (u == u->parent->left) {      u->parent->left = v;    } else {      u->parent->right = v;    }    v->parent = u->parent;  }  void deleteNodeHelper(NodePtr node, int key) {    NodePtr z = TNULL;    NodePtr x, y;    while (node != TNULL) {      if (node->data == key) {        z = node;      }      if (node->data <= key) {        node = node->right;      } else {        node = node->left;      }    }    if (z == TNULL) {      cout << "Key not found in the tree" << endl;      return;    }    y = z;    int y_original_color = y->color;    if (z->left == TNULL) {      x = z->right;      rbTransplant(z, z->right);    } else if (z->right == TNULL) {      x = z->left;      rbTransplant(z, z->left);    } else {      y = minimum(z->right);      y_original_color = y->color;      x = y->right;      if (y->parent == z) {        x->parent = y;      } else {        rbTransplant(y, y->right);        y->right = z->right;        y->right->parent = y;      }      rbTransplant(z, y);      y->left = z->left;      y->left->parent = y;      y->color = z->color;    }    delete z;    if (y_original_color == 0) {      deleteFix(x);    }  }  // For balancing the tree after insertion  void insertFix(NodePtr k) {    NodePtr u;    while (k->parent->color == 1) {      if (k->parent == k->parent->parent->right) {        u = k->parent->parent->left;        if (u->color == 1) {          u->color = 0;          k->parent->color = 0;          k->parent->parent->color = 1;          k = k->parent->parent;        } else {          if (k == k->parent->left) {            k = k->parent;            rightRotate(k);          }          k->parent->color = 0;          k->parent->parent->color = 1;          leftRotate(k->parent->parent);        }      } else {        u = k->parent->parent->right;        if (u->color == 1) {          u->color = 0;          k->parent->color = 0;          k->parent->parent->color = 1;          k = k->parent->parent;        } else {          if (k == k->parent->right) {            k = k->parent;            leftRotate(k);          }          k->parent->color = 0;          k->parent->parent->color = 1;          rightRotate(k->parent->parent);        }      }      if (k == root) {        break;      }    }    root->color = 0;  }  void printHelper(NodePtr root, string indent, bool last) {    if (root != TNULL) {      cout << indent;      if (last) {        cout << "R----";        indent += "   ";      } else {        cout << "L----";        indent += "|  ";      }      string sColor = root->color ? "RED" : "BLACK";      cout << root->data << "(" << sColor << ")" << endl;      printHelper(root->left, indent, false);      printHelper(root->right, indent, true);    }  }   public:  RedBlackTree() {    TNULL = new Node;    TNULL->color = 0;    TNULL->left = nullptr;    TNULL->right = nullptr;    root = TNULL;  }  void preorder() {    preOrderHelper(this->root);  }  void inorder() {    inOrderHelper(this->root);  }  void postorder() {    postOrderHelper(this->root);  }  NodePtr searchTree(int k) {    return searchTreeHelper(this->root, k);  }  NodePtr minimum(NodePtr node) {    while (node->left != TNULL) {      node = node->left;    }    return node;  }  NodePtr maximum(NodePtr node) {    while (node->right != TNULL) {      node = node->right;    }    return node;  }  NodePtr successor(NodePtr x) {    if (x->right != TNULL) {      return minimum(x->right);    }    NodePtr y = x->parent;    while (y != TNULL && x == y->right) {      x = y;      y = y->parent;    }    return y;  }  NodePtr predecessor(NodePtr x) {    if (x->left != TNULL) {      return maximum(x->left);    }    NodePtr y = x->parent;    while (y != TNULL && x == y->left) {      x = y;      y = y->parent;    }    return y;  }  void leftRotate(NodePtr x) {    NodePtr y = x->right;    x->right = y->left;    if (y->left != TNULL) {      y->left->parent = x;    }    y->parent = x->parent;    if (x->parent == nullptr) {      this->root = y;    } else if (x == x->parent->left) {      x->parent->left = y;    } else {      x->parent->right = y;    }    y->left = x;    x->parent = y;  }  void rightRotate(NodePtr x) {    NodePtr y = x->left;    x->left = y->right;    if (y->right != TNULL) {      y->right->parent = x;    }    y->parent = x->parent;    if (x->parent == nullptr) {      this->root = y;    } else if (x == x->parent->right) {      x->parent->right = y;    } else {      x->parent->left = y;    }    y->right = x;    x->parent = y;  }  // Inserting a node  void insert(int key) {    NodePtr node = new Node;    node->parent = nullptr;    node->data = key;    node->left = TNULL;    node->right = TNULL;    node->color = 1;    NodePtr y = nullptr;    NodePtr x = this->root;    while (x != TNULL) {      y = x;      if (node->data < x->data) {        x = x->left;      } else {        x = x->right;      }    }    node->parent = y;    if (y == nullptr) {      root = node;    } else if (node->data < y->data) {      y->left = node;    } else {      y->right = node;    }    if (node->parent == nullptr) {      node->color = 0;      return;    }    if (node->parent->parent == nullptr) {      return;    }    insertFix(node);  }  NodePtr getRoot() {    return this->root;  }  void deleteNode(int data) {    deleteNodeHelper(this->root, data);  }  void printTree() {    if (root) {      printHelper(this->root, "", true);    }  }};int main() {  RedBlackTree V;    V.insert(24);    V.insert(33);    V.insert(42);    V.insert(51);    V.insert(60);    V.insert(40);    V.insert(22);  V.printTree();  cout << endl     << "After deleting an element" << endl;  V.deleteNode(40);  V.printTree();}

Output

R----33(BLACK)   L----24(BLACK)   |  L----22(RED)   R----51(RED)      L----42(BLACK)      |  L----40(RED)      R----60(BLACK)After deleting an elementR----33(BLACK)   L----24(BLACK)   |  L----22(RED)   R----51(RED)      L----42(BLACK)      R----60(BLACK)
// Implementing Red-Black Tree in Javaclass Node {    int data;    Node parent;    Node left;    Node right;    int color;}public class RedBlackTree {    private Node root;    private Node TNULL;    // Preorder    private void preOrderHelper(Node node) {        if (node != TNULL) {            System.out.print(node.data + " ");            preOrderHelper(node.left);            preOrderHelper(node.right);        }    }    // Inorder    private void inOrderHelper(Node node) {        if (node != TNULL) {            inOrderHelper(node.left);            System.out.print(node.data + " ");            inOrderHelper(node.right);        }    }    // Post order    private void postOrderHelper(Node node) {        if (node != TNULL) {            postOrderHelper(node.left);            postOrderHelper(node.right);            System.out.print(node.data + " ");        }    }    // Search the tree    private Node searchTreeHelper(Node node, int key) {        if (node == TNULL || key == node.data) {            return node;        }        if (key < node.data) {            return searchTreeHelper(node.left, key);        }        return searchTreeHelper(node.right, key);    }    // Balance the tree after deletion of a node    private void fixDelete(Node x) {        Node s;        while (x != root && x.color == 0) {            if (x == x.parent.left) {                s = x.parent.right;                if (s.color == 1) {                    s.color = 0;                    x.parent.color = 1;                    leftRotate(x.parent);                    s = x.parent.right;                }                if (s.left.color == 0 && s.right.color == 0) {                    s.color = 1;                    x = x.parent;                } else {                    if (s.right.color == 0) {                        s.left.color = 0;                        s.color = 1;                        rightRotate(s);                        s = x.parent.right;                    }                    s.color = x.parent.color;                    x.parent.color = 0;                    s.right.color = 0;                    leftRotate(x.parent);                    x = root;                }            } else {                s = x.parent.left;                if (s.color == 1) {                    s.color = 0;                    x.parent.color = 1;                    rightRotate(x.parent);                    s = x.parent.left;                }                if (s.right.color == 0 && s.right.color == 0) {                    s.color = 1;                    x = x.parent;                } else {                    if (s.left.color == 0) {                        s.right.color = 0;                        s.color = 1;                        leftRotate(s);                        s = x.parent.left;                    }                    s.color = x.parent.color;                    x.parent.color = 0;                    s.left.color = 0;                    rightRotate(x.parent);                    x = root;                }            }        }        x.color = 0;    }    private void rbTransplant(Node u, Node v) {        if (u.parent == null) {            root = v;        } else if (u == u.parent.left) {            u.parent.left = v;        } else {            u.parent.right = v;        }        v.parent = u.parent;    }    private void deleteNodeHelper(Node node, int key) {        Node z = TNULL;        Node x, y;        while (node != TNULL) {            if (node.data == key) {                z = node;            }            if (node.data <= key) {                node = node.right;            } else {                node = node.left;            }        }        if (z == TNULL) {            System.out.println("Couldn't find key in the tree");            return;        }        y = z;        int yOriginalColor = y.color;        if (z.left == TNULL) {            x = z.right;            rbTransplant(z, z.right);        } else if (z.right == TNULL) {            x = z.left;            rbTransplant(z, z.left);        } else {            y = minimum(z.right);            yOriginalColor = y.color;            x = y.right;            if (y.parent == z) {                x.parent = y;            } else {                rbTransplant(y, y.right);                y.right = z.right;                y.right.parent = y;            }            rbTransplant(z, y);            y.left = z.left;            y.left.parent = y;            y.color = z.color;        }        if (yOriginalColor == 0) {            fixDelete(x);        }    }    // Balance the node after insertion    private void fixInsert(Node k) {        Node u;        while (k.parent.color == 1) {            if (k.parent == k.parent.parent.right) {                u = k.parent.parent.left;                if (u.color == 1) {                    u.color = 0;                    k.parent.color = 0;                    k.parent.parent.color = 1;                    k = k.parent.parent;                } else {                    if (k == k.parent.left) {                        k = k.parent;                        rightRotate(k);                    }                    k.parent.color = 0;                    k.parent.parent.color = 1;                    leftRotate(k.parent.parent);                }            } else {                u = k.parent.parent.right;                if (u.color == 1) {                    u.color = 0;                    k.parent.color = 0;                    k.parent.parent.color = 1;                    k = k.parent.parent;                } else {                    if (k == k.parent.right) {                        k = k.parent;                        leftRotate(k);                    }                    k.parent.color = 0;                    k.parent.parent.color = 1;                    rightRotate(k.parent.parent);                }            }            if (k == root) {                break;            }        }        root.color = 0;    }    private void printHelper(Node root, String indent, boolean last) {        if (root != TNULL) {            System.out.print(indent);            if (last) {                System.out.print("R----");                indent += "   ";            } else {                System.out.print("L----");                indent += "|  ";            }            String sColor = root.color == 1 ? "RED" : "BLACK";            System.out.println(root.data + "(" + sColor + ")");            printHelper(root.left, indent, false);            printHelper(root.right, indent, true);        }    }    public RedBlackTree() {        TNULL = new Node();        TNULL.color = 0;        TNULL.left = null;        TNULL.right = null;        root = TNULL;    }    public void preorder() {        preOrderHelper(this.root);    }    public void inorder() {        inOrderHelper(this.root);    }    public void postorder() {        postOrderHelper(this.root);    }    public Node searchTree(int k) {        return searchTreeHelper(this.root, k);    }    public Node minimum(Node node) {        while (node.left != TNULL) {            node = node.left;        }        return node;    }    public Node maximum(Node node) {        while (node.right != TNULL) {            node = node.right;        }        return node;    }    public Node successor(Node x) {        if (x.right != TNULL) {            return minimum(x.right);        }        Node y = x.parent;        while (y != TNULL && x == y.right) {            x = y;            y = y.parent;        }        return y;    }    public Node predecessor(Node x) {        if (x.left != TNULL) {            return maximum(x.left);        }        Node y = x.parent;        while (y != TNULL && x == y.left) {            x = y;            y = y.parent;        }        return y;    }    public void leftRotate(Node x) {        Node y = x.right;        x.right = y.left;        if (y.left != TNULL) {            y.left.parent = x;        }        y.parent = x.parent;        if (x.parent == null) {            this.root = y;        } else if (x == x.parent.left) {            x.parent.left = y;        } else {            x.parent.right = y;        }        y.left = x;        x.parent = y;    }    public void rightRotate(Node x) {        Node y = x.left;        x.left = y.right;        if (y.right != TNULL) {            y.right.parent = x;        }        y.parent = x.parent;        if (x.parent == null) {            this.root = y;        } else if (x == x.parent.right) {            x.parent.right = y;        } else {            x.parent.left = y;        }        y.right = x;        x.parent = y;    }    public void insert(int key) {        Node node = new Node();        node.parent = null;        node.data = key;        node.left = TNULL;        node.right = TNULL;        node.color = 1;        Node y = null;        Node x = this.root;        while (x != TNULL) {            y = x;            if (node.data < x.data) {                x = x.left;            } else {                x = x.right;            }        }        node.parent = y;        if (y == null) {            root = node;        } else if (node.data < y.data) {            y.left = node;        } else {            y.right = node;        }        if (node.parent == null) {            node.color = 0;            return;        }        if (node.parent.parent == null) {            return;        }        fixInsert(node);    }    public Node getRoot() {        return this.root;    }    public void deleteNode(int data) {        deleteNodeHelper(this.root, data);    }    public void printTree() {        printHelper(this.root, "", true);    }    public static void main(String[] args) {        RedBlackTree V = new RedBlackTree();        V.insert(24);        V.insert(33);        V.insert(42);        V.insert(51);        V.insert(60);        V.insert(40);        V.insert(22);        V.printTree();        System.out.println("\nAfter deleting an element:");        V.deleteNode(40);        V.printTree();    }}

Output

R----33(BLACK)   L----24(BLACK)   |  L----22(RED)R----51(RED)L----42(BLACK)|  L----40(RED)      R----60(BLACK)After deleting an element:R----33(BLACK)L----24(BLACK)   |  L----22(RED)R----51(RED)L----42(BLACK)R----60(BLACK)
#python program for Red black treesimport sys# Node creationclass Node():    def __init__(self, item):        self.item = item        self.parent = None        self.left = None        self.right = None        self.color = 1class RedBlackTree():    def __init__(self):        self.TNULL = Node(0)        self.TNULL.color = 0        self.TNULL.left = None        self.TNULL.right = None        self.root = self.TNULL    # Preorder    def pre_order_helper(self, node):        if node != TNULL:            sys.stdout.write(node.item + " ")            self.pre_order_helper(node.left)            self.pre_order_helper(node.right)    # Inorder    def in_order_helper(self, node):        if node != TNULL:            self.in_order_helper(node.left)            sys.stdout.write(node.item + " ")            self.in_order_helper(node.right)    # Postorder    def post_order_helper(self, node):        if node != TNULL:            self.post_order_helper(node.left)            self.post_order_helper(node.right)            sys.stdout.write(node.item + " ")    # Search the tree    def search_tree_helper(self, node, key):        if node == TNULL or key == node.item:            return node        if key < node.item:            return self.search_tree_helper(node.left, key)        return self.search_tree_helper(node.right, key)    # Balancing the tree after deletion    def delete_fix(self, x):        while x != self.root and x.color == 0:            if x == x.parent.left:                s = x.parent.right                if s.color == 1:                    s.color = 0                    x.parent.color = 1                    self.left_rotate(x.parent)                    s = x.parent.right                if s.left.color == 0 and s.right.color == 0:                    s.color = 1                    x = x.parent                else:                    if s.right.color == 0:                        s.left.color = 0                        s.color = 1                        self.right_rotate(s)                        s = x.parent.right                    s.color = x.parent.color                    x.parent.color = 0                    s.right.color = 0                    self.left_rotate(x.parent)                    x = self.root            else:                s = x.parent.left                if s.color == 1:                    s.color = 0                    x.parent.color = 1                    self.right_rotate(x.parent)                    s = x.parent.left                if s.right.color == 0 and s.right.color == 0:                    s.color = 1                    x = x.parent                else:                    if s.left.color == 0:                        s.right.color = 0                        s.color = 1                        self.left_rotate(s)                        s = x.parent.left                    s.color = x.parent.color                    x.parent.color = 0                    s.left.color = 0                    self.right_rotate(x.parent)                    x = self.root        x.color = 0    def __rb_transplant(self, u, v):        if u.parent == None:            self.root = v        elif u == u.parent.left:            u.parent.left = v        else:            u.parent.right = v        v.parent = u.parent    # Node deletion    def delete_node_helper(self, node, key):        z = self.TNULL        while node != self.TNULL:            if node.item == key:                z = node            if node.item <= key:                node = node.right            else:                node = node.left        if z == self.TNULL:            print("Cannot find key in the tree")            return        y = z        y_original_color = y.color        if z.left == self.TNULL:            x = z.right            self.__rb_transplant(z, z.right)        elif (z.right == self.TNULL):            x = z.left            self.__rb_transplant(z, z.left)        else:            y = self.minimum(z.right)            y_original_color = y.color            x = y.right            if y.parent == z:                x.parent = y            else:                self.__rb_transplant(y, y.right)                y.right = z.right                y.right.parent = y            self.__rb_transplant(z, y)            y.left = z.left            y.left.parent = y            y.color = z.color        if y_original_color == 0:            self.delete_fix(x)    # Balance the tree after insertion    def fix_insert(self, k):        while k.parent.color == 1:            if k.parent == k.parent.parent.right:                u = k.parent.parent.left                if u.color == 1:                    u.color = 0                    k.parent.color = 0                    k.parent.parent.color = 1                    k = k.parent.parent                else:                    if k == k.parent.left:                        k = k.parent                        self.right_rotate(k)                    k.parent.color = 0                    k.parent.parent.color = 1                    self.left_rotate(k.parent.parent)            else:                u = k.parent.parent.right                if u.color == 1:                    u.color = 0                    k.parent.color = 0                    k.parent.parent.color = 1                    k = k.parent.parent                else:                    if k == k.parent.right:                        k = k.parent                        self.left_rotate(k)                    k.parent.color = 0                    k.parent.parent.color = 1                    self.right_rotate(k.parent.parent)            if k == self.root:                break        self.root.color = 0    # Printing the tree    def __print_helper(self, node, indent, last):        if node != self.TNULL:            sys.stdout.write(indent)            if last:                sys.stdout.write("R----")                indent += "     "            else:                sys.stdout.write("L----")                indent += "|    "            s_color = "RED" if node.color == 1 else "BLACK"            print(str(node.item) + "(" + s_color + ")")            self.__print_helper(node.left, indent, False)            self.__print_helper(node.right, indent, True)    def preorder(self):        self.pre_order_helper(self.root)    def inorder(self):        self.in_order_helper(self.root)    def postorder(self):        self.post_order_helper(self.root)    def searchTree(self, k):        return self.search_tree_helper(self.root, k)    def minimum(self, node):        while node.left != self.TNULL:            node = node.left        return node    def maximum(self, node):        while node.right != self.TNULL:            node = node.right        return node    def successor(self, x):        if x.right != self.TNULL:            return self.minimum(x.right)        y = x.parent        while y != self.TNULL and x == y.right:            x = y            y = y.parent        return y    def predecessor(self,  x):        if (x.left != self.TNULL):            return self.maximum(x.left)        y = x.parent        while y != self.TNULL and x == y.left:            x = y            y = y.parent        return y    def left_rotate(self, x):        y = x.right        x.right = y.left        if y.left != self.TNULL:            y.left.parent = x        y.parent = x.parent        if x.parent == None:            self.root = y        elif x == x.parent.left:            x.parent.left = y        else:            x.parent.right = y        y.left = x        x.parent = y    def right_rotate(self, x):        y = x.left        x.left = y.right        if y.right != self.TNULL:            y.right.parent = x        y.parent = x.parent        if x.parent == None:            self.root = y        elif x == x.parent.right:            x.parent.right = y        else:            x.parent.left = y        y.right = x        x.parent = y    def insert(self, key):        node = Node(key)        node.parent = None        node.item = key        node.left = self.TNULL        node.right = self.TNULL        node.color = 1        y = None        x = self.root        while x != self.TNULL:            y = x            if node.item < x.item:                x = x.left            else:                x = x.right        node.parent = y        if y == None:            self.root = node        elif node.item < y.item:            y.left = node        else:            y.right = node        if node.parent == None:            node.color = 0            return        if node.parent.parent == None:            return        self.fix_insert(node)    def get_root(self):        return self.root    def delete_node(self, item):        self.delete_node_helper(self.root, item)    def print_tree(self):        self.__print_helper(self.root, "", True)if __name__ == "__main__":    V = RedBlackTree()    V.insert(24)    V.insert(33)    V.insert(42)    V.insert(51)    V.insert(60)    V.insert(40)    V.insert(22)    V.print_tree()    print("\nAfter deleting an element")    V.delete_node(40)    V.print_tree()

Output

R----33(BLACK)     L----24(BLACK)     |    L----22(RED)R----51(RED)          L----42(BLACK)          |    L----40(RED)          R----60(BLACK)After deleting an elementR----33(BLACK)     L----24(BLACK)     |    L----22(RED)     R----51(RED)          L----42(BLACK)          R----60(BLACK)

B Trees

B trees are extended binary search trees that are specialized in m-way searching, since the order of B trees is m. Order of a tree is defined as the maximum number of children a node can accommodate. Therefore, the height of a b tree is relatively smaller than the height of AVL tree and RB tree.

They are general form of a Binary Search Tree as it holds more than one key and two children.

The various properties of B trees include −

  • Every node in a B Tree will hold a maximum of m children and (m-1) keys, since the order of the tree is m.

  • Every node in a B tree, except root and leaf, can hold at least m/2 children

  • The root node must have no less than two children.

  • All the paths in a B tree must end at the same level, i.e. the leaf nodes must be at the same level.

  • A B tree always maintains sorted data.

b trees

B trees are also widely used in disk access, minimizing the disk access time since the height of a b tree is low.

Note − A disk access is the memory access to the computer disk where the information is stored and disk access time is the time taken by the system to access the disk memory.

Basic Operations of B Trees

The operations supported in B trees are Insertion, deletion and searching with the time complexity ofO(log n) for every operation.

Insertion

The insertion operation for a B Tree is done similar to the Binary Search Tree but the elements are inserted into the same node until the maximum keys are reached. The insertion is done using the following procedure −

Step 1 − Calculate the maximum $\mathrm{\left ( m-1 \right )}$ and minimum $\mathrm{\left ( \left \lceil \frac{m}{2}\right \rceil-1 \right )}$ number of keys a node can hold, where m is denoted by the order of the B Tree.

Calculate min max

Step 2 − The data is inserted into the tree using the binary search insertion and once the keys reach the maximum number, the node is split into half and the median key becomes the internal node while the left and right keys become its children.

data_inserted

Step 3 − All the leaf nodes must be on the same level.

leaf nodes same level

The keys, 5, 3, 21, 9, 13 are all added into the node according to the binary search property but if we add the key 22, it will violate the maximum key property. Hence, the node is split in half, the median key is shifted to the parent node and the insertion is then continued.

adding 11

Another hiccup occurs during the insertion of 11, so the node is split and median is shifted to the parent.

adding 16

While inserting 16, even if the node is split in two parts, the parent node also overflows as it reached the maximum keys. Hence, the parent node is split first and the median key becomes the root. Then, the leaf node is split in half the median of leaf node is shifted to its parent.

final B tree

The final B tree after inserting all the elements is achieved.

Example

// Insert the valuevoid insertion(int item) {   int flag, i;   struct btreeNode *child;   flag = setNodeValue(item, &i, root, &child);   if (flag)      root = createNode(i, child);}

Deletion

The deletion operation in a B tree is slightly different from the deletion operation of a Binary Search Tree. The procedure to delete a node from a B tree is as follows −

Case 1 − If the key to be deleted is in a leaf node and the deletion does not violate the minimum key property, just delete the node.

delete key 14deleted key 14

Case 2 − If the key to be deleted is in a leaf node but the deletion violates the minimum key property, borrow a key from either its left sibling or right sibling. In case if both siblings have exact minimum number of keys, merge the node in either of them.

delete key 13deleted key 3

Case 3 − If the key to be deleted is in an internal node, it is replaced by a key in either left child or right child based on which child has more keys. But if both child nodes have minimum number of keys, theyre merged together.

delete key 13deleted key 13

Case 4 − If the key to be deleted is in an internal node violating the minimum keys property, and both its children and sibling have minimum number of keys, merge the children. Then merge its sibling with its parent.

delete key 5deleted key 5

Following is functional C++ code snippet of the deletion operation in B Trees −

// Deletion operationvoid deletion(int key){   int index = searchkey(key);   if (index < n && keys[index] == key) {      if (leaf)         deletion_at_leaf(index);      else         deletion_at_nonleaf(index);   } else {      if (leaf) {         cout << "key " << key << " does not exist in the tree\n";         return;      }      bool flag = ((index == n) ? true : false);      if (C[index]->n < t)         fill(index);      if (flag && index > n)         C[index - 1]->deletion(key);      else         C[index]->deletion(key);   }   return;}// Deletion at the leaf nodesvoid deletion_at_leaf(int index){   for (int i = index + 1; i < n; ++i)      keys[i - 1] = keys[i];   n--;   return;}// Deletion at the non leaf nodevoid deletion_at_nonleaf(int index){   int key = keys[index];   if (C[index]->n >= t) {      int pred = get_Predecessor(index);      keys[index] = pred;      C[index]->deletion(pred);   } else if (C[index + 1]->n >= t) {      int successor = copysuccessoressor(index);      keys[index] = successor;      C[index + 1]->deletion(successor);   } else {      merge(index);      C[index]->deletion(key);   }   return;}

Example

// C Program for B trees #include <stdio.h>#include <stdlib.h>struct BTree {    //node declaration   int *d;   struct BTree **child_ptr;   int l;   int n;};struct BTree *r = NULL;struct BTree *np = NULL;struct BTree *x = NULL;//creation of nodestruct BTree* init() {   int i;   np = (struct BTree*)malloc(sizeof(struct BTree));   //order 6   np->d = (int*)malloc(6 * sizeof(int));   np->child_ptr = (struct BTree**)malloc(7 * sizeof(struct BTree*));   np->l = 1;   np->n = 0;   for (i = 0; i < 7; i++) {      np->child_ptr[i] = NULL;   }   return np;}//traverse the treevoid traverse(struct BTree *p) {   printf("\n");   int i;   for (i = 0; i < p->n; i++) {      if (p->l == 0) {         traverse(p->child_ptr[i]);      }      printf(" %d", p->d[i]);   }   if (p->l == 0) {      traverse(p->child_ptr[i]);   }   printf("\n");}//sort the treevoid sort(int *p, int n) {   int i, j, t;   for (i = 0; i < n; i++) {      for (j = i; j <= n; j++) {         if (p[i] > p[j]) {            t = p[i];            p[i] = p[j];            p[j] = t;         }      }   }}int split_child(struct BTree *x, int i) {   int j, mid;   struct BTree *np1, *np3, *y;   np3 = init();   //create new node   np3->l = 1;   if (i == -1) {      mid = x->d[2];      //find mid      x->d[2] = 0;      x->n--;      np1 = init();      np1->l = 0;      x->l = 1;      for (j = 3; j < 6; j++) {         np3->d[j - 3] = x->d[j];         np3->child_ptr[j - 3] = x->child_ptr[j];         np3->n++;         x->d[j] = 0;         x->n--;      }      for (j = 0; j < 6; j++) {         x->child_ptr[j] = NULL;      }      np1->d[0] = mid;      np1->child_ptr[np1->n] = x;      np1->child_ptr[np1->n + 1] = np3;      np1->n++;      r = np1;   } else {      y = x->child_ptr[i];      mid = y->d[2];      y->d[2] = 0;      y->n--;      for (j = 3; j < 6; j++) {         np3->d[j - 3] = y->d[j];         np3->n++;         y->d[j] = 0;         y->n--;      }      x->child_ptr[i + 1] = y;      x->child_ptr[i + 1] = np3;   }   return mid;}void insert(int a) {   int i, t;   x = r;   if (x == NULL) {      r = init();      x = r;   } else {      if (x->l == 1 && x->n == 6) {         t = split_child(x, -1);         x = r;         for (i = 0; i < x->n; i++) {            if (a > x->d[i] && a < x->d[i + 1]) {               i++;               break;            } else if (a < x->d[0]) {               break;            } else {               continue;            }         }         x = x->child_ptr[i];      } else {         while (x->l == 0) {            for (i = 0; i < x->n; i++) {               if (a > x->d[i] && a < x->d[i + 1]) {                  i++;                  break;               } else if (a < x->d[0]) {                  break;               } else {                  continue;               }            }            if (x->child_ptr[i]->n == 6) {               t = split_child(x, i);               x->d[x->n] = t;               x->n++;               continue;            } else {               x = x->child_ptr[i];            }         }      }   }   x->d[x->n] = a;   sort(x->d, x->n);   x->n++;}int main() {   int i, n, t;   insert(10);   insert(20);   insert(30);   insert(40);   insert(50);   printf("B tree:\n");   traverse(r);   return 0;}

Output

B tree: 10 20 30 40 50
#include<iostream>using namespace std;struct BTree {//node declaration   int *d;   BTree **child_ptr;   bool l;   int n;}*r = NULL, *np = NULL, *x = NULL;BTree* init() {//creation of node   int i;   np = new BTree;   np->d = new int[6];//order 6   np->child_ptr = new BTree *[7];   np->l = true;   np->n = 0;   for (i = 0; i < 7; i++) {      np->child_ptr[i] = NULL;   }   return np;}void traverse(BTree *p) { //traverse the tree   cout<<endl;   int i;   for (i = 0; i < p->n; i++) {      if (p->l == false) {         traverse(p->child_ptr[i]);      }      cout << " " << p->d[i];   }   if (p->l == false) {      traverse(p->child_ptr[i]);   }   cout<<endl;}void sort(int *p, int n){ //sort the tree   int i, j, t;   for (i = 0; i < n; i++) {      for (j = i; j <= n; j++) {         if (p[i] >p[j]) {            t = p[i];            p[i] = p[j];            p[j] = t;         }      }   }}int split_child(BTree *x, int i) {   int j, mid;   BTree *np1, *np3, *y;   np3 = init();//create new node   np3->l = true;   if (i == -1) {      mid = x->d[2];//find mid      x->d[2] = 0;      x->n--;      np1 = init();      np1->l= false;      x->l= true;      for (j = 3; j < 6; j++) {         np3->d[j - 3] = x->d[j];         np3->child_ptr[j - 3] = x->child_ptr[j];         np3->n++;         x->d[j] = 0;         x->n--;      }      for (j = 0; j < 6; j++) {         x->child_ptr[j] = NULL;      }      np1->d[0] = mid;      np1->child_ptr[np1->n] = x;      np1->child_ptr[np1->n + 1] = np3;      np1->n++;      r = np1;   } else {      y = x->child_ptr[i];      mid = y->d[2];      y->d[2] = 0;      y->n--;      for (j = 3; j <6 ; j++) {         np3->d[j - 3] = y->d[j];         np3->n++;         y->d[j] = 0;         y->n--;      }      x->child_ptr[i + 1] = y;      x->child_ptr[i + 1] = np3;   }   return mid;}void insert(int a) {   int i, t;   x = r;   if (x == NULL) {      r = init();      x = r;   } else {      if (x->l== true && x->n == 6) {         t = split_child(x, -1);         x = r;         for (i = 0; i < (x->n); i++) {            if ((a >x->d[i]) && (a < x->d[i + 1])) {               i++;               break;            } else if (a < x->d[0]) {               break;            } else {               continue;            }         }         x = x->child_ptr[i];      } else {         while (x->l == false) {            for (i = 0; i < (x->n); i++) {               if ((a >x->d[i]) && (a < x->d[i + 1])) {                  i++;                  break;               } else if (a < x->d[0]) {                  break;               } else {                  continue;               }            }            if ((x->child_ptr[i])->n == 6) {               t = split_child(x, i);               x->d[x->n] = t;               x->n++;               continue;            } else {               x = x->child_ptr[i];            }         }      }   }   x->d[x->n] = a;   sort(x->d, x->n);   x->n++;}int main() {   int i, n, t;   insert(10);   insert(20);   insert(30);   insert(40);   insert(50);   cout<<"B tree:\n";   traverse(r);}

Output

B tree:10 20 30 40 50
//Java code for B trees import java.util.Arrays;class BTree {    private int[] d;    private BTree[] child_ptr;    private boolean l;    private int n;    public BTree() {        d = new int[6]; // order 6        child_ptr = new BTree[7];        l = true;        n = 0;        Arrays.fill(child_ptr, null);    }    public void traverse() {        System.out.println("B tree: ");        for (int i = 0; i < n; i++) {            if (!l) {                child_ptr[i].traverse();            }            System.out.print(d[i] + " ");        }        if (!l) {            child_ptr[n].traverse();        }        System.out.println();    }   public void sort() {        Arrays.sort(d, 0, n);    }    public int splitChild(int i) {        int j, mid;        BTree np1, np3, y;        np3 = new BTree();        np3.l = true;        if (i == -1) {            mid = d[2];            d[2] = 0;            n--;            np1 = new BTree();            np1.l = false;            l = true;            for (j = 3; j < 6; j++) {                np3.d[j - 3] = d[j];                np3.n++;                d[j] = 0;                n--;            }            for (j = 0; j < 6; j++) {                np3.child_ptr[j] = child_ptr[j + 3];                child_ptr[j + 3] = null;            }            np1.d[0] = mid;            np1.child_ptr[0] = this;            np1.child_ptr[1] = np3;            np1.n++;            return mid;        } else {            y = child_ptr[i];            mid = y.d[2];            y.d[2] = 0;            y.n--;            for (j = 3; j < 6; j++) {                np3.d[j - 3] = y.d[j];                np3.n++;                y.d[j] = 0;                y.n--;            }            child_ptr[i + 1] = y;            child_ptr[i + 2] = np3;            return mid;        }    }    public void insert(int a) {        int i, t;        BTree x = this;        if (x.l && x.n == 6) {            t = x.splitChild(-1);            x = this;            for (i = 0; i > x.n; i++) {                if (a > x.d[i] && a < x.d[i + 1]) {                    i++;                    break;                } else if (a < x.d[0]) {                    break;                }            }            x = x.child_ptr[i];        } else {            while (!x.l) {                for (i = 0; i < x.n; i++) {                    if (a > x.d[i] && a < x.d[i + 1]) {                        i++;                        break;                    } else if (a < x.d[0]) {                        break;                    }                }                if (x.child_ptr[i].n == 6) {                    t = x.splitChild(i);                    x.d[x.n] = t;                    x.n++;                    continue;                }                x = x.child_ptr[i];            }        }        x.d[x.n] = a;        x.sort();        x.n++;    }}public class Main {    public static void main(String[] args) {        BTree bTree = new BTree();        bTree.insert(20);        bTree.insert(10);        bTree.insert(40);        bTree.insert(30);        bTree.insert(50); // Duplicate value, ignored        //call the traverse method        bTree.traverse();    }}

Output

B tree:10 20 30 40 50
#python program for B treesaclass BTree:    def __init__(self):        #node declartion        self.d = [0] * 6        self.child_ptr = [None] * 7        self.l = True        self.n = 0#creation of nodedef init():    np = BTree()    np.l = True    np.n = 0    return np#traverse the tree def traverse(p):    if p is not None:        for i in range(p.n):            if not p.l:                traverse(p.child_ptr[i])            print(p.d[i], end=" ")        if not p.l:            traverse(p.child_ptr[p.n]) #sort the tree   def sort(p, n):    for i in range(n):        for j in range(i, n+1):            if p[i] > p[j]:                p[i], p[j] = p[j], p[i]def split_child(x, i):    np3 = init()    #create new node    np3.l = True    if i == -1:        mid = x.d[2]        #find mid        x.d[2] = 0        x.n -= 1        np1 = init()        np1.l = False        x.l = True        for j in range(3, 6):            np3.d[j-3] = x.d[j]            np3.child_ptr[j-3] = x.child_ptr[j]            np3.n += 1            x.d[j] = 0            x.n -= 1        for j in range(6):            x.child_ptr[j] = None        np1.d[0] = mid        np1.child_ptr[np1.n] = x        np1.child_ptr[np1.n + 1] = np3        np1.n += 1        return np1    else:        y = x.child_ptr[i]        mid = y.d[2]        y.d[2] = 0        y.n -= 1        for j in range(3, 6):            np3.d[j-3] = y.d[j]            np3.n += 1            y.d[j] = 0            y.n -= 1        x.child_ptr[i + 1] = y        x.child_ptr[i + 1] = np3    return middef insert(a):    global r, x    if r is None:        r = init()        x = r    else:        if x.l and x.n == 6:            t = split_child(x, -1)            x = r            for i in range(x.n):                if a > x.d[i] and a < x.d[i + 1]:                    i += 1                    break                elif a < x.d[0]:                    break                else:                    continue            x = x.child_ptr[i]        else:            while not x.l:                for i in range(x.n):                    if a > x.d[i] and a < x.d[i + 1]:                        i += 1                        break                    elif a < x.d[0]:                        break                    else:                        continue                if x.child_ptr[i].n == 6:                    t = split_child(x, i)                    x.d[x.n] = t                    x.n += 1                    continue                else:                    x = x.child_ptr[i]    x.d[x.n] = a    sort(x.d, x.n)    x.n += 1if __name__ == '__main__':    r = None    x = None    insert(10)    insert(20)    insert(30)    insert(40)    insert(50)    print("B tree:")    traverse(r)

Output

B tree: 10 20 30 40 50

B+ Trees

The B+ trees are extensions of B trees designed to make the insertion, deletion and searching operations more efficient.

The properties of B+ trees are similar to the properties of B trees, except that the B trees can store keys and records in all internal nodes and leaf nodes while B+ trees store records in leaf nodes and keys in internal nodes. One profound property of the B+ tree is that all the leaf nodes are connected to each other in a single linked list format and a data pointer is available to point to the data present in disk file. This helps fetch the records in equal numbers of disk access.

Since the size of main memory is limited, B+ trees act as the data storage for the records that couldnt be stored in the main memory. For this, the internal nodes are stored in the main memory and the leaf nodes are stored in the secondary memory storage.

b plus tree

Properties of B+ trees

  • Every node in a B+ Tree, except root, will hold a maximum ofm children and (m-1) keys, and a minimum of $\mathrm{\left \lceil \frac{m}{2}\right \rceil}$ children and $\mathrm{\left \lceil \frac{m-1}{2}\right \rceil}$ keys, since the order of the tree ism.

  • The root node must have no less than two children and at least one search key.

  • All the paths in a B tree must end at the same level, i.e. the leaf nodes must be at the same level.

  • A B+ tree always maintains sorted data.

Basic Operations of B+ Trees

The operations supported in B+ trees are Insertion, deletion and searching with the time complexity ofO(log n) for every operation.

They are almost similar to the B tree operations as the base idea to store data in both data structures is same. However, the difference occurs as the data is stored only in the leaf nodes of a B+ trees, unlike B trees.

Insertion

The insertion to a B+ tree starts at a leaf node.

Step 1 − Calculate the maximum and minimum number of keys to be added onto the B+ tree node.

calculate number of keys

Step 2 − Insert the elements one by one accordingly into a leaf node until it exceeds the maximum key number.

Insert elements

Step 3 − The node is split into half where the left child consists of minimum number of keys and the remaining keys are stored in the right child.

node split

Step 4 − But if the internal node also exceeds the maximum key property, the node is split in half where the left child consists of the minimum keys and remaining keys are stored in the right child. However, the smallest number in the right child is made the parent.

insert into b plus tree

Step 5 − If both the leaf node and internal node have the maximum keys, both of them are split in the similar manner and the smallest key in the right child is added to the parent node.

b_plus_tree_order_4

Deletion

The deletion operation in a B+ tree, we need to consider the redundancy in the data structure.

Case 1 − If the key is present in a leaf node which has more than minimal number of keys, without its copy present in the internal nodes, simple delete it.

delete 7deleted 7

Case 2 − If the key is present in a leaf node with exactly minimal number of keys and a copy of it is not present in the internal nodes, borrow a key from its sibling node and delete the desired key.

Case 3 − If the key present in the leaf node has its copy in the internal nodes, there are multiple scenarios possible −

  • More than minimal keys present in both leaf node and internal node: simply delete the key and add the inorder successor to the internal node only.

delete 5deleted 5
  • Exact minimum number of keys present in the leaf node: delete the node and borrow a node from its immediate sibling and replace its value in internal node as well.

delete 4deleted 4
  • If the copy of the leaf node to be delete is in its grandparent, delete the node and remove the empty space. The grandparent is filled with the inorder successor of the deleted node.

delete 3

Case 4 − If the key to be deleted is in a node violating the minimum keys property, both its parent and sibling have minimum number of keys, delete the key and merge its sibling with its parent.

deleted 3

Example

// C program for Bplus tree#include <stdio.h>#include <stdlib.h>struct BplusTree {   int *d;   struct BplusTree **child_ptr;   int l;   int n;};struct BplusTree *r = NULL, *np = NULL, *x = NULL;struct BplusTree* init() {    //to create nodes   int i;   np = (struct BplusTree*)malloc(sizeof(struct BplusTree));   np->d = (int*)malloc(6 * sizeof(int)); // order 6   np->child_ptr = (struct BplusTree**)malloc(7 * sizeof(struct BplusTree*));   np->l = 1;   np->n = 0;   for (i = 0; i < 7; i++) {      np->child_ptr[i] = NULL;   }   return np;}void traverse(struct BplusTree *p) {    //traverse tree   printf("\n");   int i;   for (i = 0; i < p->n; i++) {      if (p->l == 0) {         traverse(p->child_ptr[i]);      }      printf(" %d", p->d[i]);   }   if (p->l == 0) {      traverse(p->child_ptr[i]);   }   printf("\n");}void sort(int *p, int n) {   int i, j, t;   for (i = 0; i < n; i++) {      for (j = i; j <= n; j++) {         if (p[i] > p[j]) {            t = p[i];            p[i] = p[j];            p[j] = t;         }      }   }}int split_child(struct BplusTree *x, int i) {   int j, mid;   struct BplusTree *np1, *np3, *y;   np3 = init();   np3->l = 1;   if (i == -1) {      mid = x->d[2];      x->d[2] = 0;      x->n--;      np1 = init();      np1->l = 0;      x->l = 1;      for (j = 3; j < 6; j++) {         np3->d[j - 3] = x->d[j];         np3->child_ptr[j - 3] = x->child_ptr[j];         np3->n++;         x->d[j] = 0;         x->n--;      }      for (j = 0; j < 6; j++) {         x->child_ptr[j] = NULL;      }      np1->d[0] = mid;      np1->child_ptr[np1->n] = x;      np1->child_ptr[np1->n + 1] = np3;      np1->n++;      r = np1;   } else {      y = x->child_ptr[i];      mid = y->d[2];      y->d[2] = 0;      y->n--;      for (j = 3; j < 6; j++) {         np3->d[j - 3] = y->d[j];         np3->n++;         y->d[j] = 0;         y->n--;      }      x->child_ptr[i + 1] = y;      x->child_ptr[i + 1] = np3;   }   return mid;}void insert(int a) {   int i, t;   x = r;   if (x == NULL) {      r = init();      x = r;   } else {      if (x->l == 1 && x->n == 6) {         t = split_child(x, -1);         x = r;         for (i = 0; i < x->n; i++) {            if (a > x->d[i] && a < x->d[i + 1]) {               i++;               break;            } else if (a < x->d[0]) {               break;            } else {               continue;            }         }         x = x->child_ptr[i];      } else {         while (x->l == 0) {            for (i = 0; i < x->n; i++) {               if (a > x->d[i] && a < x->d[i + 1]) {                  i++;                  break;               } else if (a < x->d[0]) {                  break;               } else {                  continue;               }            }            if (x->child_ptr[i]->n == 6) {               t = split_child(x, i);               x->d[x->n] = t;               x->n++;               continue;            } else {               x = x->child_ptr[i];            }         }      }   }   x->d[x->n] = a;   sort(x->d, x->n);   x->n++;}int main() {   int i, n, t;   insert(10);   insert(20);   insert(30);   insert(40);   insert(50);   printf("B+ tree:\n");   traverse(r);   return 0;}

Output

B+ tree:10  20  30  40  50
#include<iostream>using namespace std;struct BplusTree {   int *d;   BplusTree **child_ptr;   bool l;   int n;}*r = NULL, *np = NULL, *x = NULL;BplusTree* init() { //to create nodes    int i;   np = new BplusTree;   np->d = new int[6];//order 6   np->child_ptr = new BplusTree *[7];   np->l = true;   np->n = 0;   for (i = 0; i < 7; i++) {      np->child_ptr[i] = NULL;   }   return np;}void traverse(BplusTree *p) { //traverse tree    cout<<endl;   int i;   for (i = 0; i < p->n; i++) {      if (p->l == false) {         traverse(p->child_ptr[i]);      }      cout << " " << p->d[i];   }   if (p->l == false) {      traverse(p->child_ptr[i]);   }   cout<<endl;}void sort(int *p, int n) { //sort the tree    int i, j, t;   for (i = 0; i < n; i++) {      for (j = i; j <= n; j++) {         if (p[i] >p[j]) {            t = p[i];            p[i] = p[j];            p[j] = t;         }      }   }}int split_child(BplusTree *x, int i) {   int j, mid;   BplusTree *np1, *np3, *y;   np3 = init();   np3->l = true;   if (i == -1) {      mid = x->d[2];      x->d[2] = 0;      x->n--;      np1 = init();      np1->l = false;      x->l = true;      for (j = 3; j < 6; j++) {         np3->d[j - 3] = x->d[j];         np3->child_ptr[j - 3] = x->child_ptr[j];         np3->n++;         x->d[j] = 0;         x->n--;      }      for (j = 0; j < 6; j++) {         x->child_ptr[j] = NULL;      }      np1->d[0] = mid;      np1->child_ptr[np1->n] = x;      np1->child_ptr[np1->n + 1] = np3;      np1->n++;      r = np1;   } else {      y = x->child_ptr[i];      mid = y->d[2];      y->d[2] = 0;      y->n--;      for (j = 3; j <6 ; j++) {         np3->d[j - 3] = y->d[j];         np3->n++;         y->d[j] = 0;         y->n--;      }      x->child_ptr[i + 1] = y;      x->child_ptr[i + 1] = np3;   }   return mid;}void insert(int a) {   int i, t;   x = r;   if (x == NULL) {      r = init();      x = r;   } else {      if (x->l== true && x->n == 6) {         t = split_child(x, -1);         x = r;         for (i = 0; i < (x->n); i++) {            if ((a >x->d[i]) && (a < x->d[i + 1])) {            i++;            break;         } else if (a < x->d[0]) {            break;         } else {            continue;         }      }      x = x->child_ptr[i];   } else {      while (x->l == false) {         for (i = 0; i < (x->n); i++) {            if ((a >x->d[i]) && (a < x->d[i + 1])) {               i++;               break;            } else if (a < x->d[0]) {               break;            } else {               continue;            }         }         if ((x->child_ptr[i])->n == 6) {            t = split_child(x, i);            x->d[x->n] = t;            x->n++;            continue;         } else {            x = x->child_ptr[i];         }      }   }}   x->d[x->n] = a;   sort(x->d, x->n);   x->n++;}int main() {   int i, n, t;   insert(10);   insert(20);   insert(30);   insert(40);   insert(50);   cout<<"B+ tree:\n";   traverse(r);}

Output

B+ tree:10 20 30 40 50
//Java program for Bplus codeimport java.util.*;class BplusTree {   int[] d;   BplusTree[] child_ptr;   boolean l;   int n;}public class Main {   static BplusTree r = null, np = null, x = null;   static BplusTree init() { // to create nodes       int i;      np = new BplusTree();      np.d = new int[6]; // order 6      np.child_ptr = new BplusTree[7];      np.l = true;      np.n = 0;      for (i = 0; i < 7; i++) {         np.child_ptr[i] = null;      }      return np;   }   static void traverse(BplusTree p) { // traverse tree       System.out.println();      int i;      for (i = 0; i < p.n; i++) {         if (p.l == false) {            traverse(p.child_ptr[i]);         }         System.out.print(" " + p.d[i]);      }      if (p.l == false) {         traverse(p.child_ptr[i]);      }      System.out.println();   }   static void sort(int[] p, int n) { // sort the tree       int i, j, t;      for (i = 0; i < n; i++) {         for (j = i; j <= n; j++) {            if (p[i] > p[j]) {               t = p[i];               p[i] = p[j];               p[j] = t;            }         }      }   }   static int split_child(BplusTree x, int i) {      int j, mid;      BplusTree np1, np3, y;      np3 = init();      np3.l = true;      if (i == -1) {         mid = x.d[2];         x.d[2] = 0;         x.n--;         np1 = init();         np1.l = false;         x.l = true;         for (j = 3; j < 6; j++) {            np3.d[j - 3] = x.d[j];            np3.child_ptr[j - 3] = x.child_ptr[j];            np3.n++;            x.d[j] = 0;            x.n--;         }         for (j = 0; j < 6; j++) {            x.child_ptr[j] = null;         }         np1.d[0] = mid;         np1.child_ptr[np1.n] = x;         np1.child_ptr[np1.n + 1] = np3;         np1.n++;         r = np1;      } else {         y = x.child_ptr[i];         mid = y.d[2];         y.d[2] = 0;         y.n--;         for (j = 3; j < 6; j++) {            np3.d[j - 3] = y.d[j];            np3.n++;            y.d[j] = 0;            y.n--;         }         x.child_ptr[i + 1] = y;         x.child_ptr[i + 1] = np3;      }      return mid;   }   static void insert(int a) {      int i, t;      x = r;      if (x == null) {         r = init();         x = r;      } else {         if (x.l == true && x.n == 6) {            t = split_child(x, -1);            x = r;            for (i = 0; i < x.n; i++) {               if (a > x.d[i] && a < x.d[i + 1]) {                  i++;                  break;               } else if (a < x.d[0]) {                  break;               } else {                  continue;               }            }            x = x.child_ptr[i];         } else {            while (x.l == false) {               for (i = 0; i < x.n; i++) {                  if (a > x.d[i] && a < x.d[i + 1]) {                     i++;                     break;                  } else if (a < x.d[0]) {                     break;                  } else {                     continue;                  }               }               if (x.child_ptr[i].n == 6) {                  t = split_child(x, i);                  x.d[x.n] = t;                  x.n++;                  continue;               } else {                  x = x.child_ptr[i];               }            }         }      }      x.d[x.n] = a;      sort(x.d, x.n);      x.n++;   }   public static void main(String[] args) {      int i, n, t;      insert(10);      insert(20);      insert(30);      insert(40);      insert(50);      System.out.println("B+ tree:");      traverse(r);   }}

Output

B+ tree:10  20  30  40  50
#Python Program for Bplus tree#to create nodesclass BplusTree:    def __init__(self):        self.d = [0] * 6  # order 6        self.child_ptr = [None] * 7        self.l = True          self.n = 0def init():    np = BplusTree()    np.l = True    np.n = 0    return np#traverse treedef traverse(p):    print()    for i in range(p.n):        if not p.l:            traverse(p.child_ptr[i])        print(" ", p.d[i], end="")    if not p.l:        traverse(p.child_ptr[p.n])    print()#sort the treedef sort(p, n):    for i in range(n):        for j in range(i, n + 1):            if p[i] > p[j]:                p[i], p[j] = p[j], p[i]def split_child(x, i):    np3 = init()    np3.l = True    if i == -1:        mid = x.d[2]        x.d[2] = 0        x.n -= 1        np1 = init()        np1.l = False        x.l = True        for j in range(3, 6):            np3.d[j - 3] = x.d[j]            np3.child_ptr[j - 3] = x.child_ptr[j]            np3.n += 1            x.d[j] = 0            x.n -= 1        for j in range(6):            x.child_ptr[j] = None        np1.d[0] = mid        np1.child_ptr[np1.n] = x        np1.child_ptr[np1.n + 1] = np3        np1.n += 1        r = np1    else:        y = x.child_ptr[i]        mid = y.d[2]        y.d[2] = 0        y.n -= 1        for j in range(3, 6):            np3.d[j - 3] = y.d[j]            np3.n += 1            y.d[j] = 0            y.n -= 1        x.child_ptr[i + 1] = y        x.child_ptr[i + 1] = np3    return middef insert(a):    global r, x    x = r    if x is None:        r = init()        x = r    else:        if x.l and x.n == 6:            t = split_child(x, -1)            x = r            for i in range(x.n):                if a > x.d[i] and a < x.d[i + 1]:                    i += 1                    break                elif a < x.d[0]:                    break                else:                    continue            x = x.child_ptr[i]        else:            while not x.l:                for i in range(x.n):                    if a > x.d[i] and a < x.d[i + 1]:                        i += 1                        break                    elif a < x.d[0]:                        break                    else:                        continue                if x.child_ptr[i].n == 6:                    t = split_child(x, i)                    x.d[x.n] = t                    x.n += 1                    continue                else:                    x = x.child_ptr[i]    x.d[x.n] = a    sort(x.d, x.n)    x.n += 1r = Nonex = Noneinsert(10)insert(20)insert(30)insert(40)insert(50)print("B+ tree:")traverse(r)

Output

B+ tree:10 20 30 40 50

Splay Trees

Splay trees are the altered versions of the Binary Search Trees, since it contains all the operations of BSTs, like insertion, deletion and searching, followed by another extended operation calledsplaying.

For instance, a value A is supposed to be inserted into the tree. If the tree is empty, add A to the root of the tree and exit; but if the tree is not empty, use binary search insertion operation to insert the element and then perform splaying on the new node.

Similarly, after searching an element in the splay tree, the node consisting of the element must be splayed as well.

But how do we perform splaying? Splaying, in simpler terms, is just a process to bring an operational node to the root. There are six types of rotations for it.

  • Zig rotation

  • Zag rotation

  • Zig-Zig rotation

  • Zag-Zag rotation

  • Zig-Zag rotation

  • Zag-Zig rotation

Zig rotation

The zig rotations are performed when the operational node is either the root node or the left child node of the root node. The node is rotated towards its right.

Zig rotation

After the shift, the tree will look like −

after shift

Zag rotation

The zag rotations are also performed when the operational node is either the root node or the right child nod of the root node. The node is rotated towards its left.

Zag rotation

The operational node becomes the root node after the shift −

root node

Zig-Zig rotation

The zig-zig rotations are performed when the operational node has both parent and a grandparent. The node is rotated two places towards its right.

Zig Zig rotation

The first rotation will shift the tree to one position right −

root node 5

The second right rotation will once again shift the node for one position. The final tree after the shift will look like this −

root node 3

Zag-Zag rotation

The zag-zag rotations are also performed when the operational node has both parent and a grandparent. The node is rotated two places towards its left.

Zag Zag rotation

After the first rotation, the tree will look like −

after first rotation

Then the final tree after the second rotation is given as follows. However, the operational node is still not the root so the splaying is considered incomplete. Hence, other suitable rotations are again applied in this case until the node becomes the root.

after second rotatio

Zig-Zag rotation

The zig-zag rotations are performed when the operational node has both a parent and a grandparent. But the difference is the grandparent, parent and child are in LRL format. The node is rotated first towards its right followed by left.

Zig Zag rotation

After the first rotation, the tree is −

left rotation

The final tree after the second rotation −

root node 8

Zag-Zig rotation

The zag-zig rotations are also performed when the operational node has both parent and grandparent. But the difference is the grandparent, parent and child are in RLR format. The node is rotated first towards its left followed by right.

Zag Zig rotation

First rotation is performed, the tree is obtained as −

tree obtained

After second rotation, the final tree is given as below. However, the operational node is not the root node yet so one more rotation needs to be performed to make the said node as the root.

after second rotation

Basic Operations of Splay Trees

A splay contains the same basic operations that a Binary Search Tree provides with: Insertion, Deletion, and Search. However, after every operation there is an additional operation that differs them from Binary Search tree operations: Splaying. We have learned about Splaying already so let us understand the procedures of the other operations.

Insertion

The insertion operation in a Splay tree is performed in the exact same way insertion in a binary search tree is performed. The procedure to perform the insertion in a splay tree is given as follows −

  • Check whether the tree is empty; if yes, add the new node and exit

insertion
  • If the tree is not empty, add the new node to the existing tree using the binary search insertion.

adding nodes
  • Then, suitable splaying is chosen and applied on the newly added node.

splaying chosen

Zag (Left) Rotation is applied on the new node

left rotation applied

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node* newNode(int data){   struct node* Node = (struct node*)malloc(sizeof(struct node));   Node->data = data;   Node->leftChild = Node->rightChild = NULL;   return (Node);}struct node* rightRotate(struct node *x){   struct node *y = x->leftChild;   x->leftChild = y->rightChild;   y->rightChild = x;   return y;}struct node* leftRotate(struct node *x){   struct node *y = x->rightChild;   x->rightChild = y->leftChild;   y->leftChild = x;   return y;}struct node* splay(struct node *root, int data){   if (root == NULL || root->data == data)      return root;   if (root->data > data) {      if (root->leftChild == NULL) return root;      if (root->leftChild->data > data) {         root->leftChild->leftChild = splay(root->leftChild->leftChild, data);         root = rightRotate(root);      } else if (root->leftChild->data < data) {         root->leftChild->rightChild = splay(root->leftChild->rightChild, data);         if (root->leftChild->rightChild != NULL)            root->leftChild = leftRotate(root->leftChild);      }      return (root->leftChild == NULL)? root: rightRotate(root);   } else {      if (root->rightChild == NULL) return root;      if (root->rightChild->data > data) {         root->rightChild->leftChild = splay(root->rightChild->leftChild, data);         if (root->rightChild->leftChild != NULL)            root->rightChild = rightRotate(root->rightChild);      } else if (root->rightChild->data < data) {         root->rightChild->rightChild = splay(root->rightChild->rightChild, data);         root = leftRotate(root);      }      return (root->rightChild == NULL)? root: leftRotate(root);   }}struct node* insert(struct node *root, int k){   if (root == NULL) return newNode(k);   root = splay(root, k);   if (root->data == k) return root;   struct node *newnode = newNode(k);   if (root->data > k) {      newnode->rightChild = root;      newnode->leftChild = root->leftChild;      root->leftChild = NULL;   } else {      newnode->leftChild = root;      newnode->rightChild = root->rightChild;      root->rightChild = NULL;   }   return newnode;}void printTree(struct node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct node* root = newNode(34);   root->leftChild = newNode(15);   root->rightChild = newNode(40);   root->leftChild->leftChild = newNode(12);   root->leftChild->leftChild->rightChild = newNode(14);   root->rightChild->rightChild = newNode(59);   printf("The Splay tree is: \n");   printTree(root);   return 0;}

Output

The Splay tree is: 12 14 15 34 40 59
#include <iostream>struct node {   int data;   struct node *leftChild, *rightChild;};struct node* newNode(int data){   struct node* Node = (struct node*)malloc(sizeof(struct node));   Node->data = data;   Node->leftChild = Node->rightChild = NULL;   return (Node);}struct node* rightRotate(struct node *x){   struct node *y = x->leftChild;   x->leftChild = y->rightChild;   y->rightChild = x;   return y;}struct node* leftRotate(struct node *x){   struct node *y = x->rightChild;   x->rightChild = y->leftChild;   y->leftChild = x;   return y;}struct node* splay(struct node *root, int data){   if (root == NULL || root->data == data)      return root;   if (root->data > data) {      if (root->leftChild == NULL) return root;      if (root->leftChild->data > data) {         root->leftChild->leftChild = splay(root->leftChild->leftChild, data);         root = rightRotate(root);      } else if (root->leftChild->data < data) {         root->leftChild->rightChild = splay(root->leftChild->rightChild, data);         if (root->leftChild->rightChild != NULL)            root->leftChild = leftRotate(root->leftChild);      }      return (root->leftChild == NULL)? root: rightRotate(root);   } else {      if (root->rightChild == NULL) return root;      if (root->rightChild->data > data) {         root->rightChild->leftChild = splay(root->rightChild->leftChild, data);         if (root->rightChild->leftChild != NULL)            root->rightChild = rightRotate(root->rightChild);      } else if (root->rightChild->data < data) {         root->rightChild->rightChild = splay(root->rightChild->rightChild, data);         root = leftRotate(root);      }      return (root->rightChild == NULL)? root: leftRotate(root);   }}struct node* insert(struct node *root, int k){   if (root == NULL) return newNode(k);   root = splay(root, k);   if (root->data == k) return root;   struct node *newnode = newNode(k);   if (root->data > k) {      newnode->rightChild = root;      newnode->leftChild = root->leftChild;      root->leftChild = NULL;   } else {      newnode->leftChild = root;      newnode->rightChild = root->rightChild;      root->rightChild = NULL;   }   return newnode;}void printTree(struct node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct node* root = newNode(34);   root->leftChild = newNode(15);   root->rightChild = newNode(40);   root->leftChild->leftChild = newNode(12);   root->leftChild->leftChild->rightChild = newNode(14);   root->rightChild->rightChild = newNode(59);   printf("The Splay tree is: \n");   printTree(root);   return 0;}

Output

The Splay tree is: 12 14 15 34 40 59
import java.io.*;public class SplayTree {   static class node {      int data;      node leftChild, rightChild;   };   static node newNode(int data) {      node Node = new node();      Node.data = data;      Node.leftChild = Node.rightChild = null;      return (Node);   }   static node rightRotate(node x) {      node y = x.leftChild;      x.leftChild = y.rightChild;      y.rightChild = x;      return y;   }   static node leftRotate(node x) {      node y = x.rightChild;      x.rightChild = y.leftChild;      y.leftChild = x;      return y;   }   static node splay(node root, int data) {      if (root == null || root.data == data)         return root;      if (root.data > data) {         if (root.leftChild == null) return root;         if (root.leftChild.data > data) {            root.leftChild.leftChild = splay(root.leftChild.leftChild, data);            root = rightRotate(root);         } else if (root.leftChild.data < data) {            root.leftChild.rightChild = splay(root.leftChild.rightChild, data);            if (root.leftChild.rightChild != null)               root.leftChild = leftRotate(root.leftChild);         }         return (root.leftChild == null)? root: rightRotate(root);      } else {         if (root.rightChild == null) return root;         if (root.rightChild.data > data) {            root.rightChild.leftChild = splay(root.rightChild.leftChild, data);            if (root.rightChild.leftChild != null)               root.rightChild = rightRotate(root.rightChild);         } else if (root.rightChild.data < data) {            root.rightChild.rightChild = splay(root.rightChild.rightChild, data);            root = leftRotate(root);         }         return (root.rightChild == null)? root: leftRotate(root);      }   }   static node insert(node root, int k) {      if (root == null) return newNode(k);      root = splay(root, k);      if (root.data == k) return root;      node newnode = newNode(k);      if (root.data > k) {         newnode.rightChild = root;         newnode.leftChild = root.leftChild;         root.leftChild = null;      } else {         newnode.leftChild = root;         newnode.rightChild = root.rightChild;         root.rightChild = null;      }      return newnode;   }   static void printTree(node root) {      if (root == null)         return;      if (root != null) {         printTree(root.leftChild);         System.out.print(root.data + " ");         printTree(root.rightChild);      }   }   public static void main(String args[]) {      node root = newNode(34);      root.leftChild = newNode(15);      root.rightChild = newNode(40);      root.leftChild.leftChild = newNode(12);      root.leftChild.leftChild.rightChild = newNode(14);      root.rightChild.rightChild = newNode(59);      System.out.println("The Splay tree is: ");      printTree(root);   }}

Output

The Splay tree is: 12 14 15 34 40 59
#Python Code for Insertion Operation of Splay Treesclass Node:    def __init__(self, data):        self.data = data        self.leftChild = None        self.rightChild = Nonedef newNode(data):    return Node(data)def rightRotate(x):    y = x.leftChild    x.leftChild = y.rightChild    y.rightChild = x    return ydef leftRotate(x):    y = x.rightChild    x.rightChild = y.leftChild    y.leftChild = x    return ydef splay(root, data):    if root is None or root.data == data:        return root    if root.data > data:        if root.leftChild is None:            return root        if root.leftChild.data > data:            root.leftChild.leftChild = splay(root.leftChild.leftChild, data)            root = rightRotate(root)        elif root.leftChild.data < data:            root.leftChild.rightChild = splay(root.leftChild.rightChild, data)            if root.leftChild.rightChild is not None:                root.leftChild = leftRotate(root.leftChild)        return root if root.leftChild is None else rightRotate(root)    else:        if root.rightChild is None:            return root        if root.rightChild.data > data:            root.rightChild.leftChild = splay(root.rightChild.leftChild, data)            if root.rightChild.leftChild is not None:                root.rightChild = rightRotate(root.rightChild)        elif root.rightChild.data < data:            root.rightChild.rightChild = splay(root.rightChild.rightChild, data)            root = leftRotate(root)        return root if root.rightChild is None else leftRotate(root)def insert(root, k):    if root is None:        return newNode(k)    root = splay(root, k)    if root.data == k:        return root    newnode = newNode(k)    if root.data > k:        newnode.rightChild = root        newnode.leftChild = root.leftChild        root.leftChild = None    else:        newnode.leftChild = root        newnode.rightChild = root.rightChild        root.rightChild = None    return newnodedef printTree(root):    if root is None:        return    if root is not None:        printTree(root.leftChild)        print(root.data, end=" ")        printTree(root.rightChild)if __name__ == "__main__":    root = newNode(34)    root.leftChild = newNode(15)    root.rightChild = newNode(40)    root.leftChild.leftChild = newNode(12)    root.leftChild.leftChild.rightChild = newNode(14)    root.rightChild.rightChild = newNode(59)    print("The Splay tree is: ")    printTree(root)

Output

The Splay tree is:12 14 15 34 40 59

Deletion

The deletion operation in a splay tree is performed as following −

  • Apply splaying operation on the node to be deleted.

  • Once, the node is made the root, delete the node.

  • Now, the tree is split into two trees, the left subtree and the right subtree; with their respective first nodes as the root nodes: say root_left and root_right.

delete
  • If root_left is a NULL value, then the root_right will become the root of the tree. And vice versa.

  • But if both root_left and root_right are not NULL values, then select the maximum value from the left subtree and make it the new root by connecting the subtrees.

deleted 5 node

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node* newNode(int data){   struct node* Node = (struct node*)malloc(sizeof(struct node));   Node->data = data;   Node->leftChild = Node->rightChild = NULL;   return (Node);}struct node* rightRotate(struct node *x){   struct node *y = x->leftChild;   x->leftChild = y->rightChild;   y->rightChild = x;   return y;}struct node* leftRotate(struct node *x){   struct node *y = x->rightChild;   x->rightChild = y->leftChild;   y->leftChild = x;   return y;}struct node* splay(struct node *root, int data){   if (root == NULL || root->data == data)      return root;   if (root->data > data) {      if (root->leftChild == NULL) return root;      if (root->leftChild->data > data) {         root->leftChild->leftChild = splay(root->leftChild->leftChild, data);         root = rightRotate(root);      } else if (root->leftChild->data < data) {         root->leftChild->rightChild = splay(root->leftChild->rightChild, data);         if (root->leftChild->rightChild != NULL)            root->leftChild = leftRotate(root->leftChild);      }      return (root->leftChild == NULL)? root: rightRotate(root);   } else {      if (root->rightChild == NULL) return root;      if (root->rightChild->data > data) {         root->rightChild->leftChild = splay(root->rightChild->leftChild, data);         if (root->rightChild->leftChild != NULL)            root->rightChild = rightRotate(root->rightChild);      } else if (root->rightChild->data < data) {         root->rightChild->rightChild = splay(root->rightChild->rightChild, data);         root = leftRotate(root);      }      return (root->rightChild == NULL)? root: leftRotate(root);   }}struct node* insert(struct node *root, int k){   if (root == NULL) return newNode(k);   root = splay(root, k);   if (root->data == k) return root;   struct node *newnode = newNode(k);   if (root->data > k) {      newnode->rightChild = root;      newnode->leftChild = root->leftChild;      root->leftChild = NULL;   } else {      newnode->leftChild = root;      newnode->rightChild = root->rightChild;      root->rightChild = NULL;   }   return newnode;}struct node* deletenode(struct node* root, int data){   struct node* temp;   if (root == NULL)      return NULL;   root = splay(root, data);   if (data != root->data)      return root;   if (!root->leftChild) {      temp = root;      root = root->rightChild;   } else {      temp = root;      root = splay(root->leftChild, data);      root->rightChild = temp->rightChild;   }   free(temp);   return root;}void printTree(struct node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct node* root = newNode(34);   root->leftChild = newNode(15);   root->rightChild = newNode(40);   printf("The Splay tree is \n");   printTree(root);   root = deletenode(root, 40);   printf("\nThe Splay tree after deletion is \n");   printTree(root);   return 0;}

Output

The Splay tree is 15 34 40 The Splay tree after deletion is 15 34
#include <iostream>struct node {   int data;   struct node *leftChild, *rightChild;};struct node* newNode(int data){   struct node* Node = (struct node*)malloc(sizeof(struct node));   Node->data = data;   Node->leftChild = Node->rightChild = NULL;   return (Node);}struct node* rightRotate(struct node *x){   struct node *y = x->leftChild;   x->leftChild = y->rightChild;   y->rightChild = x;   return y;}struct node* leftRotate(struct node *x){   struct node *y = x->rightChild;   x->rightChild = y->leftChild;   y->leftChild = x;   return y;}struct node* splay(struct node *root, int data){   if (root == NULL || root->data == data)      return root;   if (root->data > data) {      if (root->leftChild == NULL) return root;      if (root->leftChild->data > data) {         root->leftChild->leftChild = splay(root->leftChild->leftChild, data);         root = rightRotate(root);      } else if (root->leftChild->data < data) {         root->leftChild->rightChild = splay(root->leftChild->rightChild, data);         if (root->leftChild->rightChild != NULL)            root->leftChild = leftRotate(root->leftChild);      }      return (root->leftChild == NULL)? root: rightRotate(root);   } else {      if (root->rightChild == NULL) return root;      if (root->rightChild->data > data) {         root->rightChild->leftChild = splay(root->rightChild->leftChild, data);         if (root->rightChild->leftChild != NULL)            root->rightChild = rightRotate(root->rightChild);      } else if (root->rightChild->data < data) {         root->rightChild->rightChild = splay(root->rightChild->rightChild, data);         root = leftRotate(root);      }      return (root->rightChild == NULL)? root: leftRotate(root);   }}struct node* insert(struct node *root, int k){   if (root == NULL) return newNode(k);   root = splay(root, k);   if (root->data == k) return root;   struct node *newnode = newNode(k);   if (root->data > k) {      newnode->rightChild = root;      newnode->leftChild = root->leftChild;      root->leftChild = NULL;   } else {      newnode->leftChild = root;      newnode->rightChild = root->rightChild;      root->rightChild = NULL;   }   return newnode;}struct node* deletenode(struct node* root, int data){   struct node* temp;   if (root == NULL)      return NULL;   root = splay(root, data);   if (data != root->data)      return root;   if (!root->leftChild) {      temp = root;      root = root->rightChild;   } else {      temp = root;      root = splay(root->leftChild, data);      root->rightChild = temp->rightChild;   }   free(temp);   return root;}void printTree(struct node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct node* root = newNode(34);   root->leftChild = newNode(15);   root->rightChild = newNode(40);   printf("The Splay tree is \n");   printTree(root);   root = deletenode(root, 40);   printf("\nThe Splay tree after deletion is \n");   printTree(root);   return 0;}

Output

The Splay tree is 15 34 40 The Splay tree after deletion is 15 34
import java.io.*;public class SplayTree {   static class node {      int data;      node leftChild, rightChild;   };   static node newNode(int data) {      node Node = new node();      Node.data = data;      Node.leftChild = Node.rightChild = null;      return (Node);   }   static node rightRotate(node x) {      node y = x.leftChild;      x.leftChild = y.rightChild;      y.rightChild = x;      return y;   }   static node leftRotate(node x) {      node y = x.rightChild;      x.rightChild = y.leftChild;      y.leftChild = x;      return y;   }   static node splay(node root, int data) {      if (root == null || root.data == data)         return root;      if (root.data > data) {         if (root.leftChild == null) return root;         if (root.leftChild.data > data) {            root.leftChild.leftChild = splay(root.leftChild.leftChild, data);            root = rightRotate(root);         } else if (root.leftChild.data < data) {            root.leftChild.rightChild = splay(root.leftChild.rightChild, data);            if (root.leftChild.rightChild != null)               root.leftChild = leftRotate(root.leftChild);         }         return (root.leftChild == null)? root: rightRotate(root);      } else {         if (root.rightChild == null) return root;         if (root.rightChild.data > data) {            root.rightChild.leftChild = splay(root.rightChild.leftChild, data);            if (root.rightChild.leftChild != null)               root.rightChild = rightRotate(root.rightChild);         } else if (root.rightChild.data < data) {            root.rightChild.rightChild = splay(root.rightChild.rightChild, data);            root = leftRotate(root);         }         return (root.rightChild == null)? root: leftRotate(root);      }   }   static node insert(node root, int k) {      if (root == null) return newNode(k);      root = splay(root, k);      if (root.data == k) return root;      node newnode = newNode(k);      if (root.data > k) {         newnode.rightChild = root;         newnode.leftChild = root.leftChild;         root.leftChild = null;      } else {         newnode.leftChild = root;         newnode.rightChild = root.rightChild;         root.rightChild = null;      }      return newnode;   }   static node deletenode(node root, int data) {      node temp;      if (root == null)         return null;      root = splay(root, data);      if (data != root.data)         return root;      if (root.leftChild == null) {         temp = root;         root = root.rightChild;      } else {         temp = root;         root = splay(root.leftChild, data);         root.rightChild = temp.rightChild;      }      return root;   }   static void printTree(node root) {      if (root == null)         return;      if (root != null) {         printTree(root.leftChild);         System.out.print(root.data + " ");         printTree(root.rightChild);      }   }   public static void main(String args[]) {      node root = newNode(34);      root.leftChild = newNode(15);      root.rightChild = newNode(40);      System.out.println("The Splay tree is: ");      printTree(root);      root = deletenode(root, 40);      System.out.println("\nThe Splay tree after deletion is: ");      printTree(root);   }}

Output

The Splay tree is: 15 34 40 The Splay tree after deletion is: 15 34
#Python Code for Deletion operation of Splay Trees class Node:    def __init__(self, data):        self.data = data        self.leftChild = None        self.rightChild = Nonedef newNode(data):    node = Node(data)    return nodedef rightRotate(x):    y = x.leftChild    x.leftChild = y.rightChild    y.rightChild = x    return ydef leftRotate(x):    y = x.rightChild    x.rightChild = y.leftChild    y.leftChild = x    return ydef splay(root, data):    if root is None or root.data == data:        return root    if root.data > data:        if root.leftChild is None:            return root         if root.leftChild.data > data:            root.leftChild.leftChild = splay(root.leftChild.leftChild, data)            root = rightRotate(root)        elif root.leftChild.data < data:            root.leftChild.rightChild = splay(root.leftChild.rightChild, data)            if root.leftChild.rightChild is not None:                root.leftChild = leftRotate(root.leftChild)        return root if root.leftChild is None else rightRotate(root)    else:        if root.rightChild is None:            return root        if root.rightChild.data > data:            root.rightChild.leftChild = splay(root.rightChild.leftChild, data)            if root.rightChild.leftChild is not None:                root.rightChild = rightRotate(root.rightChild)        elif root.rightChild.data < data:            root.rightChild.rightChild = splay(root.rightChild.rightChild, data)            root = leftRotate(root)        return root if root.rightChild is None else leftRotate(root)def insert(root, k):    if root is None:        return newNode(k)    root = splay(root, k)    if root.data == k:        return root      newnode = newNode(k)    if root.data > k:        newnode.rightChild = root        newnode.leftChild = root.leftChild        root.leftChild = None    else:        newnode.leftChild = root        newnode.rightChild = root.rightChild        root.rightChild = None     return newnodedef deletenode(root, data):    temp = None    if root is None:        return None    root = splay(root, data)    if data != root.data:        return root    if root.leftChild is None:        temp = root        root = root.rightChild    else:        temp = root        root = splay(root.leftChild, data)        root.rightChild = temp.rightChild    del temp    return rootdef printTree(root):    if root is None:        return    if root is not None:        printTree(root.leftChild)        print(root.data, end=" ")        printTree(root.rightChild)root = newNode(34)root.leftChild = newNode(15)root.rightChild = newNode(40)print("The Splay tree is:")printTree(root)root = deletenode(root, 40)print("\nThe Splay tree after deletion is:")printTree(root)

Output

The Splay tree is:15 34 40 The Splay tree after deletion is:15 34

Search

The search operation in a Splay tree follows the same procedure of the Binary Search Tree operation. However, after the searching is done and the element is found, splaying is applied on the node searched. If the element is not found, then unsuccessful search is prompted.

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>#include <stdlib.h>struct node {   int data;   struct node *leftChild, *rightChild;};struct node* newNode(int data){   struct node* Node = (struct node*)malloc(sizeof(struct node));   Node->data = data;   Node->leftChild = Node->rightChild = NULL;   return (Node);}struct node* rightRotate(struct node *x){   struct node *y = x->leftChild;   x->leftChild = y->rightChild;   y->rightChild = x;   return y;}struct node* leftRotate(struct node *x){   struct node *y = x->rightChild;   x->rightChild = y->leftChild;   y->leftChild = x;   return y;}struct node* splay(struct node *root, int data){   if (root == NULL || root->data == data)      return root;   if (root->data > data) {      if (root->leftChild == NULL) return root;      if (root->leftChild->data > data) {         root->leftChild->leftChild = splay(root->leftChild->leftChild, data);         root = rightRotate(root);      } else if (root->leftChild->data < data) {         root->leftChild->rightChild = splay(root->leftChild->rightChild, data);         if (root->leftChild->rightChild != NULL)            root->leftChild = leftRotate(root->leftChild);      }      return (root->leftChild == NULL)? root: rightRotate(root);   } else {      if (root->rightChild == NULL) return root;      if (root->rightChild->data > data) {         root->rightChild->leftChild = splay(root->rightChild->leftChild, data);         if (root->rightChild->leftChild != NULL)            root->rightChild = rightRotate(root->rightChild);      } else if (root->rightChild->data < data) {         root->rightChild->rightChild = splay(root->rightChild->rightChild, data);         root = leftRotate(root);      }      return (root->rightChild == NULL)? root: leftRotate(root);   }}struct node* insert(struct node *root, int k){   if (root == NULL) return newNode(k);   root = splay(root, k);   if (root->data == k) return root;   struct node *newnode = newNode(k);   if (root->data > k) {      newnode->rightChild = root;      newnode->leftChild = root->leftChild;      root->leftChild = NULL;   } else {      newnode->leftChild = root;      newnode->rightChild = root->rightChild;      root->rightChild = NULL;   }   return newnode;}struct node* deletenode(struct node* root, int data){   struct node* temp;   if (root == NULL)      return NULL;   root = splay(root, data);   if (data != root->data)      return root;   if (!root->leftChild) {      temp = root;      root = root->rightChild;   } else {      temp = root;      root = splay(root->leftChild, data);      root->rightChild = temp->rightChild;   }   free(temp);   return root;}void printTree(struct node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      printf("%d ", root->data);      printTree(root->rightChild);   }}int main(){   struct node* root = newNode(34);   root->leftChild = newNode(15);   root->rightChild = newNode(40);   root->leftChild->leftChild = newNode(12);   root->leftChild->leftChild->rightChild = newNode(14);   root->rightChild->rightChild = newNode(59);   printf("The Splay tree is \n");   printTree(root);   root = deletenode(root, 40);   printf("\nThe Splay tree after deletion is \n");   printTree(root);   return 0;}

Output

The Splay tree is 12 14 15 34 40 59 The Splay tree after deletion is 12 14 15 34 59
#include <bits/stdc++.h>using namespace std;class node{public:   int data;   node *leftChild, *rightChild;};node* newNode(int data){   node* Node = new node();   Node->data = data;   Node->leftChild = Node->rightChild = NULL;   return (Node);}node *rightRotate(node *x){   node *y = x->leftChild;   x->leftChild = y->rightChild;   y->rightChild = x;   return y;}node *leftRotate(node *x){   node *y = x->rightChild;   x->rightChild = y->leftChild;   y->leftChild = x;   return y;}node *splay(node *root, int data){   if (root == NULL || root->data == data)      return root;   if (root->data > data) {      if (root->leftChild == NULL) return root;      if (root->leftChild->data > data) {         root->leftChild->leftChild = splay(root->leftChild->leftChild, data);         root = rightRotate(root);      } else if (root->leftChild->data < data) {         root->leftChild->rightChild = splay(root->leftChild->rightChild, data);         if (root->leftChild->rightChild != NULL)            root->leftChild = leftRotate(root->leftChild);      }      return (root->leftChild == NULL)? root: rightRotate(root);   } else {      if (root->rightChild == NULL) return root;      if (root->rightChild->data > data) {         root->rightChild->leftChild = splay(root->rightChild->leftChild, data);         if (root->rightChild->leftChild != NULL)            root->rightChild = rightRotate(root->rightChild);      } else if (root->rightChild->data < data) {         root->rightChild->rightChild = splay(root->rightChild->rightChild, data);         root = leftRotate(root);      }      return (root->rightChild == NULL)? root: leftRotate(root);   }}node* insert(node *root, int k){   if (root == NULL) return newNode(k);   root = splay(root, k);   if (root->data == k) return root;   node *newnode = newNode(k);   if (root->data > k) {      newnode->rightChild = root;      newnode->leftChild = root->leftChild;      root->leftChild = NULL;   } else {      newnode->leftChild = root;      newnode->rightChild = root->rightChild;      root->rightChild = NULL;   }   return newnode;}node* deletenode(struct node* root, int data){   struct node* temp;   if (root == NULL)      return NULL;   root = splay(root, data);   if (data != root->data)      return root;   if (!root->leftChild) {      temp = root;      root = root->rightChild;   } else {      temp = root;      root = splay(root->leftChild, data);      root->rightChild = temp->rightChild;   }   free(temp);   return root;}void printTree(node *root){   if (root == NULL)      return;   if (root != NULL) {      printTree(root->leftChild);      cout<<root->data<<" ";      printTree(root->rightChild);   }}int main(){   node* root = newNode(34);   root->leftChild = newNode(15);   root->rightChild = newNode(40);   root->leftChild->leftChild = newNode(12);   root->leftChild->leftChild->rightChild = newNode(14);   root->rightChild->rightChild = newNode(59);   cout<<"The Splay tree is \n";   printTree(root);   root = deletenode(root, 40);   cout<<"\nThe Splay tree after deletion is \n";   printTree(root);   return 0;}

Output

The Splay tree is 12 14 15 34 40 59 The Splay tree after deletion is 12 14 15 34 59
import java.io.*;public class SplayTree {   static class node {      int data;      node leftChild, rightChild;   };   static node newNode(int data) {      node Node = new node();      Node.data = data;      Node.leftChild = Node.rightChild = null;      return (Node);   }   static node rightRotate(node x) {      node y = x.leftChild;      x.leftChild = y.rightChild;      y.rightChild = x;      return y;   }   static node leftRotate(node x) {      node y = x.rightChild;      x.rightChild = y.leftChild;      y.leftChild = x;      return y;   }   static node splay(node root, int data) {      if (root == null || root.data == data)         return root;      if (root.data > data) {         if (root.leftChild == null) return root;         if (root.leftChild.data > data) {            root.leftChild.leftChild = splay(root.leftChild.leftChild, data);            root = rightRotate(root);         } else if (root.leftChild.data < data) {            root.leftChild.rightChild = splay(root.leftChild.rightChild, data);            if (root.leftChild.rightChild != null)               root.leftChild = leftRotate(root.leftChild);         }         return (root.leftChild == null)? root: rightRotate(root);      } else {         if (root.rightChild == null) return root;         if (root.rightChild.data > data) {            root.rightChild.leftChild = splay(root.rightChild.leftChild, data);            if (root.rightChild.leftChild != null)               root.rightChild = rightRotate(root.rightChild);         } else if (root.rightChild.data < data) {            root.rightChild.rightChild = splay(root.rightChild.rightChild, data);            root = leftRotate(root);         }         return (root.rightChild == null)? root: leftRotate(root);      }   }   static node insert(node root, int k) {      if (root == null) return newNode(k);      root = splay(root, k);      if (root.data == k) return root;      node newnode = newNode(k);      if (root.data > k) {         newnode.rightChild = root;         newnode.leftChild = root.leftChild;         root.leftChild = null;      } else {         newnode.leftChild = root;         newnode.rightChild = root.rightChild;         root.rightChild = null;      }      return newnode;   }   static node deletenode(node root, int data) {      node temp;      if (root == null)         return null;      root = splay(root, data);      if (data != root.data)         return root;      if (root.leftChild == null) {         temp = root;         root = root.rightChild;      } else {         temp = root;         root = splay(root.leftChild, data);         root.rightChild = temp.rightChild;      }      return root;   }   static void printTree(node root) {      if (root == null)         return;      if (root != null) {         printTree(root.leftChild);         System.out.print(root.data + " ");         printTree(root.rightChild);      }   }   public static void main(String args[]) {      node root = newNode(34);      root.leftChild = newNode(15);      root.rightChild = newNode(40);      root.leftChild.leftChild = newNode(12);      root.leftChild.leftChild.rightChild = newNode(14);      root.rightChild.rightChild = newNode(59);      System.out.println("The Splay tree is: ");      printTree(root);      root = deletenode(root, 40);      System.out.println("\nThe Splay tree after deletion is: ");      printTree(root);   }}

Output

The Splay tree is: 12 14 15 34 40 59 The Splay tree after deletion is: 12 14 15 34 59
#Python Code for Search Operation of splay Treesclass Node:    def __init__(self, data):        self.data = data        self.leftChild = None        self.rightChild = Nonedef newNode(data):    newNode = Node(data)    newNode.leftChild = newNode.rightChild = None    return newNodedef rightRotate(x):    y = x.leftChild    x.leftChild = y.rightChild    y.rightChild = x    return ydef leftRotate(x):    y = x.rightChild    x.rightChild = y.leftChild    y.leftChild = x    return ydef splay(root, data):    if root is None or root.data == data:        return root    if root.data > data:        if root.leftChild is None:            return root        if root.leftChild.data > data:            root.leftChild.leftChild = splay(root.leftChild.leftChild, data)            root = rightRotate(root)        elif root.leftChild.data < data:            root.leftChild.rightChild = splay(root.leftChild.rightChild, data)            if root.leftChild.rightChild is not None:                root.leftChild = leftRotate(root.leftChild)           return root if root.leftChild is None else rightRotate(root)    else:        if root.rightChild is None:            return root        if root.rightChild.data > data:            root.rightChild.leftChild = splay(root.rightChild.leftChild, data)            if root.rightChild.leftChild is not None:                root.rightChild = rightRotate(root.rightChild)        elif root.rightChild.data < data:            root.rightChild.rightChild = splay(root.rightChild.rightChild, data)            root = leftRotate(root)        return root if root.rightChild is None else leftRotate(root)def insert(root, k):    if root is None:        return newNode(k)     root = splay(root, k)    if root.data == k:        return root    newnode = newNode(k)    if root.data > k:        newnode.rightChild = root        newnode.leftChild = root.leftChild        root.leftChild = None    else:        newnode.leftChild = root        newnode.rightChild = root.rightChild        root.rightChild = None    return newnodedef deletenode(root, data):    temp = None    if root is None:        return None    root = splay(root, data)    if data != root.data:        return root    if root.leftChild is None:        temp = root        root = root.rightChild    else:        temp = root        root = splay(root.leftChild, data)        root.rightChild = temp.rightChild     del temp    return rootdef printTree(root):    if root is None:        return     if root is not None:        printTree(root.leftChild)        print(root.data, end=" ")        printTree(root.rightChild)root = newNode(34)root.leftChild = newNode(15)root.rightChild = newNode(40)root.leftChild.leftChild = newNode(12)root.leftChild.leftChild.rightChild = newNode(14)root.rightChild.rightChild = newNode(59)print("The Splay tree is")printTree(root)root = deletenode(root, 40)print("\nThe Splay tree after deletion is")printTree(root)

Output

The Splay tree is12 14 15 34 40 59 The Splay tree after deletion is12 14 15 34 59

Tries Data Structure

A trie is a type of a multi-way search tree, which is fundamentally used to retrieve specific keys from a string or a set of strings. It stores the data in an ordered efficient way since it uses pointers to every letter within the alphabet.

The trie data structure works based on the common prefixes of strings. The root node can have any number of nodes considering the amount of strings present in the set. The root of a trie does not contain any value except the pointers to its child nodes.

There are three types of trie data structures −

  • Standard Tries

  • Compressed Tries

  • Suffix Tries

The real-world applications of trie include − autocorrect, text prediction, sentiment analysis and data sciences.

trie data structure

Basic Operations in Tries

The trie data structures also perform the same operations that tree data structures perform. They are −

  • Insertion

  • Deletion

  • Search

Insertion

The insertion operation in a trie is a simple approach. The root in a trie does not hold any value and the insertion starts from the immediate child nodes of the root, which act like a key to their child nodes. However, we observe that each node in a trie represents a singlecharacter in the input string. Hence the characters are added into the tries one by one while the links in the trie act as pointers to the next level nodes.

Example

//C code for insertion operation of tries algorithm#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define ALPHABET_SIZE 26struct TrieNode {    struct TrieNode* children[ALPHABET_SIZE];    bool isEndOfWord;};struct TrieNode* createNode() {    struct TrieNode* node = (struct TrieNode*)malloc(sizeof(struct TrieNode));    node->isEndOfWord = false;    for (int i = 0; i < ALPHABET_SIZE; i++) {        node->children[i] = NULL;    }    return node;}void insert(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;    for (int i = 0; word[i] != '\0'; i++) {        int index = word[i] - 'a';          if (curr->children[index] == NULL) {            curr->children[index] = createNode();        }           curr = curr->children[index];    }    curr->isEndOfWord = true;}bool search(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;    for (int i = 0; word[i] != '\0'; i++) {        int index = word[i] - 'a';           if (curr->children[index] == NULL) {            return false;        }           curr = curr->children[index];    }    return (curr != NULL && curr->isEndOfWord);}bool startsWith(struct TrieNode* root, char* prefix) {    struct TrieNode* curr = root;    for (int i = 0; prefix[i] != '\0'; i++) {        int index = prefix[i] - 'a';        if (curr->children[index] == NULL) {            return false;        }         curr = curr->children[index];    }    return true;}int main() {    struct TrieNode* root = createNode();    //inserting the elements    insert(root, "Lamborghini");    insert(root, "Mercedes-Benz");    insert(root, "Land Rover");    insert(root, "Maruti Suzuki");    //printing the elements    printf("Inserted values are: \n");    printf("Lamborghini\n");        printf( "Mercedes-Benz\n");       printf( "Land Rover\n");          printf( "Maruti Suzuki");     return 0;}

Output

Inserted values are: LamborghiniMercedes-BenzLand RoverMaruti Suzuki
// C++ code for Insertion operation of tries algorithm#include <iostream>#include <unordered_map>using namespace std;class TrieNode{public:    unordered_map<char, TrieNode*> children;    bool isEndOfWord;    TrieNode()    {        isEndOfWord = false;    }};class Trie{private:    TrieNode* root;public:    Trie()    {        root = new TrieNode();    }    void insert(string word)    {        TrieNode* curr = root;        for (char ch : word) {            if (curr->children.find(ch) == curr->children.end()) {                curr->children[ch] = new TrieNode();            }            curr = curr->children[ch];        }        curr->isEndOfWord = true;    }    bool search(string word)    {        TrieNode* curr = root;        for (char ch : word) {            if (curr->children.find(ch) == curr->children.end()) {                return false;            }            curr = curr->children[ch];        }        return curr->isEndOfWord;    }    bool startsWith(string prefix)    {        TrieNode* curr = root;        for (char ch : prefix) {            if (curr->children.find(ch) == curr->children.end()) {                return false;            }            curr = curr->children[ch];        }        return true;    }};int main(){    Trie car;    //inserting the elements    car.insert("Lamborghini");    car.insert("Mercedes-Benz");    car.insert("Land Rover");    car.insert("Maruti Suzuki");    //printing the elmenents    printf("Inserted values are: \n");    cout << "Lamborghini" << endl;    cout <<"Mercedes-Benz"<< endl;    cout <<"Land Rover" << endl;    cout << "Maruti Suzuki" << endl;    return 0;}

Output

Inserted values are: LamborghiniMercedes-BenzLand RoverMaruti Suzuki
//Java Code for insertion operation of tries Algorithmimport java.util.HashMap;import java.util.Map;class TrieNode {    Map<Character, TrieNode> children;    boolean isEndOfWord;    TrieNode() {        children = new HashMap<>();        isEndOfWord = false;    }}class Trie {    private TrieNode root;    Trie() {        root = new TrieNode();    }    void insert(String word) {        TrieNode curr = root;        for (char ch : word.toCharArray()) {            curr.children.putIfAbsent(ch, new TrieNode());            curr = curr.children.get(ch);        }        curr.isEndOfWord = true;    }    boolean search(String word) {        TrieNode curr = root;        for (char ch : word.toCharArray()) {            if (!curr.children.containsKey(ch)) {                return false;            }            curr = curr.children.get(ch);        }        return curr.isEndOfWord;    }    boolean startsWith(String prefix) {        TrieNode curr = root;        for (char ch : prefix.toCharArray()) {            if (!curr.children.containsKey(ch)) {                return false;            }            curr = curr.children.get(ch);        }        return true;    }}public class Main {    public static void main(String[] args) {        Trie car = new Trie();        //Inserting the elements        car.insert("Lamborghini");        car.insert("Mercedes-Benz");        car.insert("Land Rover");        car.insert("Maruti Suzuki");        //Printing the elements        System.out.println("Inserted values are: ");        System.out.println("Lamborghini");        System.out.println("Mercedes-Benz");        System.out.println("Land Rover");        System.out.println("Maruti Suzuki");    }}

Output

Inserted values are: LamborghiniMercedes-BenzLand RoverMaruti Suzuki
#Python Code for insertion operation of tries Algorithmclass TrieNode:    def __init__(self):        self.children = {}        self.isEndOfWord = Falseclass Trie:    def __init__(self):        self.root = TrieNode()    def insert(self, word):        curr = self.root        for ch in word:            if ch not in curr.children:                curr.children[ch] = TrieNode()            curr = curr.children[ch]        curr.isEndOfWord = True    def search(self, word):        curr = self.root        for ch in word:            if ch not in curr.children:                return False            curr = curr.children[ch]        return curr.isEndOfWord    def startsWith(self, prefix):        curr = self.root        for ch in prefix:            if ch not in curr.children:                return False            curr = curr.children[ch]        return Trueif __name__ == '__main__':    car = Trie()    #inserting the elements    car.insert("Lamborghini")    car.insert("Mercedes-Benz")    car.insert("Land Rover")    car.insert("Maruti Suzuki")    #printing the elements    print("Inserted values are: ")    print("Lamborghini")    print("Mercedes-Benz")    print("Land Rover")    print("Maruti Suzuki")

Output

Inserted values are: LamborghiniMercedes-BenzLand RoverMaruti Suzuki

Deletion

The deletion operation in a trie is performed using the bottom-up approach. The element is searched for in a trie and deleted, if found. However, there are some special scenarios that need to be kept in mind while performing the deletion operation.

Case 1 − The key is unique − in this case, the entire key path is deleted from the node. (Unique key suggests that there is no other path that branches out from one path).

Case 2 − The key is not unique − the leaf nodes are updated. For example, if the key to be deleted issee but it is a prefix of another keyseethe; we delete the see and change the Boolean values of t, h and e as false.

Case 3 − The key to be deleted already has a prefix − the values until the prefix are deleted and the prefix remains in the tree. For example, if the key to be deleted isheart but there is another key presenthe; so we delete a, r, and t until only he remains.

Example

//C code for Deletion Operation of tries Algorithm#include <stdio.h>#include <stdlib.h>#include <stdbool.h>//Define size 26#define ALPHABET_SIZE 26struct TrieNode {    struct TrieNode* children[ALPHABET_SIZE];    bool isEndOfWord;};struct TrieNode* createNode() {    struct TrieNode* node = (struct TrieNode*)malloc(sizeof(struct TrieNode));    node->isEndOfWord = false;    for (int i = 0; i < ALPHABET_SIZE; i++) {        node->children[i] = NULL;    }    return node;}void insert(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;    for (int i = 0; word[i] != '\0'; i++) {        int index = word[i] - 'a';        if (curr->children[index] == NULL) {            curr->children[index] = createNode();        }        curr = curr->children[index];    }    curr->isEndOfWord = true;}bool search(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;    for (int i = 0; word[i] != '\0'; i++) {        int index = word[i] - 'a';        if (curr->children[index] == NULL) {            return false;        }        curr = curr->children[index];    }    return (curr != NULL && curr->isEndOfWord);}bool startsWith(struct TrieNode* root, char* prefix) {    struct TrieNode* curr = root;    for (int i = 0; prefix[i] != '\0'; i++) {        int index = prefix[i] - 'a';        if (curr->children[index] == NULL) {            return false;        }        curr = curr->children[index];    }    return true;}bool deleteWord(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;    struct TrieNode* parent = NULL;    int index;    for (int i = 0; word[i] != '\0'; i++) {        index = word[i] - 'a';        if (curr->children[index] == NULL) {            return false; // Word does not exist in the Trie        }        parent = curr;        curr = curr->children[index];    }    if (!curr->isEndOfWord) {        return false; // Word does not exist in the Trie    }    curr->isEndOfWord = false; // Mark as deleted    if (parent != NULL) {        parent->children[index] = NULL; // Remove the child node    }    return true;}int main() {    struct TrieNode* root = createNode();    //Inserting the elements     insert(root, "lamborghini");    insert(root, "mercedes-benz");    insert(root, "land rover");    insert(root, "maruti suzuki");    //Before Deletion    printf("Before Deletion\n");    printf("%d\n", search(root, "lamborghini"));      // Output: 1 (true)    printf("%d\n", search(root, "mercedes-benz"));    // Output: 1 (true)    printf("%d\n", search(root, "land rover"));       // Output: 1 (true)    printf("%d\n", search(root, "maruti suzuki"));    // Output: 1 (true)    //Deleting the elements    deleteWord(root, "lamborghini");    deleteWord(root, "land rover");    //After Deletion    printf("After Deletion\n");    printf("%d\n", search(root, "lamborghini"));      // Output: 0 (false)    printf("%d\n", search(root, "mercedes-benz"));    // Output: 1 (true)    printf("%d\n", search(root, "land rover"));       // Output: 0 (false)    printf("%d\n", search(root, "maruti suzuki"));    // Output: 1 (true)    return 0;}

Output

Before Deletion1111After Deletion0101
//C++ code for Deletion operation of tries algorithm#include <iostream>#include <unordered_map>using namespace std;class TrieNode {public:    unordered_map<char, TrieNode*> children;    bool isEndOfWord;    TrieNode() {        isEndOfWord = false;    }};class Trie {private:    TrieNode* root;public:    Trie() {        root = new TrieNode();    }    void insert(string word) {        TrieNode* curr = root;        for (char ch : word) {            if (curr->children.find(ch) == curr->children.end()) {                curr->children[ch] = new TrieNode();            }            curr = curr->children[ch];        }        curr->isEndOfWord = true;    }    bool search(string word) {        TrieNode* curr = root;        for (char ch : word) {            if (curr->children.find(ch) == curr->children.end()) {                return false;            }            curr = curr->children[ch];        }        return curr->isEndOfWord;    }    bool startsWith(string prefix) {        TrieNode* curr = root;        for (char ch : prefix) {            if (curr->children.find(ch) == curr->children.end()) {                return false;            }            curr = curr->children[ch];        }        return true;    }    bool deleteWord(string word) {        return deleteHelper(root, word, 0);    }private:    bool deleteHelper(TrieNode* curr, string word, int index) {        if (index == word.length()) {            if (!curr->isEndOfWord) {                return false; // Word does not exist in the Trie            }            curr->isEndOfWord = false; // Mark as deleted            return curr->children.empty(); // Return true if no more children        }        char ch = word[index];        if (curr->children.find(ch) == curr->children.end()) {            return false; // Word does not exist in the Trie        }        TrieNode* child = curr->children[ch];        bool shouldDeleteChild = deleteHelper(child, word, index + 1);        if (shouldDeleteChild) {            curr->children.erase(ch); // Remove the child node if necessary            return curr->children.empty(); // Return true if no more children        }        return false;    }};int main() {    Trie car;    //inserting the elemnets    car.insert("Lamborghini");    car.insert("Mercedes-Benz");    car.insert("Land Rover");    car.insert("Maruti Suzuki");    //Before Deletion    cout << "Before Deletion" << endl;    cout << car.search("Lamborghini") << endl;       // Output: 1 (true)    cout << car.search("Mercedes-Benz") << endl;     // Output: 1 (true)    cout << car.search("Land Rover") << endl;        // Output: 1 (true)    cout << car.search("Maruti Suzuki") << endl;     // Output: 1 (true)    //Deleting elements using deletion operation    car.deleteWord("Lamborghini");    car.deleteWord("Land Rover");    //After Deletion    cout << "After Deletion" << endl;    cout << car.search("Lamborghini") << endl;       // Output: 0 (false)    cout << car.search("Mercedes-Benz") << endl;     // Output: 1 (true)    cout << car.search("Land Rover") << endl;        // Output: 0 (false)    cout << car.search("Maruti Suzuki") << endl;     // Output: 1 (true)    return 0;}

Output

Before Deletion1111After Deletion0101
//Java code for Deletion operator of tries algotrithmimport java.util.HashMap;import java.util.Map;class TrieNode {    Map<Character, TrieNode> children;    boolean isEndOfWord;    TrieNode() {        children = new HashMap<>();        isEndOfWord = false;    }}class Trie {    private TrieNode root;    Trie() {        root = new TrieNode();    }    void insert(String word) {        TrieNode curr = root;        for (char ch : word.toCharArray()) {            curr.children.putIfAbsent(ch, new TrieNode());            curr = curr.children.get(ch);        }        curr.isEndOfWord = true;    }    boolean search(String word) {        TrieNode curr = root;        for (char ch : word.toCharArray()) {            if (!curr.children.containsKey(ch)) {                return false;            }            curr = curr.children.get(ch);        }        return curr.isEndOfWord;    }    boolean startsWith(String prefix) {        TrieNode curr = root;        for (char ch : prefix.toCharArray()) {            if (!curr.children.containsKey(ch)) {                return false;            }            curr = curr.children.get(ch);        }        return true;    }    boolean delete(String word) {        return deleteHelper(root, word, 0);    }    private boolean deleteHelper(TrieNode curr, String word, int index) {        if (index == word.length()) {            if (!curr.isEndOfWord) {                return false; // Word does not exist in the Trie            }            curr.isEndOfWord = false; // Mark as deleted            return curr.children.isEmpty(); // Return true if no more children        }        char ch = word.charAt(index);        if (!curr.children.containsKey(ch)) {            return false; // Word does not exist in the Trie        }        TrieNode child = curr.children.get(ch);        boolean shouldDeleteChild = deleteHelper(child, word, index + 1);        if (shouldDeleteChild) {            curr.children.remove(ch); // Remove the child node if necessary            return curr.children.isEmpty(); // Return true if no more children        }        return false;    }}public class Main {    public static void main(String[] args) {        Trie car = new Trie();        //Inserting the elements        car.insert("Lamborghini");        car.insert("Mercedes-Benz");        car.insert("Land Rover");        car.insert("Maruti Suzuki");       //Before Deletion        System.out.println("Before Deletion");        //Printing the elements        System.out.println(car.search("Lamborghini"));       // Output: true        System.out.println(car.search("Mercedes-Benz")); // Output: true        System.out.println(car.search("Land Rover"));      // Output: true        System.out.println(car.search("Maruti Suzuki"));         // Output: true         //Deleting the elements using deletion operation        car.delete("Lamborghini");        car.delete("Land Rover");            // After Deletion        System.out.println("After Deletion");       // Prints the elements in the Boolean expression        System.out.println(car.search("Lamborghini"));      // Output: false        System.out.println(car.search("Mercedes-Benz"));   // Output: true        System.out.println(car.search("Land Rover"));      // Output: false        System.out.println(car.search("Maruti Suzuki"));  // Output: true    }}

Output

Before DeletiontruetruetruetrueAfter Deletionfalsetruefalsetrue
#python Code for Deletion operation of tries algorithmclass TrieNode:    def __init__(self):        self.children = {}        self.isEndOfWord = Falseclass Trie:    def __init__(self):        self.root = TrieNode()    def insert(self, word):        curr = self.root        for ch in word:            if ch not in curr.children:                curr.children[ch] = TrieNode()            curr = curr.children[ch]        curr.isEndOfWord = True    def search(self, word):        curr = self.root        for ch in word:            if ch not in curr.children:                return False            curr = curr.children[ch]        return curr.isEndOfWord    def startsWith(self, prefix):        curr = self.root        for ch in prefix:            if ch not in curr.children:                return False            curr = curr.children[ch]        return True    def delete(self, word):        return self.deleteHelper(self.root, word, 0)    def deleteHelper(self, curr, word, index):        if index == len(word):            if not curr.isEndOfWord:                return False  # Word does not exist in the Trie            curr.isEndOfWord = False  # Mark as deleted            return len(curr.children) == 0  # Return True if no more children        ch = word[index]        if ch not in curr.children:            return False  # Word does not exist in the Trie        child = curr.children[ch]        shouldDeleteChild = self.deleteHelper(child, word, index + 1)        if shouldDeleteChild:            del curr.children[ch]  # Remove the child node if necessary            return len(curr.children) == 0  # Return True if no more children        return Falsetrie = Trie()#inserting the elementstrie.insert("Lamborghini")trie.insert("Mercedes-Benz")trie.insert("Land Rover")trie.insert("Maruti Suzuki")#Before Deletionprint("Before Deletion:")print(trie.search("Lamborghini"))       # Output: Trueprint(trie.search("Mercedes-Benz"))     # Output: Trueprint(trie.search("Land Rover"))        # Output: Trueprint(trie.search("Maruti Suzuki"))     # Output: True#deleting the elements using Deletion operationtrie.delete("Lamborghini")trie.delete("Land Rover")#After Deletionprint("After Deletion:")#print elementsprint(trie.search("Lamborghini"))       # Output: Falseprint(trie.search("Mercedes-Benz"))     # Output: Trueprint(trie.search("Land Rover"))        # Output: Falseprint(trie.search("Maruti Suzuki"))     # Output: True

Output

Before Deletion:TrueTrueTrueTrueAfter Deletion:FalseTrueFalseTrue

Search

Searching in a trie is a rather straightforward approach. We can only move down the levels of trie based on the key node (the nodes where insertion operation starts at). Searching is done until the end of the path is reached. If the element is found, search is successful; otherwise, search is prompted unsuccessful.

Example

//C program for search operation of tries algorithm#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define ALPHABET_SIZE 26struct TrieNode {    struct TrieNode* children[ALPHABET_SIZE];    bool isEndOfWord;};struct TrieNode* createNode() {    struct TrieNode* node = (struct TrieNode*)malloc(sizeof(struct TrieNode));    node->isEndOfWord = false;        for (int i = 0; i < ALPHABET_SIZE; i++) {        node->children[i] = NULL;    }    return node;}void insert(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;    for (int i = 0; word[i] != '\0'; i++) {        int index = word[i] - 'a';            if (curr->children[index] == NULL) {            curr->children[index] = createNode();        }          curr = curr->children[index];    }     curr->isEndOfWord = true;}bool search(struct TrieNode* root, char* word) {    struct TrieNode* curr = root;       for (int i = 0; word[i] != '\0'; i++) {        int index = word[i] - 'a';                if (curr->children[index] == NULL) {            return false;        }           curr = curr->children[index];    }    return (curr != NULL && curr->isEndOfWord);}bool startsWith(struct TrieNode* root, char* prefix) {    struct TrieNode* curr = root;    for (int i = 0; prefix[i] != '\0'; i++) {        int index = prefix[i] - 'a';          if (curr->children[index] == NULL) {            return false;        }         curr = curr->children[index];    }    return true;}int main() {    struct TrieNode* root = createNode();    //inserting the elements    insert(root, "Lamborghini");    insert(root, "Mercedes-Benz");    insert(root, "Land Rover");    insert(root, "Maruti Suzuki");       //Searching elements    printf("Searching Cars\n");    //Printing searched elements    printf("%d\n", search(root, "Lamborghini"));     // Output: 1 (true)    printf("%d\n", search(root, "Mercedes-Benz"));   // Output: 1 (true)    printf("%d\n", search(root, "Honda"));           // Output: 0 (false)    printf("%d\n", search(root, "Land Rover"));      // Output: 1 (true)    printf("%d\n", search(root, "BMW"));             // Output: 0 (false)       //Searching the elements the name starts with?    printf("Cars name starts with\n");    //Printing the elements    printf("%d\n", startsWith(root, "Lambo"));       // Output: 1 (true)    printf("%d\n", startsWith(root, "Hon"));         // Output: 0 (false)    printf("%d\n", startsWith(root, "Hy"));          // Output: 0 (false)    printf("%d\n", startsWith(root, "Mar"));         // Output: 1 (true)    printf("%d\n", startsWith(root, "Land"));        // Output: 1 (true)       return 0;}

Output

Searching Cars11010Cars name starts with10011
//C++ code for Search operation of tries algorithm#include <iostream>#include <unordered_map>using namespace std;class TrieNode {public:    unordered_map<char, TrieNode*> children;    bool isEndOfWord;        TrieNode() {        isEndOfWord = false;    }};class Trie {private:    TrieNode* root;public:    Trie() {        root = new TrieNode();    }    void insert(string word) {        TrieNode* curr = root;        for (char ch : word) {            if (curr->children.find(ch) == curr->children.end()) {                curr->children[ch] = new TrieNode();            }            curr = curr->children[ch];        }        curr->isEndOfWord = true;    }    bool search(string word) {        TrieNode* curr = root;        for (char ch : word) {            if (curr->children.find(ch) == curr->children.end()) {                return false;            }            curr = curr->children[ch];        }        return curr->isEndOfWord;    }    bool startsWith(string prefix) {        TrieNode* curr = root;        for (char ch : prefix) {            if (curr->children.find(ch) == curr->children.end()) {                return false;            }            curr = curr->children[ch];        }        return true;    }};int main() {    Trie car;    //inserting the elements    car.insert("Lamborghini");    car.insert("Mercedes-Benz");    car.insert("Land Rover");    car.insert("Maruti Suzuki");   //searching elements    cout<< "Searching Cars"<< endl;     // Printing searched elements in Boolean expression    cout << car.search("Lamborghini") << endl;     // Output: 1 (true)    cout << car.search("Mercedes-Benz") << endl;    // Output: 1 (true)    cout << car.search("Honda") << endl;     // Output: 0 (false)    cout << car.search("Land Rover") << endl;    // Output: 1 (true)    cout << car.search("BMW") << endl;   // Output: 0 (false)      //searching names starts with?    cout<<"cars name starts with" << endl;    //Printing the elements    cout << car.startsWith("Lambo") << endl;   // Output: 1 (true)    cout << car.startsWith("Hon") << endl;    // Output: 0 (false)    cout << car.startsWith("Hy") << endl;    // Output: 0 (false)    cout << car.startsWith("Mar") << endl;    // Output: 1 (true)    cout << car.startsWith("Land") << endl;   // Output: 1 (true)    return 0;}

Output

Searching Cars11010cars name starts with10011
//Java program for tries Algorithmimport java.util.HashMap;import java.util.Map;class TrieNode {    Map<Character, TrieNode> children;    boolean isEndOfWord;    TrieNode() {        children = new HashMap<>();        isEndOfWord = false;    }}class Trie {    private TrieNode root;    Trie() {        root = new TrieNode();    }    void insert(String word) {        TrieNode curr = root;        for (char ch : word.toCharArray()) {            curr.children.putIfAbsent(ch, new TrieNode());            curr = curr.children.get(ch);        }        curr.isEndOfWord = true;    }    boolean search(String word) {        TrieNode curr = root;        for (char ch : word.toCharArray()) {            if (!curr.children.containsKey(ch)) {                return false;            }            curr = curr.children.get(ch);        }        return curr.isEndOfWord;    }    boolean startsWith(String prefix) {        TrieNode curr = root;        for (char ch : prefix.toCharArray()) {            if (!curr.children.containsKey(ch)) {                return false;            }            curr = curr.children.get(ch);        }        return true;    }}public class Main {    public static void main(String[] args) {        Trie car = new Trie();        //Inserting the elements        car.insert("Lamborghini");        car.insert("Mercedes-Benz");        car.insert("Land Rover");        car.insert("Maruti Suzuki");        //searching the elements        System.out.println("Searching Cars");        //Printing the searched elements        System.out.println(car.search("Lamborghini"));     // Output: true        System.out.println(car.search("Mercedes-Benz"));   // Output: true        System.out.println(car.search("Honda"));           // Output: false        System.out.println(car.search("Land Rover"));      // Output: true        System.out.println(car.search("BMW"));             // Output: false          //searching the elements name start with?        System.out.println("Cars name starts with");        //Printing the elements        System.out.println(car.startsWith("Lambo"));       // Output: true        System.out.println(car.startsWith("Hon"));         // Output: false        System.out.println(car.startsWith("Hy"));          // Output: false        System.out.println(car.startsWith("Mar"));         // Output: true        System.out.println(car.startsWith("Land"));        // Output: true    }}

Output

Searching CarstruetruefalsetruefalseCars name starts withtruefalsefalsetruetrue
#Python code for Search operation of tries algorithmclass TrieNode:    def __init__(self):        self.children = {}        self.isEndOfWord = Falseclass Trie:    def __init__(self):        self.root = TrieNode()    def insert(self, word):        curr = self.root        for ch in word:            if ch not in curr.children:                curr.children[ch] = TrieNode()            curr = curr.children[ch]        curr.isEndOfWord = True    def search(self, word):        curr = self.root        for ch in word:            if ch not in curr.children:                return False            curr = curr.children[ch]        return curr.isEndOfWord    def startsWith(self, prefix):        curr = self.root        for ch in prefix:            if ch not in curr.children:                return False            curr = curr.children[ch]        return Trueif __name__ == '__main__':    car = Trie()   #Inserting the elements    car.insert("Lamborghini")    car.insert("Mercedes-Benz")    car.insert("Land Rover")    car.insert("Maruti Suzuki")    #Searching elements    print("Searching Cars")    #Printing the searched elements    print(car.search("Lamborghini"))     # Output: True    print(car.search("Mercedes-Benz"))   # Output: True    print(car.search("Honda"))           # Output: False    print(car.search("Land Rover"))      # Output: True    print(car.search("BMW"))             # Output: False    #printing elements name starts with?    print("Cars name starts with")    print(car.startsWith("Lambo"))       # Output: True    print(car.startsWith("Hon"))         # Output: False    print(car.startsWith("Hy"))          # Output: False    print(car.startsWith("Mar"))         # Output: True    print(car.startsWith("Land"))        # Output: True

Output

Before Deletion:TrueTrueTrueTrueAfter Deletion:FalseTrueFalseTrue

Heap Data Structure

Heap is a special case of balanced binary tree data structure where the root-node key is compared with its children and arranged accordingly. Ifα has child nodeβ then −

key(α) ≥ key(β)

As the value of parent is greater than that of child, this property generatesMax Heap. Based on this criteria, a heap can be of two types −

For Input → 35 33 42 10 14 19 27 44 26 31

Min-Heap − Where the value of the root node is less than or equal to either of its children.

Max Heap Example

Max-Heap − Where the value of the root node is greater than or equal to either of its children.

Max Heap Example

Both trees are constructed using the same input and order of arrival.

Max Heap Construction Algorithm

We shall use the same example to demonstrate how a Max Heap is created. The procedure to create Min Heap is similar but we go for min values instead of max values.

We are going to derive an algorithm for max heap by inserting one element at a time. At any point of time, heap must maintain its property. While insertion, we also assume that we are inserting a node in an already heapified tree.

Step 1 − Create a new node at the end of heap.Step 2 − Assign new value to the node.Step 3 − Compare the value of this child node with its parent.Step 4 − If value of parent is less than child, then swap them.Step 5 − Repeat step 3 & 4 until Heap property holds.

Note − In Min Heap construction algorithm, we expect the value of the parent node to be less than that of the child node.

Let's understand Max Heap construction by an animated illustration. We consider the same input sample that we used earlier.

Max Heap Animated Example

Example

//C code for Max Heap construction  Algorithm#include <stdio.h>#include <stdlib.h>// Structure to represent a heaptypedef struct {    int* array;     // Array to store heap elements    int capacity;   // Maximum capacity of the heap    int size;       // Current size of the heap} Heap;// Function to create a new heapHeap* createHeap(int capacity){    Heap* heap = (Heap*)malloc(sizeof(Heap));    heap->array = (int*)malloc(capacity * sizeof(int));    heap->capacity = capacity;    heap->size = 0;    return heap;}// Function to swap two elements in the heapvoid swap(int* a, int* b){    int temp = *a;    *a = *b;    *b = temp;}// Function to heapify a subtree rooted at index ivoid heapify(Heap* heap, int i){    int largest = i;    int left = 2 * i + 1;    int right = 2 * i + 2;    // Check if the left child is larger than the root    if (left < heap->size && heap->array[left] > heap->array[largest])        largest = left;    // Check if the right child is larger than the largest so far    if (right < heap->size && heap->array[right] > heap->array[largest])        largest = right;    // If the largest is not the root, swap the root with the largest    if (largest != i) {        swap(&heap->array[i], &heap->array[largest]);        heapify(heap, largest);    }}// Function to insert a new element into the heapvoid insert(Heap* heap, int value){    if (heap->size == heap->capacity) {        printf("Heap is full. Cannot insert more elements.\n");        return;    }    // Insert the new element at the end    int i = heap->size++;    heap->array[i] = value;    // Fix the heap property if it is violated    while (i != 0 && heap->array[(i - 1) / 2] < heap->array[i]) {        swap(&heap->array[i], &heap->array[(i - 1) / 2]);        i = (i - 1) / 2;    }}// Function to extract the maximum element from the heapint extractMax(Heap* heap){    if (heap->size == 0) {        printf("Heap is empty. Cannot extract maximum element.\n");        return -1;    }    // Store the root element    int max = heap->array[0];    // Replace the root with the last element    heap->array[0] = heap->array[heap->size - 1];    heap->size--;    // Heapify the root    heapify(heap, 0);    return max;}// Function to print the elements of the heapvoid printHeap(Heap* heap){    printf("Heap elements: ");    for (int i = 0; i < heap->size; i++) {        printf("%d ", heap-<array[i]);    }    printf("\n");}// Example usage of the heapint main(){    Heap* heap = createHeap(10);    insert(heap, 35);    insert(heap, 33);    insert(heap, 42);    insert(heap, 10);    insert(heap, 14);    insert(heap, 19);    insert(heap, 27);    insert(heap, 44);    insert(heap, 26);    insert(heap, 31);    printHeap(heap);    int max = extractMax(heap);    printf("Maximum element: %d\n", max);    return 0;}

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44
//C++ code for Max Heap construction  Algorithm#include <iostream>// Structure to represent a heapstruct Heap {    int* array;     // Array to store heap elements    int capacity;   // Maximum capacity of the heap    int size;       // Current size of the heap};// Function to create a new heapHeap* createHeap(int capacity){    Heap* heap = new Heap;    heap->array = new int[capacity];    heap->capacity = capacity;    heap->size = 0;    return heap;}// Function to swap two elements in the heapvoid swap(int& a, int& b){    int temp = a;    a = b;    b = temp;}// Function to heapify a subtree rooted at index ivoid heapify(Heap* heap, int i){    int largest = i;    int left = 2 * i + 1;    int right = 2 * i + 2;    // Check if the left child is larger than the root    if (left <heap->size && heap->array[left] > heap->array[largest])        largest = left;    // Check if the right child is larger than the largest so far    if (right <heap->size && heap->array[right] > heap->array[largest])        largest = right;    // If the largest is not the root, swap the root with the largest    if (largest != i) {        swap(heap->array[i], heap->array[largest]);        heapify(heap, largest);    }}// Function to insert a new element into the heapvoid insert(Heap* heap, int value){    if (heap->size == heap->capacity) {        std::cout << "Heap is full. Cannot insert more elements." << std::endl;        return;    }    // Insert the new element at the end    int i = heap->size++;    heap->array[i] = value;    // Fix the heap property if it is violated    while (i != 0 && heap->array[(i - 1) / 2] < heap->array[i]) {        swap(heap->array[i], heap->array[(i - 1) / 2]);        i = (i - 1) / 2;    }}// Function to extract the maximum element from the heapint extractMax(Heap* heap){    if (heap->size == 0) {        std::cout << "Heap is empty. Cannot extract maximum element." << std::endl;        return -1;    }    // Store the root element    int max = heap->array[0];    // Replace the root with the last element    heap->array[0] = heap->array[heap->size - 1];    heap->size--;    // Heapify the root    heapify(heap, 0);    return max;}// Function to print the elements of the heapvoid printHeap(Heap* heap){    std::cout << "Heap elements: ";    for (int i = 0; i < heap->size; i++) {        std::cout << heap->array[i] << " ";    }    std::cout << std::endl;}// Example usage of the heapint main(){    Heap* heap = createHeap(10);    insert(heap, 35);    insert(heap, 33);    insert(heap, 42);    insert(heap, 10);    insert(heap, 14);    insert(heap, 19);    insert(heap, 27);    insert(heap, 44);    insert(heap, 26);    insert(heap, 31);    printHeap(heap);    int max = extractMax(heap);    std::cout << "Maximum element: " << max << std::endl;    return 0;}

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44
// Java code for for Max Heap construction  Algorithm//Structure to represent a heappublic class MaxHeap {    private int[] heap; // To store heap elements    private int capacity; // Maximum capacity of the heap    private int size; // Current size of the heap    // To create a new heap    public MaxHeap(int capacity) {        this.capacity = capacity;        this.size = 0;        this.heap = new int[capacity];    }    private int parent(int i) {        return (i - 1) / 2;    }    private int leftChild(int i) {        return 2 * i + 1;    }    private int rightChild(int i) {        return 2 * i + 2;    }    private void swap(int i, int j) {        int temp = heap[i];        heap[i] = heap[j];        heap[j] = temp;    }   // Heapify a subtree rooted at index i    private void heapifyDown(int i) {        int largest = i;        int left = leftChild(i);        int right = rightChild(i);             // Check if the left child is larger than the root        if (left < size && heap[left] > heap[largest])            largest = left;                 // Check if the right child is larger than the largest so far        if (right < size && heap[right] > heap[largest])            largest = right;        // If the largest is not the root, swap the root with the largest        if (largest != i) {            swap(i, largest);            heapifyDown(largest);        }    }    private void heapifyUp(int i) {        while (i > 0 && heap[i] > heap[parent(i)]) {            int parent = parent(i);            swap(i, parent);            i = parent;        }    }    // Insert the new element at the end    public void insert(int value) {        if (size == capacity) {            System.out.println("Heap is full. Cannot insert more elements.");            return;        }        heap[size] = value;        size++;        heapifyUp(size - 1);    }    // Function to extract the maximum element from the heap    public int extractMax() {        if (size == 0) {            System.out.println("Heap is empty. Cannot extract maximum element.");            return -1;        }        // store th root element        int max = heap[0];        //Replace the root with the last elements        heap[0] = heap[size - 1];        size--;        heapifyDown(0);        return max;    }     //print the elements of the heap    public void printHeap() {        System.out.print("Heap elements: ");        for (int i = 0; i < size; i++) {            System.out.print(heap[i] + " ");        }        System.out.println();    }    public static void main(String[] args) {        MaxHeap heap = new MaxHeap(10);        heap.insert(35);        heap.insert(33);        heap.insert(42);        heap.insert(10);        heap.insert(14);        heap.insert(19);        heap.insert(27);        heap.insert(44);        heap.insert(26);        heap.insert(31);        heap.printHeap();        int max = heap.extractMax();        System.out.println("Maximum element: " + max);    }}

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44
# Python code for for Max Heap construction  Algorithmclass MaxHeap:    def __init__(self):        self.heap = []    def parent(self, i):        return (i - 1) // 2    def left_child(self, i):        return 2 * i + 1    def right_child(self, i):        return 2 * i + 2    #Function to swap two elements in the heap    def swap(self, i, j):        self.heap[i], self.heap[j] = self.heap[j], self.heap[i]    # Function to heapify a subtree rooted at index i    def heapify_down(self, i):        left = self.left_child(i)        right = self.right_child(i)        largest = i        #Check if the left child is larger than the root        if left < len(self.heap) and self.heap[left] >self.heap[largest]:            largest = left        # Check if the right child is larger than the largest so far        if right < len(self.heap) and self.heap[right] > self.heap[largest]:            largest = right        # If the largest is not the root, swap the root with the largest        if largest != i:            self.swap(i, largest)            self.heapify_down(largest)    def heapify_up(self, i):        while i > 0 and self.heap[i] > self.heap[self.parent(i)]:            parent = self.parent(i)            self.swap(i, parent)            i = parent    # Insert the new element at the end    def insert(self, value):        self.heap.append(value)        # Fix the heap property if it is violated        self.heapify_up(len(self.heap) - 1)    # Function to extract the maximum element from the heap    def extract_max(self):        if len(self.heap) == 0:            print("Heap is empty. Cannot extract maximum element.")            return None        max_value = self.heap[0]        self.heap[0] = self.heap[-1]        self.heap.pop()        self.heapify_down(0)        return max_value    # Function to print the elements of the heap    def print_heap(self):        print("Heap elements:", end=" ")        for value in self.heap:            print(value, end=" ")        print()# Example usage of the heapheap = MaxHeap()heap.insert(35)heap.insert(33)heap.insert(42)heap.insert(10)heap.insert(14)heap.insert(19)heap.insert(27)heap.insert(44)heap.insert(26)heap.insert(31)heap.print_heap()max_value = heap.extract_max()print("Maximum element:", max_value)

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44s

Max Heap Deletion Algorithm

Let us derive an algorithm to delete from max heap. Deletion in Max (or Min) Heap always happens at the root to remove the Maximum (or minimum) value.

Step 1 − Remove root node.Step 2 − Move the last element of last level to root.Step 3 − Compare the value of this child node with its parent.Step 4 − If value of parent is less than child, then swap them.Step 5 − Repeat step 3 & 4 until Heap property holds.
Max Heap Deletion Animated Example

Example

//C code for Max Heap Deletion Algorithm#include <stdio.h>#include <stdlib.h>// Structure to represent a heaptypedef struct {    int* array;     // Array to store heap elements    int capacity;   // Maximum capacity of the heap    int size;       // Current size of the heap} Heap;// create a new heapHeap* createHeap(int capacity){    Heap* heap = (Heap*)malloc(sizeof(Heap));    heap->array = (int*)malloc(capacity * sizeof(int));    heap->capacity = capacity;    heap->size = 0;    return heap;}// swap two elements in the heapvoid swap(int* a, int* b){    int temp = *a;    *a = *b;    *b = temp;}// Heapify a subtree rooted at index ivoid heapify(Heap* heap, int i){    int largest = i;    int left = 2 * i + 1;    int right = 2 * i + 2;    // Check if the left child is larger than the root    if (left < heap->size && heap->array[left] > heap->array[largest])        largest = left;    // Check if the right child is larger than the largest so far    if (right < heap->size && heap->array[right] > heap->array[largest])        largest = right;    // If the largest is not the root, swap the root with the largest    if (largest != i) {        swap(&heap->array[i], &heap->array[largest]);        heapify(heap, largest);    }}// Function to insert a new element into the heapvoid insert(Heap* heap, int value){    if (heap->size == heap->capacity) {        printf("Heap is full. Cannot insert more elements.\n");        return;    }    // Insert the new element at the end    int i = heap->size++;    heap->array[i] = value;    // Fix the heap property if it is violated    while (i != 0 && heap->array[(i - 1) / 2] < heap->array[i]) {        swap(&heap->array[i], &heap->array[(i - 1) / 2]);        i = (i - 1) / 2;    }}// delete the maximum element from the heapint deleteMax(Heap* heap){    if (heap->size == 0) {        printf("Heap is empty. Cannot extract maximum element.\n");        return -1;    }    // Store the root element    int max = heap->array[0];    // Replace the root with the last element    heap->array[0] = heap->array[heap->size - 1];    heap->size--;    // Heapify the root    heapify(heap, 0);    return max;}// print the elements of the heapvoid printHeap(Heap* heap){    printf("Heap elements: ");    for (int i = 0; i < heap->size; i++) {        printf("%d ", heap->array[i]);    }    printf("\n");}// Deallocate memory occupied by the heapvoid destroyHeap(Heap* heap){    free(heap->array);    free(heap);}// Example usage of the heapint main(){    Heap* heap = createHeap(10);    insert(heap, 35);    insert(heap, 33);    insert(heap, 42);    insert(heap, 10);    insert(heap, 14);    insert(heap, 19);    insert(heap, 27);    insert(heap, 44);    insert(heap, 26);    insert(heap, 31);    printHeap(heap);    // Deleting the maximum element in the heap    int max = deleteMax(heap);    printf("Maximum element: %d\n", max);    printHeap(heap);    destroyHeap(heap);    return 0;}

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44Heap elements: 42 33 35 26 31 19 27 10 14
//C++ code for Max Heap Deletion Algorithm#include <iostream>// Structure to represent a heapstruct Heap {    int* array;     // Array to store heap elements    int capacity;   // Maximum capacity of the heap    int size;       // Current size of the heap};// Create a new heapHeap* createHeap(int capacity){    Heap* heap = new Heap;    heap->array = new int[capacity];    heap->capacity = capacity;    heap->size = 0;    return heap;}// Swap two elements in the heapvoid swap(int& a, int& b){    int temp = a;    a = b;    b = temp;}// Heapify a subtree rooted at index ivoid heapify(Heap* heap, int i){    int largest = i;    int left = 2 * i + 1;    int right = 2 * i + 2;    // Check if the left child is larger than the root    if (left < heap->size && heap->array[left] > heap->array[largest])        largest = left;    // Check if the right child is larger than the largest so far    if (right < heap->size && heap->array[right] > heap->array[largest])        largest = right;    // If the largest is not the root, swap the root with the largest    if (largest != i) {        swap(heap->array[i], heap->array[largest]);        heapify(heap, largest);    }}// Function to insert a new element into the heapvoid insert(Heap* heap, int value){    if (heap->size == heap->capacity) {        std::cout << "Heap is full. Cannot insert more elements." << std::endl;        return;    }    // Insert the new element at the end    int i = heap->size++;    heap->array[i] = value;    // Fix the heap property if it is violated    while (i != 0 && heap->array[(i - 1) / 2] < heap->array[i]) {        swap(heap->array[i], heap->array[(i - 1) / 2]);        i = (i - 1) / 2;    }}// Function to delete the maximum element from the heapint deleteMax(Heap* heap){    if (heap->size == 0) {        std::cout << "Heap is empty. Cannot extract maximum element." << std::endl;        return -1;    }    // Store the root element    int max = heap->array[0];    // Replace the root with the last element    heap->array[0] = heap->array[heap->size - 1];    heap->size--;    // Heapify the root    heapify(heap, 0);    return max;}// Function to print the elements of the heapvoid printHeap(Heap* heap){    std::cout << "Heap elements: ";    for (int i = 0; i < heap->size; i++) {        std::cout << heap->array[i] << " ";    }    std::cout << std::endl;}// Function to deallocate memory occupied by the heapvoid destroyHeap(Heap* heap){    delete[] heap->array;    delete heap;}// Example usage of the heapint main(){    Heap* heap = createHeap(10);    insert(heap, 35);    insert(heap, 33);    insert(heap, 42);    insert(heap, 10);    insert(heap, 14);    insert(heap, 19);    insert(heap, 27);    insert(heap, 44);    insert(heap, 26);    insert(heap, 31);    printHeap(heap);    int max = deleteMax(heap);    std::cout << "Maximum element: " << max << std::endl;    printHeap(heap);    destroyHeap(heap);    return 0;}

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44Heap elements: 42 33 35 26 31 19 27 10 14
// Java code for for Max Heap Deletion  Algorithm// Structure to represent a heapclass Heap {    private int[] array;  // Array to store heap elements    private int capacity;  // Maximum capacity of the heap    private int size;      // Current size of the heap    // To create a new heap    public Heap(int capacity) {        this.array = new int[capacity];        this.capacity = capacity;        this.size = 0;    }    // Swap two elements in the heap    private void swap(int a, int b) {        int temp = array[a];        array[a] = array[b];        array[b] = temp;    }    // Heapify a subtree rooted at index i    private void heapify(int i) {        int largest = i;        int left = 2 * i + 1;        int right = 2 * i + 2;             // Check if the left child is larger than the root        if (left < size && array[left] > array[largest])            largest = left;                 // Check if the right child is larger than the largest so far        if (right < size && array[right] > array[largest])            largest = right;        // If the largest is not the root, swap the root with the largest        if (largest != i) {            swap(i, largest);            heapify(largest);        }    }    // Insert a new element into the heap    public void insert(int value) {        if (size == capacity) {            System.out.println("Heap is full. Cannot insert more elements.");            return;        }        // Insert the new element at the end        int i = size++;        array[i] = value;        // Fix the heap property if it is violated        while (i != 0 && array[(i - 1) / 2] < array[i]) {            swap(i, (i - 1) / 2);            i = (i - 1) / 2;        }    }    // Delete the maximum element from the heap    public int deleteMax() {        if (size == 0) {            System.out.println("Heap is empty. Cannot extract maximum element.");            return -1;        }        // Store the root element        int max = array[0];        // Replace the root with the last element        array[0] = array[size - 1];        size--;        // Heapify the root        heapify(0);        return max;    }    // Print the elements of the heap    public void printHeap() {        System.out.print("Heap elements: ");        for (int i = 0; i < size; i++) {            System.out.print(array[i] + " ");        }        System.out.println();    }    // Deallocate memory occupied by the heap    public void destroyHeap() {        array = null;        size = 0;    }}//Inserting the elementspublic class Main {    public static void main(String[] args) {        Heap heap = new Heap(10);        heap.insert(35);        heap.insert(33);        heap.insert(42);        heap.insert(10);        heap.insert(14);        heap.insert(19);        heap.insert(27);        heap.insert(44);        heap.insert(26);        heap.insert(31);        heap.printHeap();        int max = heap.deleteMax();        System.out.println("Maximum element: " + max);          //Printing the heap elements after deletion of max element        heap.printHeap();        heap.destroyHeap();    }}

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44Heap elements: 42 33 35 26 31 19 27 10 14
#Python code for Max Heap Deletion Algorithmclass Heap:    def __init__(self, capacity):        self.array = [0] * capacity  #array to store heap elements        self.capacity = capacity  #maximum capacity of the heap        self.size = 0  #Current size of the heap    # swap two elements in the heap    def swap(self, a, b):        self.array[a], self.array[b] = self.array[b], self.array[a]    # Heapify a subtree rooted at index i    def heapify(self, i):        largest = i        left = 2 * i + 1        right = 2 * i + 2        # Check if the left child is larger than the root        if left < self.size and self.array[left] > self.array[largest]:            largest = left        # Check if the right child is larger than the largest so far        if right < self.size and self.array[right] > self.array[largest]:            largest = right        # If the largest is not the root, swap the root with the largest        if largest != i:            self.swap(i, largest)            self.heapify(largest)    # insert a new element into the heap    def insert(self, value):        if self.size == self.capacity:            print("Heap is full. Cannot insert more elements.")            return        # Insert the new element at the end        i = self.size        self.size += 1        self.array[i] = value        # Fix the heap property if it is violated        while i != 0 and self.array[(i - 1) // 2] < self.array[i]:            self.swap(i, (i - 1) // 2)            i = (i - 1) // 2    # delete the maximum element from the heap    def deleteMax(self):        if self.size == 0:            print("Heap is empty. Cannot extract maximum element.")            return -1        # store the root element        max_value = self.array[0]        # Replace the root with the last element        self.array[0] = self.array[self.size - 1]        self.size -= 1        # Heapify the root        self.heapify(0)        return max_value    # print the elements of the heap    def printHeap(self):        print("Heap elements:", end=" ")        for i in range(self.size):            print(self.array[i], end=" ")        print()    # deallocate memory occupied by the heap    def destroyHeap(self):        self.array = []        self.size = 0# Example usage of the heapheap = Heap(10)heap.insert(35)heap.insert(33)heap.insert(42)heap.insert(10)heap.insert(14)heap.insert(19)heap.insert(27)heap.insert(44)heap.insert(26)heap.insert(31)heap.printHeap()max_value = heap.deleteMax()print("Maximum element:", max_value)heap.printHeap()heap.destroyHeap()

Output

Heap elements: 44 42 35 33 31 19 27 10 26 14 Maximum element: 44Heap elements: 42 33 35 26 31 19 27 10 14

Recursion Algorithms

Some computer programming languages allow a module or function to call itself. This technique is known as recursion. In recursion, a functionα either calls itself directly or calls a functionβ that in turn calls the original functionα. The functionα is called recursive function.

Example − a function calling itself.

int function(int value) {   if(value < 1)      return;   function(value - 1);   printf("%d ",value);   }

Example − a function that calls another function which in turn calls it again.

int function1(int value1) {   if(value1 < 1)      return;   function2(value1 - 1);   printf("%d ",value1);   }int function2(int value2) {   function1(value2);}

Properties

A recursive function can go infinite like a loop. To avoid infinite running of recursive function, there are two properties that a recursive function must have −

  • Base criteria − There must be at least one base criteria or condition, such that, when this condition is met the function stops calling itself recursively.

  • Progressive approach − The recursive calls should progress in such a way that each time a recursive call is made it comes closer to the base criteria.

Implementation

Many programming languages implement recursion by means ofstacks. Generally, whenever a function (caller) calls another function (callee) or itself as callee, the caller function transfers execution control to the callee. This transfer process may also involve some data to be passed from the caller to the callee.

This implies, the caller function has to suspend its execution temporarily and resume later when the execution control returns from the callee function. Here, the caller function needs to start exactly from the point of execution where it puts itself on hold. It also needs the exact same data values it was working on. For this purpose, an activation record (or stack frame) is created for the caller function.

Activation Records

This activation record keeps the information about local variables, formal parameters, return address and all information passed to the caller function.

Analysis of Recursion

One may argue why to use recursion, as the same task can be done with iteration. The first reason is, recursion makes a program more readable and because of latest enhanced CPU systems, recursion is more efficient than iterations.

Time Complexity

In case of iterations, we take number of iterations to count the time complexity. Likewise, in case of recursion, assuming everything is constant, we try to figure out the number of times a recursive call is being made. A call made to a function is Ο(1), hence the (n) number of times a recursive call is made makes the recursive function Ο(n).

Space Complexity

Space complexity is counted as what amount of extra space is required for a module to execute. In case of iterations, the compiler hardly requires any extra space. The compiler keeps updating the values of variables used in the iterations. But in case of recursion, the system needs to store activation record each time a recursive call is made. Hence, it is considered that space complexity of recursive function may go higher than that of a function with iteration.

Example

// C program for Recursion Data Structure#include <stdio.h>int factorial(int n) {    // Base case: factorial of 0 is 1    if (n == 0)        return 1;    // Recursive case: multiply n with factorial of (n-1)    return n * factorial(n - 1);}int main() {    // case 1    int number = 6;    printf("Number is: %d\n" , 6);    //case 2    if (number < 0) {        printf("Error: Factorial is undefined for negative numbers.\n");        return 1;    }     int result = factorial(number);    //print the output    printf("Factorial of %d is: %d\n", number, result);    return 0;}

Output

Number is: 6Factorial of 6 is: 720
// CPP program for Recursion Data Structure#include <iostream>int factorial(int n) {    // Base case: factorial of 0 is 1    if (n == 0)        return 1;      // Recursive case: multiply n with factorial of (n-1)    return n * factorial(n - 1);}int main() {    // case 1    int number = 6;    std::cout<<"Number is: "<<number<<"\n";    //case 2    if (number < 0) {        std::cout << "Error: Factorial is undefined for negative numbers.\n";        return 1;    }    int result = factorial(number);    //print the output    std::cout << "Factorial of " << number << " is: " << result << std::endl;      return 0;}

Output

Number is:  6Factorial of 6 is: 720
// Java program for Recursion Data Structureimport java.util.Scanner;public class Main {    public static int factorial(int n) {        // Base case: factorial of 0 is 1        if (n == 0)            return 1;        // Recursive case: multiply n with factorial of (n-1)        return n * factorial(n - 1);    }    public static void main(String[] args) {        //Case 1        int number = 6;System.out.println("Number is: " + number);        //Case 2        if (number < 0) {            System.out.println("Error: Factorial is undefined for negative numbers.");            System.exit(1);        }        int result = factorial(number);        //print the output        System.out.println("Factorial of " + number + " is: " + result);    }}

Output

Number is: 6Factorial of 6 is: 720
# Python program for Recursion Data Structuredef factorial(n):    #Base Case: factorial of 0 is 1    if n == 0:        return 1    # Recursive case: multiply n with factorial of (n-1)    return n * factorial(n - 1)#Case 1:number = 6;print("Number is: ", number);#Case 2:if number < 0:    print("Error: Factorial is undefined for negative numbers.")else:    result = factorial(number)    # print the output    print("Factorial of", number, "is: ", result)

Output

Number is:  6Factorial of 6 is: 720

Tower of Hanoi Using Recursion

Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more than one rings is as depicted −

Tower Of Hanoi

These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller one sits over the larger one. There are other variations of the puzzle where the number of disks increase, but the tower count remains the same.

Rules

The mission is to move all the disks to some another tower without violating the sequence of arrangement. A few rules to be followed for Tower of Hanoi are −

  • Only one disk can be moved among the towers at any given time.
  • Only the "top" disk can be removed.
  • No large disk can sit over a small disk.

Following is an animated representation of solving a Tower of Hanoi puzzle with three disks.

Tower Of Hanoi

Tower of Hanoi puzzle with n disks can be solved in minimum2n−1 steps. This presentation shows that a puzzle with 3 disks has taken23 - 1 = 7 steps.

Algorithm

To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with lesser amount of disks, say → 1 or 2. We mark three towers with name,source,destination andaux (only to help moving the disks). If we have only one disk, then it can easily be moved from source to destination peg.

If we have 2 disks −

  • First, we move the smaller (top) disk to aux peg.
  • Then, we move the larger (bottom) disk to destination peg.
  • And finally, we move the smaller disk from aux to destination peg.
Tower Of Hanoi with Two Disks

So now, we are in a position to design an algorithm for Tower of Hanoi with more than two disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one part and all other (n-1) disks are in the second part.

Our ultimate aim is to move diskn from source to destination and then put all other (n1) disks onto it. We can imagine to apply the same in a recursive way for all given set of disks.

The steps to follow are −

Step 1 − Move n-1 disks fromsource toauxStep 2 − Move nth disk fromsource todestStep 3 − Move n-1 disks fromaux todest

A recursive algorithm for Tower of Hanoi can be driven as follows −

STARTProcedure Hanoi(disk, source, dest, aux)   IF disk == 1, THEN      move disk from source to dest                ELSE      Hanoi(disk - 1, source, aux, dest)     // Step 1      move disk from source to dest          // Step 2      Hanoi(disk - 1, aux, dest, source)     // Step 3   END IF   END ProcedureSTOP

Example

#include <stdio.h>#include <stdbool.h>#define MAX 10int list[MAX] = {1,8,4,6,0,3,5,2,7,9};void display(){   int i;   printf("[");   // navigate through all items    for(i = 0; i < MAX; i++) {      printf("%d ",list[i]);   }   printf("]\n");}void bubbleSort() {   int temp;   int i,j;   bool swapped = false;          // loop through all numbers    for(i = 0; i < MAX-1; i++) {       swapped = false;      // loop through numbers falling ahead       for(j = 0; j < MAX-1-i; j++) {         printf("Items compared: [ %d, %d ] ", list[j],list[j+1]);         // check if next number is lesser than current no         //   swap the numbers.          //  (Bubble up the highest number)          if(list[j] > list[j+1]) {            temp = list[j];            list[j] = list[j+1];            list[j+1] = temp;            swapped = true;            printf(" => swapped [%d, %d]\n",list[j],list[j+1]);         } else {            printf(" => not swapped\n");         }      }      // if no number was swapped that means       //   array is sorted now, break the loop.       if(!swapped) {         break;      }      printf("Iteration %d#: ",(i+1));       display();                        }    }int main() {   printf("Input Array: ");   display();   printf("\n");   bubbleSort();   printf("\nOutput Array: ");   display();}

Output

Input Array: [1 8 4 6 0 3 5 2 7 9 ]Items compared: [ 1, 8 ]  => not swappedItems compared: [ 8, 4 ]  => swapped [4, 8]Items compared: [ 8, 6 ]  => swapped [6, 8]Items compared: [ 8, 0 ]  => swapped [0, 8]Items compared: [ 8, 3 ]  => swapped [3, 8]Items compared: [ 8, 5 ]  => swapped [5, 8]Items compared: [ 8, 2 ]  => swapped [2, 8]Items compared: [ 8, 7 ]  => swapped [7, 8]Items compared: [ 8, 9 ]  => not swappedIteration 1#: [1 4 6 0 3 5 2 7 8 9 ]Items compared: [ 1, 4 ]  => not swappedItems compared: [ 4, 6 ]  => not swappedItems compared: [ 6, 0 ]  => swapped [0, 6]Items compared: [ 6, 3 ]  => swapped [3, 6]Items compared: [ 6, 5 ]  => swapped [5, 6]Items compared: [ 6, 2 ]  => swapped [2, 6]Items compared: [ 6, 7 ]  => not swappedItems compared: [ 7, 8 ]  => not swappedIteration 2#: [1 4 0 3 5 2 6 7 8 9 ]Items compared: [ 1, 4 ]  => not swappedItems compared: [ 4, 0 ]  => swapped [0, 4]Items compared: [ 4, 3 ]  => swapped [3, 4]Items compared: [ 4, 5 ]  => not swappedItems compared: [ 5, 2 ]  => swapped [2, 5]Items compared: [ 5, 6 ]  => not swappedItems compared: [ 6, 7 ]  => not swappedIteration 3#: [1 0 3 4 2 5 6 7 8 9 ]Items compared: [ 1, 0 ]  => swapped [0, 1]Items compared: [ 1, 3 ]  => not swappedItems compared: [ 3, 4 ]  => not swappedItems compared: [ 4, 2 ]  => swapped [2, 4]Items compared: [ 4, 5 ]  => not swappedItems compared: [ 5, 6 ]  => not swappedIteration 4#: [0 1 3 2 4 5 6 7 8 9 ]Items compared: [ 0, 1 ]  => not swappedItems compared: [ 1, 3 ]  => not swappedItems compared: [ 3, 2 ]  => swapped [2, 3]Items compared: [ 3, 4 ]  => not swappedItems compared: [ 4, 5 ]  => not swappedIteration 5#: [0 1 2 3 4 5 6 7 8 9 ]Items compared: [ 0, 1 ]  => not swappedItems compared: [ 1, 2 ]  => not swappedItems compared: [ 2, 3 ]  => not swappedItems compared: [ 3, 4 ]  => not swappedOutput Array: [0 1 2 3 4 5 6 7 8 9 ]
// C++ Code for Tower of Hanoi#include <iostream>#include <array>#include <algorithm>const int MAX = 10;std::array<int, MAX> list = {1, 8, 4, 6, 0, 3, 5, 2, 7, 9};void display() {   std::cout << "[";   // navigate through all items    for (int i = 0; i < MAX; i++) {      std::cout << list[i] << " ";   }   std::cout << "]\n";}void bubbleSort() {   int temp;   bool swapped = false;          // loop through all numbers    for (int i = 0; i < MAX - 1; i++) {       swapped = false;      // loop through numbers falling ahead       for (int j = 0; j < MAX - 1 - i; j++) {         std::cout << "Items compared: [" << list[j] << ", " << list[j+1] << "] ";         // check if next number is lesser than current no         // swap the numbers.          // (Bubble up the highest number)          if (list[j] > list[j+1]) {            std::swap(list[j], list[j+1]);            swapped = true;            std::cout << "=> swapped [" << list[j] << ", " << list[j+1] << "]\n";         } else {            std::cout << "=> not swapped\n";         }      }      // if no number was swapped that means       // array is sorted now, break the loop.       if (!swapped) {         break;      }        std::cout << "Iteration " << (i+1) << "#: ";       display();                        }    }int main() {   std::cout << "Input Array: ";   display();   std::cout << "\n";   bubbleSort();   std::cout << "\nOutput Array: ";   display();   return 0;}

Output

Input Array: [1 8 4 6 0 3 5 2 7 9 ]Items compared: [1, 8] => not swappedItems compared: [8, 4] => swapped [4, 8]Items compared: [8, 6] => swapped [6, 8]Items compared: [8, 0] => swapped [0, 8]Items compared: [8, 3] => swapped [3, 8]Items compared: [8, 5] => swapped [5, 8]Items compared: [8, 2] => swapped [2, 8]Items compared: [8, 7] => swapped [7, 8]Items compared: [8, 9] => not swappedIteration 1#: [1 4 6 0 3 5 2 7 8 9 ]Items compared: [1, 4] => not swappedItems compared: [4, 6] => not swappedItems compared: [6, 0] => swapped [0, 6]Items compared: [6, 3] => swapped [3, 6]Items compared: [6, 5] => swapped [5, 6]Items compared: [6, 2] => swapped [2, 6]Items compared: [6, 7] => not swappedItems compared: [7, 8] => not swappedIteration 2#: [1 4 0 3 5 2 6 7 8 9 ]Items compared: [1, 4] => not swappedItems compared: [4, 0] => swapped [0, 4]Items compared: [4, 3] => swapped [3, 4]Items compared: [4, 5] => not swappedItems compared: [5, 2] => swapped [2, 5]Items compared: [5, 6] => not swappedItems compared: [6, 7] => not swappedIteration 3#: [1 0 3 4 2 5 6 7 8 9 ]Items compared: [1, 0] => swapped [0, 1]Items compared: [1, 3] => not swappedItems compared: [3, 4] => not swappedItems compared: [4, 2] => swapped [2, 4]Items compared: [4, 5] => not swappedItems compared: [5, 6] => not swappedIteration 4#: [0 1 3 2 4 5 6 7 8 9 ]Items compared: [0, 1] => not swappedItems compared: [1, 3] => not swappedItems compared: [3, 2] => swapped [2, 3]Items compared: [3, 4] => not swappedItems compared: [4, 5] => not swappedIteration 5#: [0 1 2 3 4 5 6 7 8 9 ]Items compared: [0, 1] => not swappedItems compared: [1, 2] => not swappedItems compared: [2, 3] => not swappedItems compared: [3, 4] => not swappedOutput Array: [0 1 2 3 4 5 6 7 8 9 ]
//Java Code for Tower of Hanoiimport java.util.Arrays;public class BubbleSort {    public static final int MAX = 10;    public static int[] list = {1, 8, 4, 6, 0, 3, 5, 2, 7, 9};    public static void display() {        System.out.print("[");        // navigate through all items        for (int i = 0; i < MAX; i++) {            System.out.print(list[i] + " ");        }        System.out.println("]");    }    public static void bubbleSort() {        boolean swapped;        // loop through all numbers        for (int i = 0; i < MAX - 1; i++) {            swapped = false;            // loop through numbers falling ahead            for (int j = 0; j < MAX - 1 - i; j++) {                System.out.print("Items compared: [" + list[j] + ", " + list[j + 1] + "] ");                // check if next number is lesser than current no                // swap the numbers.                // (Bubble up the highest number)                if (list[j] > list[j + 1]) {                    int temp = list[j];                    list[j] = list[j + 1];                    list[j + 1] = temp;                    swapped = true;                    System.out.println("=> swapped [" + list[j] + ", " + list[j + 1] + "]");                } else {                    System.out.println("=> not swapped");                }            }            // if no number was swapped that means            // array is sorted now, break the loop.            if (!swapped) {                break;            }            System.out.print("Iteration " + (i + 1) + "#: ");            display();        }    }    public static void main(String[] args) {        System.out.print("Input Array: ");        display();        System.out.println();        bubbleSort();        System.out.print("\nOutput Array: ");        display();    }}

Output

Input Array: [1 8 4 6 0 3 5 2 7 9 ]Items compared: [1, 8] => not swappedItems compared: [8, 4] => swapped [4, 8]Items compared: [8, 6] => swapped [6, 8]Items compared: [8, 0] => swapped [0, 8]Items compared: [8, 3] => swapped [3, 8]Items compared: [8, 5] => swapped [5, 8]Items compared: [8, 2] => swapped [2, 8]Items compared: [8, 7] => swapped [7, 8]Items compared: [8, 9] => not swappedIteration 1#: [1 4 6 0 3 5 2 7 8 9 ]Items compared: [1, 4] => not swappedItems compared: [4, 6] => not swappedItems compared: [6, 0] => swapped [0, 6]Items compared: [6, 3] => swapped [3, 6]Items compared: [6, 5] => swapped [5, 6]Items compared: [6, 2] => swapped [2, 6]Items compared: [6, 7] => not swappedItems compared: [7, 8] => not swappedIteration 2#: [1 4 0 3 5 2 6 7 8 9 ]Items compared: [1, 4] => not swappedItems compared: [4, 0] => swapped [0, 4]Items compared: [4, 3] => swapped [3, 4]Items compared: [4, 5] => not swappedItems compared: [5, 2] => swapped [2, 5]Items compared: [5, 6] => not swappedItems compared: [6, 7] => not swappedIteration 3#: [1 0 3 4 2 5 6 7 8 9 ]Items compared: [1, 0] => swapped [0, 1]Items compared: [1, 3] => not swappedItems compared: [3, 4] => not swappedItems compared: [4, 2] => swapped [2, 4]Items compared: [4, 5] => not swappedItems compared: [5, 6] => not swappedIteration 4#: [0 1 3 2 4 5 6 7 8 9 ]Items compared: [0, 1] => not swappedItems compared: [1, 3] => not swappedItems compared: [3, 2] => swapped [2, 3]Items compared: [3, 4] => not swappedItems compared: [4, 5] => not swappedIteration 5#: [0 1 2 3 4 5 6 7 8 9 ]Items compared: [0, 1] => not swappedItems compared: [1, 2] => not swappedItems compared: [2, 3] => not swappedItems compared: [3, 4] => not swappedOutput Array: [0 1 2 3 4 5 6 7 8 9 ]
#Python Code for Tower of HanoiMAX = 10list = [1, 8, 4, 6, 0, 3, 5, 2, 7, 9]def display():    print("[", end="")    # navigate through all items    for i in range(MAX):        print(list[i], end=" ")    print("]")def bubbleSort():    swapped = False    # loop through all numbers    for i in range(MAX - 1):        swapped = False        # loop through numbers falling ahead        for j in range(MAX - 1 - i):            print("Items compared: [",                  list[j],                  ", ",                  list[j + 1],                  "] ",                  end="")            # check if next number is lesser than the current number            # swap the numbers.            # (Bubble up the highest number)            if list[j] > list[j + 1]:                temp = list[j]                list[j] = list[j + 1]                list[j + 1] = temp                swapped = True                print("=> swapped [", list[j], ", ", list[j + 1], "]")            else:                print("=> not swapped")        # if no number was swapped, the array is sorted now, break the loop        if not swapped:            break        print("Iteration", (i + 1), "#: ", end="")        display()print("Input Array: ", end="")display()print()bubbleSort()print("\nOutput Array: ", end="")display()

Output

Input Array: [1 8 4 6 0 3 5 2 7 9 ]Items compared: [ 1 ,  8 ] => not swappedItems compared: [ 8 ,  4 ] => swapped [ 4 ,  8 ]Items compared: [ 8 ,  6 ] => swapped [ 6 ,  8 ]Items compared: [ 8 ,  0 ] => swapped [ 0 ,  8 ]Items compared: [ 8 ,  3 ] => swapped [ 3 ,  8 ]Items compared: [ 8 ,  5 ] => swapped [ 5 ,  8 ]Items compared: [ 8 ,  2 ] => swapped [ 2 ,  8 ]Items compared: [ 8 ,  7 ] => swapped [ 7 ,  8 ]Items compared: [ 8 ,  9 ] => not swappedIteration 1 #: [1 4 6 0 3 5 2 7 8 9 ]Items compared: [ 1 ,  4 ] => not swappedItems compared: [ 4 ,  6 ] => not swappedItems compared: [ 6 ,  0 ] => swapped [ 0 ,  6 ]Items compared: [ 6 ,  3 ] => swapped [ 3 ,  6 ]Items compared: [ 6 ,  5 ] => swapped [ 5 ,  6 ]Items compared: [ 6 ,  2 ] => swapped [ 2 ,  6 ]Items compared: [ 6 ,  7 ] => not swappedItems compared: [ 7 ,  8 ] => not swappedIteration 2 #: [1 4 0 3 5 2 6 7 8 9 ]Items compared: [ 1 ,  4 ] => not swappedItems compared: [ 4 ,  0 ] => swapped [ 0 ,  4 ]Items compared: [ 4 ,  3 ] => swapped [ 3 ,  4 ]Items compared: [ 4 ,  5 ] => not swappedItems compared: [ 5 ,  2 ] => swapped [ 2 ,  5 ]Items compared: [ 5 ,  6 ] => not swappedItems compared: [ 6 ,  7 ] => not swappedIteration 3 #: [1 0 3 4 2 5 6 7 8 9 ]Items compared: [ 1 ,  0 ] => swapped [ 0 ,  1 ]Items compared: [ 1 ,  3 ] => not swappedItems compared: [ 3 ,  4 ] => not swappedItems compared: [ 4 ,  2 ] => swapped [ 2 ,  4 ]Items compared: [ 4 ,  5 ] => not swappedItems compared: [ 5 ,  6 ] => not swappedIteration 4 #: [0 1 3 2 4 5 6 7 8 9 ]Items compared: [ 0 ,  1 ] => not swappedItems compared: [ 1 ,  3 ] => not swappedItems compared: [ 3 ,  2 ] => swapped [ 2 ,  3 ]Items compared: [ 3 ,  4 ] => not swappedItems compared: [ 4 ,  5 ] => not swappedIteration 5 #: [0 1 2 3 4 5 6 7 8 9 ]Items compared: [ 0 ,  1 ] => not swappedItems compared: [ 1 ,  2 ] => not swappedItems compared: [ 2 ,  3 ] => not swappedItems compared: [ 3 ,  4 ] => not swappedOutput Array: [0 1 2 3 4 5 6 7 8 9 ]

Fibonacci Series Using Recursion

Fibonacci series generates the subsequent number by adding two previous numbers. Fibonacci series starts from two numbersF0 & F1. The initial values of F0 & F1 can be taken 0, 1 or 1, 1 respectively.

Fibonacci series satisfies the following conditions −

Fn = Fn-1 + Fn-2

Hence, a Fibonacci series can look like this −

F8 = 0 1 1 2 3 5 8 13

or, this −

F8 = 1 1 2 3 5 8 13 21

For illustration purpose, Fibonacci of F8 is displayed as −

Fibonacci Animation

Fibonacci Iterative Algorithm

First we try to draft the iterative algorithm for Fibonacci series.

Procedure Fibonacci(n)   declare f0, f1, fib, loop       set f0 to 0   set f1 to 1      <b>display f0, f1</b>      for loop ← 1 to n         fib ← f0 &plus; f1         f0 ← f1      f1 ← fib      <b>display fib</b>   end forend procedure

Fibonacci Recursive Algorithm

Let us learn how to create a recursive algorithm Fibonacci series. The base criteria of recursion.

STARTProcedure Fibonacci(n)   declare f0, f1, fib, loop       set f0 to 0   set f1 to 1display f0, f1      for loop ← 1 to n         fib ← f0 &plus; f1         f0 ← f1      f1 ← fibdisplay fib   end forEND

Example

#include <stdio.h>int factorial(int n) {   //base case   if(n == 0) {      return 1;   } else {      return n * factorial(n-1);   }}int fibbonacci(int n) {   if(n == 0){      return 0;   } else if(n == 1) {      return 1;   } else {      return (fibbonacci(n-1) + fibbonacci(n-2));   }}int main() {   int n = 5;   int i;   printf("Factorial of %d: %d\n" , n , factorial(n));   printf("Fibbonacci of %d: " , n);   for(i = 0;i<n;i++) {      printf("%d ",fibbonacci(i));               }}

Output

Factorial of 5: 120Fibbonacci of 5: 0 1 1 2 3
// C++ Code for Fibonacci series#include <iostream>int factorial(int n) {   //base case   if(n == 0) {      return 1;   } else {      return n * factorial(n-1);   }}int fibbonacci(int n) {   if(n == 0){      return 0;   } else if(n == 1) {      return 1;   } else {      return (fibbonacci(n-1) + fibbonacci(n-2));   }}int main() {   int n = 5;   int i;   std::cout << "Factorial of " << n << ": " << factorial(n) << std::endl;   std::cout << "Fibbonacci of " << n << ": ";   for(i = 0;i<n;i++) {      std::cout << fibbonacci(i) << " ";               }}

Output

Factorial of 5: 120Fibbonacci of 5: 0 1 1 2 3
// Java Code for Fibonacci seriespublic class Fibonacci {    public static int factorial(int n) {        // base case        if (n == 0) {            return 1;        } else {            return n * factorial(n - 1);        }    }    public static int fibonacci(int n) {        if (n == 0) {            return 0;        } else if (n == 1) {            return 1;        } else {            return fibonacci(n - 1) + fibonacci(n - 2);        }    }    public static void main(String[] args) {        int n = 5;        int i;        System.out.println("Factorial of " + n + ": " + factorial(n));        System.out.print("Fibonacci of " + n + ": ");        for (i = 0; i < n; i++) {            System.out.print(fibonacci(i) + " ");        }    }

Output

Factorial of 5: 120Fibonacci of 5: 0 1 1 2 3
#Python code for fibonacci Seriesdef factorial(n):   # base case   if n == 0:      return 1   else:      return n * factorial(n-1)def fibonacci(n):   if n == 0:      return 0   elif n == 1:      return 1   else:      return fibonacci(n-1) + fibonacci(n-2)if __name__ == "__main__":   n = 5   print("Factorial of", n, ":", factorial(n))   print("Fibonacci of", n, ": ")   for i in range(n):      print(fibonacci(i))

Output

Factorial of 5 : 120Fibonacci of 5 : 01123
Print Page
Advertisements

[8]ページ先頭

©2009-2025 Movatter.jp