Movatterモバイル変換


[0]ホーム

URL:



Code forHow to Perform YOLO Object Detection using OpenCV in Python Tutorial


View on Github

yolov8_opencv.py

import numpy as npimport osimport cv2import timefrom ultralytics import YOLO# define some parametersCONFIDENCE = 0.5font_scale = 1thickness = 1# loading the YOLOv8 model with the default weight filemodel = YOLO("yolov8n.pt")# loading all the class labels (objects)labels = open("data/coco.names").read().strip().split("\n")# generating colors for each object for later plottingcolors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")path_name = "images/dog.jpg"image = cv2.imread(path_name)file_name = os.path.basename(path_name) # "dog.jpg"filename, ext = file_name.split(".") # "dog", "jpg"# measure how much it took in secondsstart = time.perf_counter()# run inference on the image # see: https://docs.ultralytics.com/modes/predict/#arguments for full list of argumentsresults = model.predict(image, conf=CONFIDENCE)[0]time_took = time.perf_counter() - startprint(f"Time took: {time_took:.2f}s")print(results.boxes.data)# loop over the detectionsfor data in results.boxes.data.tolist():    # get the bounding box coordinates, confidence, and class id     xmin, ymin, xmax, ymax, confidence, class_id = data    # converting the coordinates and the class id to integers    xmin = int(xmin)    ymin = int(ymin)    xmax = int(xmax)    ymax = int(ymax)    class_id = int(class_id)    # draw a bounding box rectangle and label on the image    color = [int(c) for c in colors[class_id]]    cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness)    text = f"{labels[class_id]}: {confidence:.2f}"    # calculate text width & height to draw the transparent boxes as background of the text    (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]    text_offset_x = xmin    text_offset_y = ymin - 5    box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))    overlay = image.copy()    cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)    # add opacity (transparency to the box)    image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)    # now put the text (label: confidence %)    cv2.putText(image, text, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX,        fontScale=font_scale, color=(0, 0, 0), thickness=thickness)# display output imagecv2.imshow("Image", image)cv2.waitKey(0)# save output image to diskcv2.imwrite(filename + "_yolo8." + ext, image)

live_yolov8_opencv.py

import cv2import numpy as npimport timeimport sysfrom ultralytics import YOLOCONFIDENCE = 0.5font_scale = 1thickness = 1labels = open("data/coco.names").read().strip().split("\n")colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")model = YOLO("yolov8n.pt")cap = cv2.VideoCapture(0)_, image = cap.read()h, w = image.shape[:2]fourcc = cv2.VideoWriter_fourcc(*"XVID")out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))while True:    _, image = cap.read()        start = time.perf_counter()    # run inference on the image     # see: https://docs.ultralytics.com/modes/predict/#arguments for full list of arguments    results = model.predict(image, conf=CONFIDENCE)[0]    time_took = time.perf_counter() - start    print("Time took:", time_took)    # loop over the detections    for data in results.boxes.data.tolist():        # get the bounding box coordinates, confidence, and class id         xmin, ymin, xmax, ymax, confidence, class_id = data        # converting the coordinates and the class id to integers        xmin = int(xmin)        ymin = int(ymin)        xmax = int(xmax)        ymax = int(ymax)        class_id = int(class_id)        # draw a bounding box rectangle and label on the image        color = [int(c) for c in colors[class_id]]        cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness)        text = f"{labels[class_id]}: {confidence:.2f}"        # calculate text width & height to draw the transparent boxes as background of the text        (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]        text_offset_x = xmin        text_offset_y = ymin - 5        box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))        overlay = image.copy()        cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)        # add opacity (transparency to the box)        image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)        # now put the text (label: confidence %)        cv2.putText(image, text, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX,            fontScale=font_scale, color=(0, 0, 0), thickness=thickness)    # end time to compute the fps    end = time.perf_counter()    # calculate the frame per second and draw it on the frame    fps = f"FPS: {1 / (end - start):.2f}"    cv2.putText(image, fps, (50, 50),                cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 6)    out.write(image)    cv2.imshow("image", image)        if ord("q") == cv2.waitKey(1):        breakcap.release()cv2.destroyAllWindows()

read_video_yolov8.py

import cv2import numpy as npimport timeimport sysfrom ultralytics import YOLO# define some parametersCONFIDENCE = 0.5font_scale = 1thickness = 1labels = open("data/coco.names").read().strip().split("\n")colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")# loading the YOLOv8 model with the default weight filemodel = YOLO("yolov8n.pt")# read the file from the command linevideo_file = sys.argv[1]cap = cv2.VideoCapture(video_file)_, image = cap.read()h, w = image.shape[:2]fourcc = cv2.VideoWriter_fourcc(*"XVID")out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))while True:    _, image = cap.read()        start = time.perf_counter()    results = model.predict(image, conf=CONFIDENCE)[0]    time_took = time.perf_counter() - start    print("Time took:", time_took)    # loop over the detections    for data in results.boxes.data.tolist():        # get the bounding box coordinates, confidence, and class id         xmin, ymin, xmax, ymax, confidence, class_id = data        # converting the coordinates and the class id to integers        xmin = int(xmin)        ymin = int(ymin)        xmax = int(xmax)        ymax = int(ymax)        class_id = int(class_id)        # draw a bounding box rectangle and label on the image        color = [int(c) for c in colors[class_id]]        cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness)        text = f"{labels[class_id]}: {confidence:.2f}"        # calculate text width & height to draw the transparent boxes as background of the text        (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]        text_offset_x = xmin        text_offset_y = ymin - 5        box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))        try:            overlay = image.copy()        except:            break        cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)        # add opacity (transparency to the box)        image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)        # now put the text (label: confidence %)        cv2.putText(image, text, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX,            fontScale=font_scale, color=(0, 0, 0), thickness=thickness)    # end time to compute the fps    end = time.perf_counter()    # calculate the frame per second and draw it on the frame    fps = f"FPS: {1 / (end - start):.2f}"    cv2.putText(image, fps, (50, 50),                cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 6)    out.write(image)    cv2.imshow("image", image)        if ord("q") == cv2.waitKey(1):        breakcap.release()cv2.destroyAllWindows()

yolo_opencv.py

import cv2import numpy as npimport timeimport sysimport osCONFIDENCE = 0.5SCORE_THRESHOLD = 0.5IOU_THRESHOLD = 0.5# the neural network configurationconfig_path = "cfg/yolov3.cfg"# the YOLO net weights fileweights_path = "weights/yolov3.weights"# loading all the class labels (objects)labels = open("data/coco.names").read().strip().split("\n")# generating colors for each object for later plottingcolors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")# load the YOLO networknet = cv2.dnn.readNetFromDarknet(config_path, weights_path)# path_name = "images/city_scene.jpg"path_name = sys.argv[1]image = cv2.imread(path_name)file_name = os.path.basename(path_name)filename, ext = file_name.split(".")h, w = image.shape[:2]# create 4D blobblob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)# sets the blob as the input of the networknet.setInput(blob)# get all the layer namesln = net.getLayerNames()try:    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]except IndexError:    # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available    ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]# feed forward (inference) and get the network output# measure how much it took in secondsstart = time.perf_counter()layer_outputs = net.forward(ln)time_took = time.perf_counter() - startprint(f"Time took: {time_took:.2f}s")boxes, confidences, class_ids = [], [], []# loop over each of the layer outputsfor output in layer_outputs:    # loop over each of the object detections    for detection in output:        # extract the class id (label) and confidence (as a probability) of        # the current object detection        scores = detection[5:]        class_id = np.argmax(scores)        confidence = scores[class_id]        # discard weak predictions by ensuring the detected        # probability is greater than the minimum probability        if confidence > CONFIDENCE:            # scale the bounding box coordinates back relative to the            # size of the image, keeping in mind that YOLO actually            # returns the center (x, y)-coordinates of the bounding            # box followed by the boxes' width and height            box = detection[:4] * np.array([w, h, w, h])            (centerX, centerY, width, height) = box.astype("int")            # use the center (x, y)-coordinates to derive the top and            # and left corner of the bounding box            x = int(centerX - (width / 2))            y = int(centerY - (height / 2))            # update our list of bounding box coordinates, confidences,            # and class IDs            boxes.append([x, y, int(width), int(height)])            confidences.append(float(confidence))            class_ids.append(class_id)# perform the non maximum suppression given the scores defined beforeidxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD)font_scale = 1thickness = 1# ensure at least one detection existsif len(idxs) > 0:    # loop over the indexes we are keeping    for i in idxs.flatten():        # extract the bounding box coordinates        x, y = boxes[i][0], boxes[i][1]        w, h = boxes[i][2], boxes[i][3]        # draw a bounding box rectangle and label on the image        color = [int(c) for c in colors[class_ids[i]]]        cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness)        text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}"        # calculate text width & height to draw the transparent boxes as background of the text        (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]        text_offset_x = x        text_offset_y = y - 5        box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))        overlay = image.copy()        cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)        # add opacity (transparency to the box)        image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)        # now put the text (label: confidence %)        cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,            fontScale=font_scale, color=(0, 0, 0), thickness=thickness)        # cv2.imshow("image", image)# if cv2.waitKey(0) == ord("q"):#     passcv2.imwrite(filename + "_yolo3." + ext, image)

live_yolo_opencv.py

import cv2import numpy as npimport timeCONFIDENCE = 0.5SCORE_THRESHOLD = 0.5IOU_THRESHOLD = 0.5config_path = "cfg/yolov3.cfg"weights_path = "weights/yolov3.weights"font_scale = 1thickness = 1LABELS = open("data/coco.names").read().strip().split("\n")COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")net = cv2.dnn.readNetFromDarknet(config_path, weights_path)ln = net.getLayerNames()try:    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]except IndexError:    # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available    ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]cap = cv2.VideoCapture(0)while True:    _, image = cap.read()    h, w = image.shape[:2]    blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)    net.setInput(blob)    start = time.perf_counter()    layer_outputs = net.forward(ln)    time_took = time.perf_counter() - start    print("Time took:", time_took)    boxes, confidences, class_ids = [], [], []    # loop over each of the layer outputs    for output in layer_outputs:        # loop over each of the object detections        for detection in output:            # extract the class id (label) and confidence (as a probability) of            # the current object detection            scores = detection[5:]            class_id = np.argmax(scores)            confidence = scores[class_id]            # discard weak predictions by ensuring the detected            # probability is greater than the minimum probability            if confidence > CONFIDENCE:                # scale the bounding box coordinates back relative to the                # size of the image, keeping in mind that YOLO actually                # returns the center (x, y)-coordinates of the bounding                # box followed by the boxes' width and height                box = detection[:4] * np.array([w, h, w, h])                (centerX, centerY, width, height) = box.astype("int")                # use the center (x, y)-coordinates to derive the top and                # and left corner of the bounding box                x = int(centerX - (width / 2))                y = int(centerY - (height / 2))                # update our list of bounding box coordinates, confidences,                # and class IDs                boxes.append([x, y, int(width), int(height)])                confidences.append(float(confidence))                class_ids.append(class_id)    # perform the non maximum suppression given the scores defined before    idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD)    font_scale = 1    thickness = 1    # ensure at least one detection exists    if len(idxs) > 0:        # loop over the indexes we are keeping        for i in idxs.flatten():            # extract the bounding box coordinates            x, y = boxes[i][0], boxes[i][1]            w, h = boxes[i][2], boxes[i][3]            # draw a bounding box rectangle and label on the image            color = [int(c) for c in colors[class_ids[i]]]            cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness)            text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}"            # calculate text width & height to draw the transparent boxes as background of the text            (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]            text_offset_x = x            text_offset_y = y - 5            box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))            overlay = image.copy()            cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)            # add opacity (transparency to the box)            image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)            # now put the text (label: confidence %)            cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,                fontScale=font_scale, color=(0, 0, 0), thickness=thickness)    cv2.imshow("image", image)    if ord("q") == cv2.waitKey(1):        breakcap.release()cv2.destroyAllWindows()

read_video.py

import cv2import numpy as npimport timeimport sysCONFIDENCE = 0.5SCORE_THRESHOLD = 0.5IOU_THRESHOLD = 0.5config_path = "cfg/yolov3.cfg"weights_path = "weights/yolov3.weights"font_scale = 1thickness = 1labels = open("data/coco.names").read().strip().split("\n")colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")net = cv2.dnn.readNetFromDarknet(config_path, weights_path)ln = net.getLayerNames()try:    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]except IndexError:    # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available    ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]# read the file from the command linevideo_file = sys.argv[1]cap = cv2.VideoCapture(video_file)_, image = cap.read()h, w = image.shape[:2]fourcc = cv2.VideoWriter_fourcc(*"XVID")out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))while True:    _, image = cap.read()    h, w = image.shape[:2]    blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)    net.setInput(blob)    start = time.perf_counter()    layer_outputs = net.forward(ln)    time_took = time.perf_counter() - start    print("Time took:", time_took)    boxes, confidences, class_ids = [], [], []    # loop over each of the layer outputs    for output in layer_outputs:        # loop over each of the object detections        for detection in output:            # extract the class id (label) and confidence (as a probability) of            # the current object detection            scores = detection[5:]            class_id = np.argmax(scores)            confidence = scores[class_id]            # discard weak predictions by ensuring the detected            # probability is greater than the minimum probability            if confidence > CONFIDENCE:                # scale the bounding box coordinates back relative to the                # size of the image, keeping in mind that YOLO actually                # returns the center (x, y)-coordinates of the bounding                # box followed by the boxes' width and height                box = detection[:4] * np.array([w, h, w, h])                (centerX, centerY, width, height) = box.astype("int")                # use the center (x, y)-coordinates to derive the top and                # and left corner of the bounding box                x = int(centerX - (width / 2))                y = int(centerY - (height / 2))                # update our list of bounding box coordinates, confidences,                # and class IDs                boxes.append([x, y, int(width), int(height)])                confidences.append(float(confidence))                class_ids.append(class_id)    # perform the non maximum suppression given the scores defined before    idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD)    font_scale = 1    thickness = 1    # ensure at least one detection exists    if len(idxs) > 0:        # loop over the indexes we are keeping        for i in idxs.flatten():            # extract the bounding box coordinates            x, y = boxes[i][0], boxes[i][1]            w, h = boxes[i][2], boxes[i][3]            # draw a bounding box rectangle and label on the image            color = [int(c) for c in colors[class_ids[i]]]            cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness)            text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}"            # calculate text width & height to draw the transparent boxes as background of the text            (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]            text_offset_x = x            text_offset_y = y - 5            box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))            overlay = image.copy()            cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)            # add opacity (transparency to the box)            image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)            # now put the text (label: confidence %)            cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,                fontScale=font_scale, color=(0, 0, 0), thickness=thickness)    out.write(image)    cv2.imshow("image", image)        if ord("q") == cv2.waitKey(1):        breakcap.release()cv2.destroyAllWindows()

yolo.py (PyTorch) requiresdarknet.py andutils.py.

import cv2import matplotlib.pyplot as pltfrom utils import *from darknet import Darknet# Set the NMS Thresholdscore_threshold = 0.6# Set the IoU thresholdiou_threshold = 0.4cfg_file = "cfg/yolov3.cfg"weight_file = "weights/yolov3.weights"namesfile = "data/coco.names"m = Darknet(cfg_file)m.load_weights(weight_file)class_names = load_class_names(namesfile)# m.print_network()original_image = cv2.imread("images/city_scene.jpg")original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)img = cv2.resize(original_image, (m.width, m.height))# detect the objectsboxes = detect_objects(m, img, iou_threshold, score_threshold)# plot the image with the bounding boxes and corresponding object class labelsplot_boxes(original_image, boxes, class_names, plot_labels=True)

Ethical Hacking with Python EBook - Topic - Top


Join 50,000+ Python Programmers & Enthusiasts like you!



Tags

Mastering YOLO - Yacine Author - Middle


New Tutorials

Popular Tutorials


Practical Python PDF Processing EBook - Tutorials - Bottom







[8]ページ先頭

©2009-2025 Movatter.jp