yolov8_opencv.py
import numpy as npimport osimport cv2import timefrom ultralytics import YOLO# define some parametersCONFIDENCE = 0.5font_scale = 1thickness = 1# loading the YOLOv8 model with the default weight filemodel = YOLO("yolov8n.pt")# loading all the class labels (objects)labels = open("data/coco.names").read().strip().split("\n")# generating colors for each object for later plottingcolors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")path_name = "images/dog.jpg"image = cv2.imread(path_name)file_name = os.path.basename(path_name) # "dog.jpg"filename, ext = file_name.split(".") # "dog", "jpg"# measure how much it took in secondsstart = time.perf_counter()# run inference on the image # see: https://docs.ultralytics.com/modes/predict/#arguments for full list of argumentsresults = model.predict(image, conf=CONFIDENCE)[0]time_took = time.perf_counter() - startprint(f"Time took: {time_took:.2f}s")print(results.boxes.data)# loop over the detectionsfor data in results.boxes.data.tolist(): # get the bounding box coordinates, confidence, and class id xmin, ymin, xmax, ymax, confidence, class_id = data # converting the coordinates and the class id to integers xmin = int(xmin) ymin = int(ymin) xmax = int(xmax) ymax = int(ymax) class_id = int(class_id) # draw a bounding box rectangle and label on the image color = [int(c) for c in colors[class_id]] cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness) text = f"{labels[class_id]}: {confidence:.2f}" # calculate text width & height to draw the transparent boxes as background of the text (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] text_offset_x = xmin text_offset_y = ymin - 5 box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) overlay = image.copy() cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) # add opacity (transparency to the box) image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) # now put the text (label: confidence %) cv2.putText(image, text, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 0, 0), thickness=thickness)# display output imagecv2.imshow("Image", image)cv2.waitKey(0)# save output image to diskcv2.imwrite(filename + "_yolo8." + ext, image)
import cv2import numpy as npimport timeimport sysfrom ultralytics import YOLOCONFIDENCE = 0.5font_scale = 1thickness = 1labels = open("data/coco.names").read().strip().split("\n")colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")model = YOLO("yolov8n.pt")cap = cv2.VideoCapture(0)_, image = cap.read()h, w = image.shape[:2]fourcc = cv2.VideoWriter_fourcc(*"XVID")out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))while True: _, image = cap.read() start = time.perf_counter() # run inference on the image # see: https://docs.ultralytics.com/modes/predict/#arguments for full list of arguments results = model.predict(image, conf=CONFIDENCE)[0] time_took = time.perf_counter() - start print("Time took:", time_took) # loop over the detections for data in results.boxes.data.tolist(): # get the bounding box coordinates, confidence, and class id xmin, ymin, xmax, ymax, confidence, class_id = data # converting the coordinates and the class id to integers xmin = int(xmin) ymin = int(ymin) xmax = int(xmax) ymax = int(ymax) class_id = int(class_id) # draw a bounding box rectangle and label on the image color = [int(c) for c in colors[class_id]] cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness) text = f"{labels[class_id]}: {confidence:.2f}" # calculate text width & height to draw the transparent boxes as background of the text (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] text_offset_x = xmin text_offset_y = ymin - 5 box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) overlay = image.copy() cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) # add opacity (transparency to the box) image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) # now put the text (label: confidence %) cv2.putText(image, text, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 0, 0), thickness=thickness) # end time to compute the fps end = time.perf_counter() # calculate the frame per second and draw it on the frame fps = f"FPS: {1 / (end - start):.2f}" cv2.putText(image, fps, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 6) out.write(image) cv2.imshow("image", image) if ord("q") == cv2.waitKey(1): breakcap.release()cv2.destroyAllWindows()
import cv2import numpy as npimport timeimport sysfrom ultralytics import YOLO# define some parametersCONFIDENCE = 0.5font_scale = 1thickness = 1labels = open("data/coco.names").read().strip().split("\n")colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")# loading the YOLOv8 model with the default weight filemodel = YOLO("yolov8n.pt")# read the file from the command linevideo_file = sys.argv[1]cap = cv2.VideoCapture(video_file)_, image = cap.read()h, w = image.shape[:2]fourcc = cv2.VideoWriter_fourcc(*"XVID")out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))while True: _, image = cap.read() start = time.perf_counter() results = model.predict(image, conf=CONFIDENCE)[0] time_took = time.perf_counter() - start print("Time took:", time_took) # loop over the detections for data in results.boxes.data.tolist(): # get the bounding box coordinates, confidence, and class id xmin, ymin, xmax, ymax, confidence, class_id = data # converting the coordinates and the class id to integers xmin = int(xmin) ymin = int(ymin) xmax = int(xmax) ymax = int(ymax) class_id = int(class_id) # draw a bounding box rectangle and label on the image color = [int(c) for c in colors[class_id]] cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color=color, thickness=thickness) text = f"{labels[class_id]}: {confidence:.2f}" # calculate text width & height to draw the transparent boxes as background of the text (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] text_offset_x = xmin text_offset_y = ymin - 5 box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) try: overlay = image.copy() except: break cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) # add opacity (transparency to the box) image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) # now put the text (label: confidence %) cv2.putText(image, text, (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 0, 0), thickness=thickness) # end time to compute the fps end = time.perf_counter() # calculate the frame per second and draw it on the frame fps = f"FPS: {1 / (end - start):.2f}" cv2.putText(image, fps, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 6) out.write(image) cv2.imshow("image", image) if ord("q") == cv2.waitKey(1): breakcap.release()cv2.destroyAllWindows()
yolo_opencv.py
import cv2import numpy as npimport timeimport sysimport osCONFIDENCE = 0.5SCORE_THRESHOLD = 0.5IOU_THRESHOLD = 0.5# the neural network configurationconfig_path = "cfg/yolov3.cfg"# the YOLO net weights fileweights_path = "weights/yolov3.weights"# loading all the class labels (objects)labels = open("data/coco.names").read().strip().split("\n")# generating colors for each object for later plottingcolors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")# load the YOLO networknet = cv2.dnn.readNetFromDarknet(config_path, weights_path)# path_name = "images/city_scene.jpg"path_name = sys.argv[1]image = cv2.imread(path_name)file_name = os.path.basename(path_name)filename, ext = file_name.split(".")h, w = image.shape[:2]# create 4D blobblob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)# sets the blob as the input of the networknet.setInput(blob)# get all the layer namesln = net.getLayerNames()try: ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]except IndexError: # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]# feed forward (inference) and get the network output# measure how much it took in secondsstart = time.perf_counter()layer_outputs = net.forward(ln)time_took = time.perf_counter() - startprint(f"Time took: {time_took:.2f}s")boxes, confidences, class_ids = [], [], []# loop over each of the layer outputsfor output in layer_outputs: # loop over each of the object detections for detection in output: # extract the class id (label) and confidence (as a probability) of # the current object detection scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] # discard weak predictions by ensuring the detected # probability is greater than the minimum probability if confidence > CONFIDENCE: # scale the bounding box coordinates back relative to the # size of the image, keeping in mind that YOLO actually # returns the center (x, y)-coordinates of the bounding # box followed by the boxes' width and height box = detection[:4] * np.array([w, h, w, h]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top and # and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, confidences, # and class IDs boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) class_ids.append(class_id)# perform the non maximum suppression given the scores defined beforeidxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD)font_scale = 1thickness = 1# ensure at least one detection existsif len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates x, y = boxes[i][0], boxes[i][1] w, h = boxes[i][2], boxes[i][3] # draw a bounding box rectangle and label on the image color = [int(c) for c in colors[class_ids[i]]] cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness) text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}" # calculate text width & height to draw the transparent boxes as background of the text (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] text_offset_x = x text_offset_y = y - 5 box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) overlay = image.copy() cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) # add opacity (transparency to the box) image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) # now put the text (label: confidence %) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 0, 0), thickness=thickness) # cv2.imshow("image", image)# if cv2.waitKey(0) == ord("q"):# passcv2.imwrite(filename + "_yolo3." + ext, image)
live_yolo_opencv.py
import cv2import numpy as npimport timeCONFIDENCE = 0.5SCORE_THRESHOLD = 0.5IOU_THRESHOLD = 0.5config_path = "cfg/yolov3.cfg"weights_path = "weights/yolov3.weights"font_scale = 1thickness = 1LABELS = open("data/coco.names").read().strip().split("\n")COLORS = np.random.randint(0, 255, size=(len(LABELS), 3), dtype="uint8")net = cv2.dnn.readNetFromDarknet(config_path, weights_path)ln = net.getLayerNames()try: ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]except IndexError: # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]cap = cv2.VideoCapture(0)while True: _, image = cap.read() h, w = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.perf_counter() layer_outputs = net.forward(ln) time_took = time.perf_counter() - start print("Time took:", time_took) boxes, confidences, class_ids = [], [], [] # loop over each of the layer outputs for output in layer_outputs: # loop over each of the object detections for detection in output: # extract the class id (label) and confidence (as a probability) of # the current object detection scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] # discard weak predictions by ensuring the detected # probability is greater than the minimum probability if confidence > CONFIDENCE: # scale the bounding box coordinates back relative to the # size of the image, keeping in mind that YOLO actually # returns the center (x, y)-coordinates of the bounding # box followed by the boxes' width and height box = detection[:4] * np.array([w, h, w, h]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top and # and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, confidences, # and class IDs boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) class_ids.append(class_id) # perform the non maximum suppression given the scores defined before idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD) font_scale = 1 thickness = 1 # ensure at least one detection exists if len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates x, y = boxes[i][0], boxes[i][1] w, h = boxes[i][2], boxes[i][3] # draw a bounding box rectangle and label on the image color = [int(c) for c in colors[class_ids[i]]] cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness) text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}" # calculate text width & height to draw the transparent boxes as background of the text (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] text_offset_x = x text_offset_y = y - 5 box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) overlay = image.copy() cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) # add opacity (transparency to the box) image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) # now put the text (label: confidence %) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 0, 0), thickness=thickness) cv2.imshow("image", image) if ord("q") == cv2.waitKey(1): breakcap.release()cv2.destroyAllWindows()
read_video.py
import cv2import numpy as npimport timeimport sysCONFIDENCE = 0.5SCORE_THRESHOLD = 0.5IOU_THRESHOLD = 0.5config_path = "cfg/yolov3.cfg"weights_path = "weights/yolov3.weights"font_scale = 1thickness = 1labels = open("data/coco.names").read().strip().split("\n")colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")net = cv2.dnn.readNetFromDarknet(config_path, weights_path)ln = net.getLayerNames()try: ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]except IndexError: # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]# read the file from the command linevideo_file = sys.argv[1]cap = cv2.VideoCapture(video_file)_, image = cap.read()h, w = image.shape[:2]fourcc = cv2.VideoWriter_fourcc(*"XVID")out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))while True: _, image = cap.read() h, w = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) start = time.perf_counter() layer_outputs = net.forward(ln) time_took = time.perf_counter() - start print("Time took:", time_took) boxes, confidences, class_ids = [], [], [] # loop over each of the layer outputs for output in layer_outputs: # loop over each of the object detections for detection in output: # extract the class id (label) and confidence (as a probability) of # the current object detection scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] # discard weak predictions by ensuring the detected # probability is greater than the minimum probability if confidence > CONFIDENCE: # scale the bounding box coordinates back relative to the # size of the image, keeping in mind that YOLO actually # returns the center (x, y)-coordinates of the bounding # box followed by the boxes' width and height box = detection[:4] * np.array([w, h, w, h]) (centerX, centerY, width, height) = box.astype("int") # use the center (x, y)-coordinates to derive the top and # and left corner of the bounding box x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) # update our list of bounding box coordinates, confidences, # and class IDs boxes.append([x, y, int(width), int(height)]) confidences.append(float(confidence)) class_ids.append(class_id) # perform the non maximum suppression given the scores defined before idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD) font_scale = 1 thickness = 1 # ensure at least one detection exists if len(idxs) > 0: # loop over the indexes we are keeping for i in idxs.flatten(): # extract the bounding box coordinates x, y = boxes[i][0], boxes[i][1] w, h = boxes[i][2], boxes[i][3] # draw a bounding box rectangle and label on the image color = [int(c) for c in colors[class_ids[i]]] cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness) text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}" # calculate text width & height to draw the transparent boxes as background of the text (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0] text_offset_x = x text_offset_y = y - 5 box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height)) overlay = image.copy() cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED) # add opacity (transparency to the box) image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0) # now put the text (label: confidence %) cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 0, 0), thickness=thickness) out.write(image) cv2.imshow("image", image) if ord("q") == cv2.waitKey(1): breakcap.release()cv2.destroyAllWindows()
yolo.py (PyTorch) requiresdarknet.py andutils.py.
import cv2import matplotlib.pyplot as pltfrom utils import *from darknet import Darknet# Set the NMS Thresholdscore_threshold = 0.6# Set the IoU thresholdiou_threshold = 0.4cfg_file = "cfg/yolov3.cfg"weight_file = "weights/yolov3.weights"namesfile = "data/coco.names"m = Darknet(cfg_file)m.load_weights(weight_file)class_names = load_class_names(namesfile)# m.print_network()original_image = cv2.imread("images/city_scene.jpg")original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)img = cv2.resize(original_image, (m.width, m.height))# detect the objectsboxes = detect_objects(m, img, iou_threshold, score_threshold)# plot the image with the bounding boxes and corresponding object class labelsplot_boxes(original_image, boxes, class_names, plot_labels=True)