Seeing Unseens with Machine Learning -- 見えていないものを見出す機械学習
Deep Learningを筆頭に、データから意味やパターンを抽出する機械学習は、いまや誰もが使えるツールになりつつあります。本セッションでは、AIブームわく最中、機械学習がなぜ大事なのか、どんな使い方をするのが重要になっていくかについて展望しつつ、「見えていなかったものを見出す」というネクストフロンティアになるであろう機械学習の方向性についてお話します。
Daniel KehnemanThere aretwo modes of thoughtSystem 1(勘・直感)fast, instinctive and emotionalSystem 2(論理的思考)Slower, more deliberative, and more logical5MLはコッチ
Software 2.0Software 1.0— Write a program that works- Explicit instructions to the computer which identifies a specific point inprogram space with some desirable behaviorSoftware 2.0 — Find a desirable program that fits to data- A rough skelton of the code (e.g. NNs) that identifies a subset of programspace to search- Search this space for a program that works10
11.
Why Software 2.0?"itis significantly easier to collect the data (or more generally, identify adesirable behavior) than to explicitly write the program”11
Paradigm ChangeThings whichis hard to define/code can be learn implicitly from data1400110110110 1101010101011010111011 1011011010001010111011Coding LearnSoftware
Bigger, Deeper andBetter16Large Scale GAN Training for High Fidelity Natural Image Synthesis (2018.9) BigGAN — 巨⼤な計算リソースで学習された巨⼤なモデルで⾼解像度画像の⽣成に成功。GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism (2018.11) GPipe — 巨⼤なNNを効率的に学習するための分散学習ライブラリ。ImageNetで新SOTA。BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018.10) BERT — 巨⼤なモデルを巨⼤なデータで教師なしすることで⾔語理解系タスクにたいする強⼒な初期モデルを獲得Language Models are Unsupervised Multitask Learners (2019.2) GPT-2 — 巨⼤な⾔語モデルをクリーンで巨⼤なデータで学習し、⽂書⽣成系タスクをゼロショットで⾼精度にこなせるモデルを獲得
17.
BigGAN — ClassConditionalな⾼解像度画像⽣成既存のSOTA⼿法(SA-GAN)に対して、バッチサイズやチャンネル数を増やし、各種⼯夫を加えることで、512x512のClass Conditionalな⾼精度画像⽣成に成功。既存SOTAを⼤きく上回るスコアを達成。17“Large Scale GAN Training for High Fidelity Natural Image Synthesis ”
Can You SeeGender/Age from Ears?230 10 20 30 40 50 60 70 80Age
24.
Can You SeeGender, Age and BMI from Eyes (Fundus)? How about Heart / Brain Diseases?240 10 20 30 40 50 60 70 80Age
25.
DNNs Can SeeGender/Age from EarsD. Yaman+, “Age and Gender Classification from Ear Images”, IWBF201825Age: 18-28 / 29-38 / 39-48 / 49-58 / 58-68+
26.
DNNs Can SeeGender, Age, BMI and even Brain/Heart Diseases from EyesR. Poplin+, “Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning”, Nature Biomedical Engineering 201826
Discovery 2.0Discovery 1.0— Fully Utilizing Domain Knowledge- explicit construction of hypothesis is constructed mainly fromdomain knowledge or deep understanding of the domainDiscovery 2.0 — Seeing by Training- capture some aspects of data by training models on it- not new but should be emphasized again28※ serendipity could be another source of discovery :)
29.
Discovery 2.0 —Seeing by Training1. Seeing Predictability / Correlation29
30.
Discovery 2.0 —Seeing by Training1. Seeing Predictability / CorrelationBeyond human imagination - Every data should be connect to create new connectionsCorrelation first- Correlation finding is the first goal- Causality should be checked post-hook if possibleRelatively cheap to apply if data exists- Models should have weak domain dependence (e.g. NNs)30
31.
Graph Convolutional NeuralNetworks (GCNNs)A specific type of neural networks which is designed for processing connectivity of data well31Tech blog http://tech-blog.abeja.asia/- 異空間への埋め込み!Poincare Embeddingsが拓く表現学習の新展開- 機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介- 双曲空間でのMachine Learningの最近の進展- より良い機械学習のためのアノテーションの機械学習
Discovery 2.0 —Seeing by Training1. Seeing Predictability / Correlation 2. Representation Learning / Embeddings33T. Mikolov+, “Distributed representation of words and phrases and their compositionality, NeurIPS2013https://github.com/facebookresearch/poincare-embeddings
34.
Hyperbolic Space• Manifoldswith positive constant sectional curvature• Tree structure is naturally aligned in the space → automatic tree structure detection!34Tech blog http://tech-blog.abeja.asia/- 異空間への埋め込み!Poincare Embeddingsが拓く表現学習の新展開- 機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介- 双曲空間でのMachine Learningの最近の進展- より良い機械学習のためのアノテーションの機械学習「異空間散歩!双曲空間を歩いてみよう。」
Mixed-Curvature RepresentationsA. Gu+,“Learning Mixed-Curvature Representations in Products of model Spaces”, ICLR2019ユークリッド空間、球⾯、双曲空間の積空間への埋め込みを構成することで、様々な(断⾯)曲率の空間への埋込を可能にした。36
⼈格⼼理学(Personality Psychology)Personality Psychologyis a scientific study which aims to show how peopleare individually different due to psychological forces (wikipedia).41Personality Traits(特性) FeaturesPersonality Types(類型)Clustering / Classificationあなたは◯◯タイプ!ex) ex)
42.
Big 5(Five FactorModel, FFM)421. Openness(経験への開放性) is a general appreciation for art, emotion, adventure, unusual ideas, imagination, curiosity, and variety of experience2. Conscientiousness(誠実性) is a tendency to display self-discipline, act dutifully, and strive for achievement against measures or outside expectations3. Extraversion(外向性) is characterized by breadth of activities (as opposed to depth), surgency from external activity/situations, and energy creation from external means4. Agreeableness(協調性) trait reflects individual differences in general concern for social harmony5. Neuroticism(神経症的傾向) is the tendency to experience negative emotions, such as anger, anxiety, or depression(wikipedia)