OLTP (online transaction processing) is a class of software programs capable of supportingtransaction-oriented applications. In computing, a transaction is a sequence of discrete information exchanges that are treated as a unit. Many everyday acts involve OLTP, including online banking, online shopping and even in-store shopping when the point of sale (POS) terminal is tied to inventory management software.
Two important characteristics of an OLTP system are concurrency and atomicity. Atomicity guarantees that if one step is incomplete or fails during the transaction, the process will not continue. Concurrency prevents multiple users from altering the same data at the same time. In order for a transaction to be completed successfully, all database changes must be permanent, a condition known in computing as atomic statefulness.
To avoidsingle points of failure, OLTP systems are often decentralized. For example, Google Cloud Spanner is a distributedrelational database service that runs on Google Cloud. It is designed to support global online transaction processing.
OLTP involves takingtransactional data, processing it and updating a back-end database to reflect the new input. While the applications may be complex, these updates are usually simple and involve only a few database records.
Arelational database management system is often used to manage OLTP. Relational databases are a good option for OLTP because it requires a database that can handle a large number of queries and updates while supporting fast response times.
OLTP is used for executing online database transactions that frontline workers such as cashiers and bank tellers generate. Customer self-service applications like online banking, travel and e-commerce also generate database transactions and are tied into OLTP systems. Online transactional processing systems typically use a3-tiered architecture, which consists of presentation, application and data tiers.
OLTP-based applications have a range of characteristics and features. They include the following:
It is important to distinguish between OLTP databases and online analytical processing (OLAP) ones. To bridge the two systems,extract, transform and load processes can periodically move data from an OLTP database to an OLAP database.
OLTP systems were originally designed to handle only operational data. They process various different kinds of queries and are geared toward surface-level transactions.
Today, somein-memory databases are able to process memory-optimized tables of transaction data stored in system memory instead of having to pull them from disk storage. This approach is called in-memory OLTP.
OLTP transactions provide data that OLAP systems analyze. They then use the results of the analysis to change how the OLTP system operates.
OLAP databases handle any analytical processes. They are generally optimized for read-only queries and are geared toward "what if" thinking, more complex queries and deeperbusiness analytics.
Thebusiness intelligence insights derived from OLAP systems can be used to inform an organization's OLTP strategy.
OLTP systems provide several benefits to users, but they also come with challenges.
As mentioned earlier, concurrency and atomicity are the two main benefits of OLTP. Together, they provide order to real-time online transactions with the following capabilities:
These traits lead to several benefits for businesses, including the following:
Despite its benefits, there are challenges and shortcomings in OLTP systems if they aren't properly designed and managed. They include the following:
Examples of OLTP systems and transactions
OLTP systems are used across a variety of industries and are in many consumer-facing systems. Some common examples of systems that use OLTP include:
An example of an OLTP transaction would be at an ATM. In this scenario,two people share a joint bank account. They go to ATMs in separate locations at about the same time and try to withdraw all the money in the shared account. The OLTP system handles this transaction in real time. It allows the withdrawal from the ATM that finishes the authentication process first and then deals with, and ultimately denies, the second request.
Today's big data stores are too complex and voluminous for legacy OLTP systems to process and draw insights from on the fly. To successfully use the massive amounts of data organizations deal with, the OLAP's deeper processing capabilities must be merged with OLTP's ability to analyze data fast.
As such, businesses may turn to more advanced data processing technology like predictive analytics and data structures likeprobabilistic databases, which deal with data that is recorded only on certain conditions.
Still, OLTP systems will likely be used in many transactional applications for the foreseeable future and in cases in which merging the real-time capabilities of OLTP and OLAP isn't feasible.
Find out more about thestrategy behind Oracle's move to combine OLTP and OLAP capabilities on its MySQL platform.
Learn howSQL Server 2014 leverages in-memoryOLTP technology
Windows Server 2025 has many new features, but how can you get the most from them? Use this tutorial to configure AD domain ...
Microsoft's Applied Skills help IT pros validate hands-on technical expertise and real-world skills. But what sets these ...
Microsoft hybrid identity combines on-premises AD resources and cloud-based Entra ID capabilities to create a seamless access ...
Q4 cloud infrastructure service revenues reach $119.1 billion, bringing the 2025 total to $419 billion. See how much market share...
Will $5 trillion in AI infrastructure investment be enough? Cloud providers facing that question must also yield a return, ...
As IT leaders aggressively re-allocate capital to fund new AI initiatives, repatriation offers both savings and greater control, ...
AI initiatives have created a surge of data, making traditional storage management insufficient. How much can AI help solve the ...
Storage admins should stock up on aspirin as the continued enterprise AI adoption throughout 2026 will continue to create new ...
IBM FlashSystem refresh includes a high-capacity flash module amid a memory supply crunch and automated data placement at block ...
Start a supply chain traceability journey with this comprehensive checklist to drive efficiency, improve risk management, ...
CIOs must prioritize equity when adopting new technologies to prevent harm, improve accessibility and make sure the technology ...
Trump administration offshore wind suspensions disrupt data center clean energy supply, raise power costs, threaten grid ...

