Movatterモバイル変換


[0]ホーム

URL:


Gender Detection using OpenCV in Python

Learn how to perform gender detection on detected faces in images using OpenCV library in Python.
  · · 8 min read · Updated may 2024 ·Machine Learning ·Computer Vision

Welcome! Meet ourPython Code Assistant, your new coding buddy. Why wait? Start exploring now!

Automatic prediction of gender from face images has drawn a lot of attention recently due to its wide application in various facial analysis problems. However, due to the large variations of face images (such as variations in lighting, scale, and occlusion), the existing models are still behind the desired accuracy level, which is necessary for exploiting these models in real-world applications.

The goal of this tutorial is to develop a lightweight command-line-based utility through Python-based modules to automatically detect faces in a static image and predict the gender of the spotted persons using a deep learning-based gender detection model.

Please note that if you want to detect both gender and age in the same code at the same time, checkthis tutorial for it.

Pre-requisites

The following components come into play:

  • OpenCV: is an open-source library for computer vision, machine learning, and image processing. OpenCV supports a wide variety of programming languages like Python, C++, Java and it is used for all sorts of image and video analysis like facial detection and recognition, photo editing, optical character recognition, and a whole heap more. Using OpenCV comes with many benefits among which:
      • OpenCV is an open-source library and it is free of cost.
      • OpenCV is fast since it is written in C/C++.
      • OpenCV supports most Operating Systems such as Windows, Linux, and macOS.

    Suggestion: Check ourcomputer vision tutorials for more OpenCV use cases.

  • filetype: is a small and dependency-free Python package to infer file and MIME types.

For the purpose of this article, we will use pre-trained Caffe models, one for face detection taken from the face detection tutorial, and another model for age detection. Below is the list of necessary files to include in our project directory:

  • gender_net.caffemodel: It is the pre-trained model weights for gender detection. You can download ithere.
  • deploy_gender.prototxt: is the model architecture for the gender detection model (a plain text file with a JSON-like structure containing all the neural network layer’s definitions). Get ithere.
  • res10_300x300_ssd_iter_140000_fp16.caffemodel: The pre-trained model weights for face detection, downloadhere.
  • deploy.prototxt.txt: This is the model architecture for the face detection model, downloadhere.

After downloading the 4 necessary files, put them in the weights folder:

Downloaded Model Architectures & WeightsTo get started, let's install OpenCV and NumPy:

$ pip install opencv-python numpy

Open up a new Python file and follow along. First, let's import the necessary modules and initialize the needed variables:

# Import Librariesimport cv2import numpy as np# The gender model architecture# https://drive.google.com/open?id=1W_moLzMlGiELyPxWiYQJ9KFaXroQ_NFQGENDER_MODEL = 'weights/deploy_gender.prototxt'# The gender model pre-trained weights# https://drive.google.com/open?id=1AW3WduLk1haTVAxHOkVS_BEzel1WXQHPGENDER_PROTO = 'weights/gender_net.caffemodel'# Each Caffe Model impose the shape of the input image also image preprocessing is required like mean# substraction to eliminate the effect of illunination changesMODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)# Represent the gender classesGENDER_LIST = ['Male', 'Female']# https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxtFACE_PROTO = "weights/deploy.prototxt.txt"# https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodelFACE_MODEL = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel"

Next, let's load our models:

# load face Caffe modelface_net = cv2.dnn.readNetFromCaffe(FACE_PROTO, FACE_MODEL)# Load gender prediction modelgender_net = cv2.dnn.readNetFromCaffe(GENDER_MODEL, GENDER_PROTO)

Like theage detection tutorial, before going into detecting gender, we need a way to detect faces, below function is mostly taken fromthe face detection tutorial:

def get_faces(frame, confidence_threshold=0.5):    # convert the frame into a blob to be ready for NN input    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104, 177.0, 123.0))    # set the image as input to the NN    face_net.setInput(blob)    # perform inference and get predictions    output = np.squeeze(face_net.forward())    # initialize the result list    faces = []    # Loop over the faces detected    for i in range(output.shape[0]):        confidence = output[i, 2]        if confidence > confidence_threshold:            box = output[i, 3:7] * \                np.array([frame.shape[1], frame.shape[0],                         frame.shape[1], frame.shape[0]])            # convert to integers            start_x, start_y, end_x, end_y = box.astype(np.int)            # widen the box a little            start_x, start_y, end_x, end_y = start_x - \                10, start_y - 10, end_x + 10, end_y + 10            start_x = 0 if start_x < 0 else start_x            start_y = 0 if start_y < 0 else start_y            end_x = 0 if end_x < 0 else end_x            end_y = 0 if end_y < 0 else end_y            # append to our list            faces.append((start_x, start_y, end_x, end_y))    return faces

Next, making a utility function to display an image:

def display_img(title, img):    """Displays an image on screen and maintains the output until the user presses a key"""    # Display Image on screen    cv2.imshow(title, img)    # Mantain output until user presses a key    cv2.waitKey(0)    # Destroy windows when user presses a key    cv2.destroyAllWindows()

Next, let's make two utility functions, one for finding the appropriate font size to write in the image, and another for correctly resizing the image:

def get_optimal_font_scale(text, width):    """Determine the optimal font scale based on the hosting frame width"""    for scale in reversed(range(0, 60, 1)):        textSize = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=scale/10, thickness=1)        new_width = textSize[0][0]        if (new_width <= width):            return scale/10    return 1# from: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencvdef image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):    # initialize the dimensions of the image to be resized and    # grab the image size    dim = None    (h, w) = image.shape[:2]    # if both the width and height are None, then return the    # original image    if width is None and height is None:        return image    # check to see if the width is None    if width is None:        # calculate the ratio of the height and construct the        # dimensions        r = height / float(h)        dim = (int(w * r), height)    # otherwise, the height is None    else:        # calculate the ratio of the width and construct the        # dimensions        r = width / float(w)        dim = (width, int(h * r))    # resize the image    return cv2.resize(image, dim, interpolation = inter)

Now we know how to detect faces, let's make our core function to predict the gender of each face detected:

def predict_gender(input_path: str):    """Predict the gender of the faces showing in the image"""    # Read Input Image    img = cv2.imread(input_path)    # resize the image, uncomment if you want to resize the image    # img = cv2.resize(img, (frame_width, frame_height))    # Take a copy of the initial image and resize it    frame = img.copy()    if frame.shape[1] > frame_width:        frame = image_resize(frame, width=frame_width)    # predict the faces    faces = get_faces(frame)    # Loop over the faces detected    # for idx, face in enumerate(faces):    for i, (start_x, start_y, end_x, end_y) in enumerate(faces):        face_img = frame[start_y: end_y, start_x: end_x]        # image --> Input image to preprocess before passing it through our dnn for classification.        # scale factor = After performing mean substraction we can optionally scale the image by some factor. (if 1 -> no scaling)        # size = The spatial size that the CNN expects. Options are = (224*224, 227*227 or 299*299)        # mean = mean substraction values to be substracted from every channel of the image.        # swapRB=OpenCV assumes images in BGR whereas the mean is supplied in RGB. To resolve this we set swapRB to True.        blob = cv2.dnn.blobFromImage(image=face_img, scalefactor=1.0, size=(            227, 227), mean=MODEL_MEAN_VALUES, swapRB=False, crop=False)        # Predict Gender        gender_net.setInput(blob)        gender_preds = gender_net.forward()        i = gender_preds[0].argmax()        gender = GENDER_LIST[i]        gender_confidence_score = gender_preds[0][i]        # Draw the box        label = "{}-{:.2f}%".format(gender, gender_confidence_score*100)        print(label)        yPos = start_y - 15        while yPos < 15:            yPos += 15        # get the font scale for this image size        optimal_font_scale = get_optimal_font_scale(label,((end_x-start_x)+25))        box_color = (255, 0, 0) if gender == "Male" else (147, 20, 255)        cv2.rectangle(frame, (start_x, start_y), (end_x, end_y), box_color, 2)        # Label processed image        cv2.putText(frame, label, (start_x, yPos),                    cv2.FONT_HERSHEY_SIMPLEX, optimal_font_scale, box_color, 2)        # Display processed image    display_img("Gender Estimator", frame)    # uncomment if you want to save the image    # cv2.imwrite("output.jpg", frame)    # Cleanup    cv2.destroyAllWindows()

Mastering YOLO: Build an Automatic Number Plate Recognition System

Building a real-time automatic number plate recognition system using YOLO and OpenCV library in Python

Download EBook

Here is the process of thepredict_gender() function:

  • We read the input image using thecv2.imread() function.
  • We resize the image if it's above theframe_width variable, feel free to edit fitting your needs.
  • We use our previously definedget_faces() function to detect faces in the image.
  • We iterate over each face, draw a rectangle around it, and pass it to the gender detection model to perform inference on the gender.
  • Finally, we print the gender both in the console and in the image. After that, we simply display the image and save it to disk if we want.

Alright, let's call our function now:

if __name__ == '__main__':    # Parsing command line arguments entered by user    import sys    predict_gender(sys.argv[1])

We simply use the sys module to get the image path from the command line. Let's test this out, I'm testing onthis stock image:

$ python predict_gender.py images\\pexels-karolina-grabowska-8526635.jpg

Here is the output in the console:

Female-97.36%Female-98.34%

And the resulting image:

Detecting Gender using Python with OpenCVHere is another example:

Detected gender on image using OpenCV in PythonOr this:

Detected Gender on Image using OpenCV in PythonConclusion

And there you go, now you have a Python code for detecting gender on any image using the OpenCV library. The gender model seems to be accurate.

If you want to use your webcam to detect the gender, look overthis code.

Check the full codehere.

Learn also:Age Detection using OpenCV in Python.

Happy coding ♥

Liked what you read? You'll love what you can learn from ourAI-powered Code Explainer. Check it out!

View Full Code Generate Python Code
Sharing is caring!



Read Also


Age Detection using OpenCV in Python
Face Detection using OpenCV in Python
How to Perform Edge Detection in Python using OpenCV

Comment panel

    Got a coding query or need some guidance before you comment? Check out thisPython Code Assistant for expert advice and handy tips. It's like having a coding tutor right in your fingertips!





    Mastering YOLO - Topic - Top


    Join 50,000+ Python Programmers & Enthusiasts like you!



    Tags


    New Tutorials

    Popular Tutorials


    Mastering YOLO - Topic - Bottom






    Claim your Free YOLO EBook

    Download a Completely Free EBook about YOLO Object Detection

    Build a custom object detector with YOLO from scratch using OpenCV in Python following this free EBook!



    [8]ページ先頭

    ©2009-2025 Movatter.jp