Movatterモバイル変換


[0]ホーム

URL:


Data Structures & Algorithms Tutorial

Depth First Search (DFS) Algorithm



Depth First Search (DFS) Algorithm

Depth First Search (DFS) algorithm is a recursive algorithm for searching all the vertices of a graph or tree data structure. This algorithm traverses a graph in a depthward motion and uses a stack to remember to get the next vertex to start a search, when a dead end occurs in any iteration.

Depth First Travesal

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, then to F and lastly to C. It employs the following rules.

  • Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

  • Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices from the stack, which do not have adjacent vertices.)

  • Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

StepTraversalDescription
1Depth First Search Step OneInitialize the stack.
2Depth First Search Step TwoMarkS as visited and put it onto the stack. Explore any unvisited adjacent node fromS. We have three nodes and we can pick any of them. For this example, we shall take the node in an alphabetical order.
3Depth First Search Step ThreeMarkA as visited and put it onto the stack. Explore any unvisited adjacent node from A. BothS andD are adjacent toA but we are concerned for unvisited nodes only.
4Depth First Search Step FourVisitD and mark it as visited and put onto the stack. Here, we haveB andC nodes, which are adjacent toD and both are unvisited. However, we shall again choose in an alphabetical order.
5Depth First Search Step FiveWe chooseB, mark it as visited and put onto the stack. HereB does not have any unvisited adjacent node. So, we popB from the stack.
6Depth First Search Step SixWe check the stack top for return to the previous node and check if it has any unvisited nodes. Here, we findD to be on the top of the stack.
7Depth First Search Step SevenOnly unvisited adjacent node is fromD isC now. So we visitC, mark it as visited and put it onto the stack.

AsC does not have any unvisited adjacent node so we keep popping the stack until we find a node that has an unvisited adjacent node. In this case, there's none and we keep popping until the stack is empty.

Example

Following are the implementations of Depth First Search (DFS) Algorithm in various programming languages −

#include <stdio.h>#include <stdlib.h>#include <stdbool.h>#define MAX 5struct Vertex {   char label;   bool visited;};//stack variablesint stack[MAX]; int top = -1; //graph variables//array of verticesstruct Vertex* lstVertices[MAX];//adjacency matrixint adjMatrix[MAX][MAX];//vertex countint vertexCount = 0;//stack functionsvoid push(int item) {    stack[++top] = item; } int pop() {    return stack[top--]; } int peek() {   return stack[top];}bool isStackEmpty() {   return top == -1;}//graph functions//add vertex to the vertex listvoid addVertex(char label) {   struct Vertex* vertex = (struct Vertex*) malloc(sizeof(struct Vertex));   vertex->label = label;     vertex->visited = false;        lstVertices[vertexCount++] = vertex;}//add edge to edge arrayvoid addEdge(int start,int end) {   adjMatrix[start][end] = 1;   adjMatrix[end][start] = 1;}//display the vertexvoid displayVertex(int vertexIndex) {   printf("%c ",lstVertices[vertexIndex]->label);}       //get the adjacent unvisited vertexint getAdjUnvisitedVertex(int vertexIndex) {   int i;   for(i = 0; i < vertexCount; i++) {      if(adjMatrix[vertexIndex][i] == 1 && lstVertices[i]->visited == false) {         return i;      }   }   return -1;}void depthFirstSearch() {   int i;   //mark first node as visited   lstVertices[0]->visited = true;   //display the vertex   displayVertex(0);      //push vertex index in stack   push(0);   while(!isStackEmpty()) {      //get the unvisited vertex of vertex which is at top of the stack      int unvisitedVertex = getAdjUnvisitedVertex(peek());      //no adjacent vertex found      if(unvisitedVertex == -1) {         pop();      } else {         lstVertices[unvisitedVertex]->visited = true;         displayVertex(unvisitedVertex);         push(unvisitedVertex);      }   }   //stack is empty, search is complete, reset the visited flag           for(i = 0;i < vertexCount;i++) {      lstVertices[i]->visited = false;   }        }int main() {   int i, j;   for(i = 0; i < MAX; i++) {   // set adjacency      for(j = 0; j < MAX; j++) // matrix to 0         adjMatrix[i][j] = 0;   }   addVertex('S');   // 0   addVertex('A');   // 1   addVertex('B');   // 2   addVertex('C');   // 3   addVertex('D');   // 4   addEdge(0, 1);    // S - A   addEdge(0, 2);    // S - B   addEdge(0, 3);    // S - C   addEdge(1, 4);    // A - D   addEdge(2, 4);    // B - D   addEdge(3, 4);    // C - D   printf("Depth First Search: ");   depthFirstSearch();    return 0;   }

Output

Depth First Search: S A D B C
//C++ code for Depth First Traversal#include <iostream>#include <array>#include <vector>constexpr int MAX = 5;struct Vertex {   char label;   bool visited;};//stack variablesstd::array<int, MAX> stack;int top = -1;//graph variables//array of vertices std::array<Vertex*, MAX> lstVertices;//adjacency matrixstd::array<std::array<int, MAX>, MAX> adjMatrix;//vertex countint vertexCount = 0;//stack functionsvoid push(int item) {   stack[++top] = item;}int pop() {   return stack[top--];}int peek() {   return stack[top];}bool isStackEmpty() {   return top == -1;}//graph functions//add vertex to the vertex listvoid addVertex(char label) {   Vertex* vertex = new Vertex;   vertex->label = label;   vertex->visited = false;   lstVertices[vertexCount++] = vertex;}//add edge to edge arrayvoid addEdge(int start, int end) {   adjMatrix[start][end] = 1;   adjMatrix[end][start] = 1;}//display the vertexvoid displayVertex(int vertexIndex) {   std::cout << lstVertices[vertexIndex]->label << " ";}//get the adjacent unvisited vertexint getAdjUnvisitedVertex(int vertexIndex) {   for (int i = 0; i < vertexCount; i++) {      if (adjMatrix[vertexIndex][i] == 1 && !lstVertices[i]->visited) {         return i;      }   }   return -1;}//mark first node as visitedvoid depthFirstSearch() {   lstVertices[0]->visited = true;   //display the vertex   displayVertex(0);   //push vertex index in stack   push(0);   while (!isStackEmpty()) {       //get the unvisited vertex of vertex which is at top of the stack      int unvisitedVertex = getAdjUnvisitedVertex(peek());      //no adjacent vertex found      if (unvisitedVertex == -1) {         pop();      } else {         lstVertices[unvisitedVertex]->visited = true;         displayVertex(unvisitedVertex);         push(unvisitedVertex);      }   }   //stack is empty, search is complete, reset the visited flag   for (int i = 0; i < vertexCount; i++) {      lstVertices[i]->visited = false;   }}int main() {   for (int i = 0; i < MAX; i++) {   //set adjacency      for (int j = 0; j < MAX; j++) {    // matrix to 0         adjMatrix[i][j] = 0;      }   }   addVertex('S');   addVertex('A');   addVertex('B');   addVertex('C');   addVertex('D');   addEdge(0, 1);   addEdge(0, 2);   addEdge(0, 3);   addEdge(1, 4);   addEdge(2, 4);   addEdge(3, 4);   std::cout << "Depth First Search: ";   depthFirstSearch();   return 0;}

Output

Depth First Search: S A D B C
//Java program for Depth First Traversalpublic class DepthFirstSearch {    private static final int MAX = 5;    private static class Vertex {        char label;        boolean visited;    }    private static int[] stack = new int[MAX];    private static int top = -1;    private static Vertex[] lstVertices = new Vertex[MAX];    private static int[][] adjMatrix = new int[MAX][MAX];    private static int vertexCount = 0;    private static void push(int item) {        stack[++top] = item;    }    private static int pop() {        return stack[top--];    }    private static int peek() {        return stack[top];    }    private static boolean isStackEmpty() {        return top == -1;    }    private static void addVertex(char label) {        Vertex vertex = new Vertex();        vertex.label = label;        vertex.visited = false;        lstVertices[vertexCount++] = vertex;    }    private static void addEdge(int start, int end) {        adjMatrix[start][end] = 1;        adjMatrix[end][start] = 1;    }    private static void displayVertex(int vertexIndex) {        System.out.print(lstVertices[vertexIndex].label + " ");    }    private static int getAdjUnvisitedVertex(int vertexIndex) {        for (int i = 0; i < vertexCount; i++) {            if (adjMatrix[vertexIndex][i] == 1 && !lstVertices[i].visited) {                return i;            }        }        return -1;    }    private static void depthFirstSearch() {        lstVertices[0].visited = true;        displayVertex(0);        push(0);        while (!isStackEmpty()) {            int unvisitedVertex = getAdjUnvisitedVertex(peek());            if (unvisitedVertex == -1) {                pop();            } else {                lstVertices[unvisitedVertex].visited = true;                displayVertex(unvisitedVertex);                push(unvisitedVertex);            }        }        for (int i = 0; i < vertexCount; i++) {            lstVertices[i].visited = false;        }    }    public static void main(String[] args) {        for (int i = 0; i < MAX; i++) {            for (int j = 0; j < MAX; j++) {                adjMatrix[i][j] = 0;            }        }        addVertex('S');   // 0        addVertex('A');   // 1        addVertex('B');   // 2        addVertex('C');   // 3        addVertex('D');   // 4        addEdge(0, 1);    // S - A        addEdge(0, 2);    // S - B        addEdge(0, 3);    // S - C        addEdge(1, 4);    // A - D        addEdge(2, 4);    // B - D        addEdge(3, 4);    // C - D        System.out.print("Depth First Search: ");        depthFirstSearch();    }}

Output

Depth First Search: S A D B C
#Python program for Depth First TraversalMAX = 5class Vertex:    def __init__(self, label):        self.label = label        self.visited = False#stack variablesstack = []top = -1#graph variables#array of verticeslstVertices = [None] * MAX#adjacency matrixadjMatrix = [[0] * MAX for _ in range(MAX)]#vertex countvertexCount = 0#stack functionsdef push(item):    global top    top += 1    stack.append(item)def pop():    global top    item = stack[top]    del stack[top]    top -= 1    return itemdef peek():    return stack[top]def isStackEmpty():    return top == -1#graph functions#add vertex to the vertex listdef addVertex(label):    global vertexCount    vertex = Vertex(label)    lstVertices[vertexCount] = vertex    vertexCount += 1#add edge to edge arraydef addEdge(start, end):    adjMatrix[start][end] = 1    adjMatrix[end][start] = 1#Display the Vertexdef displayVertex(vertexIndex):    print(lstVertices[vertexIndex].label, end=' ')def getAdjUnvisitedVertex(vertexIndex):    for i in range(vertexCount):        if adjMatrix[vertexIndex][i] == 1 and not lstVertices[i].visited:            return i    return -1def depthFirstSearch():    lstVertices[0].visited = True    displayVertex(0)    push(0)    while not isStackEmpty():        unvisitedVertex = getAdjUnvisitedVertex(peek())        if unvisitedVertex == -1:            pop()        else:            lstVertices[unvisitedVertex].visited = True            displayVertex(unvisitedVertex)            push(unvisitedVertex)    for i in range(vertexCount):        lstVertices[i].visited = Falsefor i in range(MAX):    for j in range(MAX):        adjMatrix[i][j] = 0addVertex('S')   # 0addVertex('A')   # 1addVertex('B')   # 2addVertex('C')   # 3addVertex('D')   # 4addEdge(0, 1)    # S - AaddEdge(0, 2)    # S - BaddEdge(0, 3)    # S - CaddEdge(1, 4)    # A - DaddEdge(2, 4)    # B - DaddEdge(3, 4)    # C - Dprint("Depth First Search:", end=' ')depthFirstSearch()

Output

Depth First Search: S A D B C

Click to check C implementation ofDepth First Search (BFS) Algorithm

Complexity of DFS Algorithm

Time Complexity

The time complexity of the DFS algorithm is represented in the form of O(V + E), where V is the number of nodes and E is the number of edges.

Space Complexity

The space complexity of the DFS algorithm is O(V).

Print Page
Advertisements

[8]ページ先頭

©2009-2025 Movatter.jp