Movatterモバイル変換


[0]ホーム

URL:


PPTX, PDF1,681 views

RDF, linked data and semantic web

The document presents an overview of RDF (Resource Description Framework) and its significance in linked data and the semantic web, detailing its application and challenges. It discusses the need for data accessibility, usability, and integration, highlighting issues with traditional data formats like HTML, XML, and JSON. The author emphasizes the importance of using URIs and linked data principles to improve data publishing and discovery for enhanced semantic understanding.

Related topics:

Embed presentation

Downloaded 66 times
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF, linked data and semantic webDepartamento de InformáticaUniversidad de OviedoJose Emilio Labra Gayo
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraAbout meMain researcher WESO research group (WEb Semántics Oviedo)Author of the following books:http://www.di.uniovi.es/~labraWeb Semántica (2012) Validating RDF Data (2017)
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraStructure of presentationWhy RDF?RDF data modelRDF ecosystemRDF applicationsInference systems: RDFS, OWLSPARQLChallenges
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraWhy RDF?
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labra
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraThe flood of dataProducing data is more and more easyOpen trendsOpen SoftwareOpen ContentOpen DataOpen ScienceOpen GovernmentOld models are affectedMúsic, Films, finance,...EducationGovernment ...
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraWhy?Reasons for governmentsTransparencyLeadershipGovernment as catalyzerPromote participationNew initiatives and appsReasons for citizensData belong to usCreated with public moneyWe want better services
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraOK, long live to data!but…
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraProblems of current webIt is not enough to publish dataIt must be foundIf not found, as if it doesn't existIt must be usableIf not usable, it is worthlessReuse data in unexpected contexts
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraSemantic lossWhen publishing data, some semantics is lostThe person that wants to publish has more info about the dataSome info is lost during the publication processpublisherparty nextsaturdayFormats:HTML, PDF, JPG,...consumer(person)consumer(agent)party nextsaturdaySemantics9/Dec/2017Datapublished
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraHTML doesn't have enough semanticsHTML is intended to publish hypertextHTML tags are understood by browsersInformation inside tags = natural languageMachines don't understand natural language yet<p>Event:<ul><li>Name: Concert</li><li>Date: Next saturday</li></ul></p><p>իրադարձություն:<ul><li>տիպ: համերգ</li><li>ամսաթիվ: հաջորդ շաբաթ/li></ul></p>
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraXML problemXML goes a step forwardSpecific vocabularies have meaning in some specific contextSpecific applications can process XML documentsXML documents are difficult to integrate if they are from different domains<event><name>համերգ</name><date>հաջորդ շաբաթ</date></event><event><name>Concert</name><date>Next saturday</date></event><իրադարձություն><տիպ>համերգ</տիպ><ամսաթիվ>հաջորդ շաբաթ</ամսաթիվ></իրադարձություն>
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraJson problemJSON is almost the same as XMLIt may be easier to parse and processby developersBut the meaning depends on each domainIt is even worse as there are no namespaces or validation{"event": {"name": "Party" ,"date": "Next saturday"}}{"event": {"name": "համերգ" ,"date": "հաջորդ շաբաթ"}}{"իրադարձություն": {"տիպ": "համերգ" ,"ամսաթիվ": "հաջորդ շաբաթ"}}
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraTowards semantic webSemantic web = vision of the data webTim Berners LeeSource: WikipediaGoal: Share and Reuse data between applications, and communitiesFrom a web of documents to a web of data
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraBenefitsAccessible dataAvoid semantic lossFacilitate task automationLinked dataData reuseApplication integrationThe best way to use your data will befound by other peopleJo Walsh, Rufus Pollock, http://www.okfn.org/files/talks/xtech_2007/
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraWeb featuresNon centralizedDifficult to ensure data integrity and qualityDynamic informationInformation is constantly changingBig amounts of informationBig data3Vs: Volume, Velocity, VarietyOpen systemAAA lemma: Anyone can say Anything about Any topic
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraBiggest challenge = IntegrationIn general, the challenge is not tocomputerize somethingThe challenge is integrate systemsInteroperabilityIt is not enough to publish data…
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraPublish = make something accessibleAccessibility levelsPhysical disabilityTechnical disability: other environmentsCultural and intellectualIlliteracyKnowledge barriersOther languages…Accessible to machines
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraStar model*★ Publish data(any format)★★ Use structured formats(Excel instead of scanned pictures)★★★ Non proprietary structured formats(CSV instead of Excel)★★★★ Use URIs to identify data(other systems can link to our data)★★★★★ Link to other data(provide contextual information)* Tim Berners-Lee, Gov 2.0 Expo 2010http://www.youtube.com/watch?v=ga1aSJXCFe0
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraUnstructured formatsBlack box formats: Pictures, video, audio, etc.Binary formats: PDF, PS, etc.They require low level techniques, patternrecognition, signal processing, etc★
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraStructured formatsData have some structureExample: ExcelProblem with proprietary formatsMay require non-free tools★ ★
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraNon-proprietary formatsUse open-structured formatsExamples: CSV, HTMLProblem: Content depends on context★ ★ ★
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraURIs identify dataUse URIs to identify dataContent negotiation can provide different representations★ ★ ★ ★Example
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraExample: RDF ★ ★ ★ ★<http://www.sepe.es/data/unemployment/Asturias/Allande/2013/10>HTML?@prefix sepe: <http://www.sepe.es/datos/>sepe:obs1 sepe:municipality "Allande" ;sepe:unemployees 18 .RDF?
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLink with other dataRepresentations return links to other dataIt allos to:Reuse and find other dataUnforeseen applications★ ★ ★ ★ ★
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked data example ★ ★ ★ ★ ★<http://www.sepe.es/data/unemployment/Asturias/Allande/2013/10>HTML?@prefix sepe: <http://www.sepe.es/data/>sepe:obs1 sepe:municipality dbo:allande;sepe:unemployees 23 .RDF?dbo:allande dbo:areaTotal 342.24 ;rdf:type <http:/.../municipalitiesInAsturias> ;dbo:country <http:/.../Spain> ;dbo:populationTotal 2106 ;. . .
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked Open Data principles1. Use URIs to denote things2. Use HTTP URIs so that people can look up those names3. When someone looks up a URI, provide useful information, using thestandards (RDF*, SPARQL)4. Include links to other URIs. so that they can discover more things.★ ★ ★ ★ ★
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked open data (2007)
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked open data (2008)
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked open data (2009)
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked open data (2014)
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLinked open data (2017)Fuente: "Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF Data Model
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraShort history of RDFRDF: Resource Description FrameworkAround 1997 - PICS, Dublin core, Meta Content Framework1997 1st Working draft https://www.w3.org/TR/WD-rdf-syntax-971002RDF/XML1999 1st W3C Rec https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/XML Syntax, first applications RSS, EARL2004 - RDF Revised https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/Emergence of SPARQL, Turtle, Linked Data2014 - RDF 1.1 https://www.w3.org/TR/rdf11-concepts/SPARQL 1.1, JSON-LD2017 - RDF validation: SHACL/ShEx
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF Data ModelRDF is made from statementsStatment = a triple (subject, predicate, object)Example:http://example.org/alicehttp://example.org/bobhttp://schema.org/knowssubject predicate object<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .N-Triples representationsubject objectpredicate
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraSet of statements = RDF graphRDF data model = directed graphExample:http://example.org/aliceex:bobhttp://example.org/carolhttp://example.org/bobhttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knowsN-triples representation<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/bob> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/alice> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/bob> .subject predicate object
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraTurtle notationHuman readable notation that simplifies N-TriplesAllows namespace declarations<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/bob> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/alice> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/bob> .prefix : <http://example.org/>prefix schema: <http://schema.org/>:alice schema:knows :bob .:bob schema:knows :carol .:carol schema:knows :bob .:carol schema:knows :alice .TurtleN-TriplesNote:We will see later other Turtle simplifications
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraNamespaces simplificationhttp://example.org/aliceex:bobhttp://example.org/carolhttp://example.org/bobhttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knows:aliceex:bob:carol:bobschema:knowsschema:knowsschema:knowsschema:knows
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF is compositionalRDF graphs can be merged to obtain a bigger graphAutomatic data integrationschema:knowsschema:knowsschema:knows:aliceex:bob:carol:bobschema:knowsschema:birthPlace:carol schema:birthPlacedbr:Oviedo:bobgraph 1 graph 2
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF is compositionalRDF graphs can be merged to obtain a bigger graphAutomatic data integrationschema:birthPlaceschema:knowsschema:knowsschema:knows:aliceex:bob:carol schema:birthPlacedbr:Oviedo:bobschema:knowsgraph 1 + graph 2
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraTurtle syntaxSome simplificationsprefix declarations; when triples share the subject, when triples share subject and object:alice schema:birthPlace dbr:Oviedo ;schema:knows :bob .:alice schema:birthPlace dbr:Oviedo .:alice schema:knows :bob .:alice schema:knows :alice .:alice schema:knows :bob .:carol schema:knows :alice , :bob .
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraTurtle syntaxExercise: simplifyprefix : <http://example.org/>prefix schema: <http://schema.org/>prefix dbr: <http://dbpedia.org/resource>:alice schema:knows :bob .:bob schema:knows :carol .:carol schema:knows :bob .:carol schema:knows :alice .:bob schema:birthPlace dbr:Spain .:carol schema:birthPlace dbr:Spain .prefix ex: <http://example.org/>prefix schema: <http://schema.org/>prefix dbr: <http://dbpedia.org/resource>:alice schema:knows :bob , :carol.:bob schema:knows :carol ;schema:birthPlace dbr:Spain .:carol schema:knows :bob, :alice ;schema:birthPlace dbr:Spain .Try it: https://tinyurl.com/y9wbdycp
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF LiteralsObjects can also be literalsLiterals contain a lexical form and a datatypeTypical datatypes = XML Schema primitive datatypesIf not specified, a literal has datatype xsd:string:bobRobertschema:name1980-03-10schema:birthDatexsd:datexsd:string:bob schema:name "Robert" ;:bob schema:birthDate "1980-03-10"^^<xsd:date>.Turtle notation
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRemember...RDF is compositionalMerging previous dataschema:birthPlaceschema:knowsschema:knowsschema:knows:aliceex:bob:caroldbr:Spainschema:birthDate:bobRobert xsd:string1980-03-10 xsd:dateschema:nameschema:knowsprefix : <http://example.org/>prefix schema: <http://schema.org/>prefix dbr: <http://dbpedia.org/resource>:alice schema:knows :bob , :carol.:bob schema:knows :carol ;schema:birthPlace dbr:Spain;schema:name "Robert";schema:birthDate "1980-03-10"^^<xsd:date>.:carol schema:knows :bob, :alice ;schema:birthPlace dbr:Spain .schema:birthPlace
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraBlank nodesSubjects and objects can also be Blank nodes:carolschema:knows23:age"Carol knows someone whose age is 23":carol schema:knows _:x ._:x :age 23 .:carol schema:knows [ :age 23 ] .Turtle notation with local identifierTurtle notation with square bracketsx(schema:knows(:carol,x)  :age(x, 23)Mathematical meaning:
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraBlank nodesex:aliceex:carolschema:knowsschema:knowsschema:birthPlaceex:daveschema:birthPlace:age23 xsd:integerschema:knowsAlice knows someone whoknows DaveCarol knows someone whoseage is 23 that was born in thesame place as Dave:alice schema:knows [ schema:knows :dave ] .:carol schema:knows [ :age 23 ;schema:birthPlace _:p ] .:dave schema:birthPlace _:p .
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraLanguage tagged stringsString literals can be qualified by a language tagThey have datatype rdfs:langStringex:spain rdfs:label "Spain"@en .ex:spain rdfs:label "España"@es .ex:spainSpainrdfs:labelEspañardfs:labelesenTurtle notation
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF data modelschema:knowsschema:knowsschema:knowsex:aliceex:bobex:carol schema:birthPlacedbr:Spainschema:knowsschema:knowsschema:birthDateex:bobRobert xsd:string1980-03-10 xsd:dateschema:nameschema:birthPlaceschema:knowsex:daveschema:birthPlaceschema:age23 xsd:integerschema:knowsSpainrdfs:labelEspañardfs:labelesen3 types of nodesURIsBlank nodesLiteralsSubjects: URIs or Blank nodesObjects: URIs, Blank nodes or literalsPredicates always URIsschema:birthPlace
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labra...and that's all about the RDF data modelThe RDF Data model is very simple
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF ecosystemRDF SyntaxShared entities and RDF vocabulariesApplications of RDFInference and ontologiesQuery languagesRDF Validation
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF syntaxFirst syntax based on XML: RDF/XMLN-Triples (enumerates all triples separated by dots)Turtle (human readability)JSON-LD...other syntaxes...
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF/XML<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"xmlns="http://example.org/"xmlns:schema="http://schema.org/"><rdf:Description rdf:about="http://example.org/carol"><schema:knows><rdf:Description rdf:about="http://example.org/bob"><schema:knows rdf:resource="http://example.org/carol"/><schema:name>Robert</schema:name><schema:birthDate rdf:datatype="xsd:date">1980-03-10</schema:birthDate></rdf:Description></schema:knows><schema:knows><rdf:Description rdf:about="http://example.org/alice"><schema:knows rdf:resource="http://example.org/bob"/><schema:knows rdf:resource="http://example.org/carol"/></rdf:Description></schema:knows><schema:knows rdf:parseType="Resource"><age rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">23</age></schema:knows></rdf:Description></rdf:RDF>First syntax
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraN-Triples<http://example.org/carol> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/alice> .<http://example.org/carol> <http://schema.org/knows> _:x ._:x <http://example.org/age> "23"^^<http://www.w3.org/2001/XMLSchema#integer> .<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/alice> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/bob> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/bob> <http://schema.org/name> "Robert" .<http://example.org/bob> <http://schema.org/birthDate> "1980-03-10"^^<xsd:date> .For testing and easy parsing...just triples separated by dots
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraTurtleDesigned to be human-readableprefix : <http://example.org/>prefix schema: <http://schema.org/>:alice schema:knows :bob , :carol .:bob schema:knows :carol ;schema:name "Robert";schema:birthDate "1980-03-10"^^<xsd:date>.:carol schema:knows :bob, :alice ;schema:knows [ :age 23 ] .
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraJSON-LDJson for linked data{"@context" : {"knows" : { "@id" : "http://schema.org/knows", "@type" : "@id" },"age" : { "@id" : "http://example.org/age", "@type" : "http://www.w3.org/2001/XMLSchema#integer" },"name" : { "@id" : "http://schema.org/name" },"birthDate" : { "@id" : "http://schema.org/birthDate", "@type" : "xsd:date" },"@vocab" : "http://example.org/","schema" : "http://schema.org/"},"@graph" : [{ "@id" : "http://example.org/alice","knows" : [ "http://example.org/bob", "http://example.org/carol" ] },{ "@id" : "http://example.org/bob","birthDate" : "1980-03-10","knows" : "http://example.org/carol","name" : "Robert" },{ "@id" : "http://example.org/carol","knows" : [ "http://example.org/bob", "http://example.org/alice", "_:x" ] },{ "@id" : "_:x","http://example.org/age" : 23 }]}
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraOther Turtle simplificationsRDF type propertyNumbersCollections
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF type propertyThe rdf:type property declares the type of a resource@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.@prefix schema: <http://schema.org/> .e:alice rdf:type schema:Person .e:bob rdf:type schema:Person .@prefix schema: <http://schema.org/> .:alice a schema:Person .:bob a schema:Person .rdf:type can be simplified as a
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraConstantsNumbers and boolean values can be represented without quotesThey are parsed as XML Schema datatypesDatatype Shorthand example Lexical examplexsd:integer 3 "3"^^xsd:integerxsd:decimal -3.14 "true"^^xsd:decimalxsd:double 3.14e2 "true"^^xsd:doublexsd:boolean true "true"^^xsd:boolean
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraCollectionsOrdered listsrdf:firstrdf:restrdf:restrdf:restschema:name:m23:resultsNew York City Marathonrdf:nil:bobrdf:first :alice:dave:m23 schema:name "New York City Marathon ";:results ( :dave :alice :bob ) .:m23 schema:name "New York City Marathon ";:results _:1 ._:1 rdf:first :dave ;rdf:next _:2 ._:2 rdf:first :alice ;rdf:next _:3 ._:3 rdf:first :bob ;rdf:next rdf:nil .Internally, represented as linked listsrdf:first
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraShared entities and vocabulariesThe use of URIs instead of plain strings facilitates:Merging data from heterogeneous sourcesAvoid ambiguityChallenge: Agreeing on common entities and propertiesAppearance of some popular vocabularies:schema.org: Joint effort from Google, Yahoo, Microsoft, YandexLinked open vocabularies Project: http://lov.okfn.org/
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraSome popular vocabularies and namespacesAlias URL Name Some propertiesrdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#RDF type, subject,predicate,object,…rdfs: http://www.w3.org/2000/01/rdf-schema# RDF Schema domain, rangeClass, PropertysubClassOf,…owl: http://www.w3.org/2002/07/owl# OWLOntologíassameAs,intersectionOfunionOf, …dc: http://purl.org/dc/elements/1.1/ Dublin Core author, date,creator, …schema http://schema.org/ Schema.org name, knows, etc.skos: http://www.w3.org/2008/05/skos# SKOSSimple KnowledgeOrganization Systembroader,narrower,Service http://prefix.cc can be used to find the most popular prefix for some URI
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraApplications of RDFFirst applicationsRDF & HTML: RDFa, MicrodataRDF to represent knowledgeRDF as an internal databaseLinked data
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraFirst RDF applicationsSome initiatives proposed by W3CRSS 1.0 was proposed with an RDF/XML based syntaxOther XML based versions were availableEARL: Evaluation and Reporting LanguageRDF/XML adoption was not popular
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF & HTMLPossibilitiesOne resource for HTML and another for metadata in RDFRDFa: Use HTML attributes to encode RDF triplesMicrodata: New HTML5 attributes can encode metadata<p vocab="http://schema.org/"typeof="Book"about="http://example.org/book1">The book<span property="name">The Spring</span> by<span property="author">Cervantes</span>was published<span property="datePublished"content="2014-05-04">last Saturday</span>.</p><p itemscopeitemid="http://leer.com/libro123"itemtype="http://schema.org/Book">The book<span itemprop="name">The Spring</span> by<span itemprop="author">Cervantes</span>was published<time itemprop="datePublished"content="2014-05-04">last saturday</time>.</p>RDFa Microdata
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF to represent knowledgeFreebase: developed by Metaweb (2005)Open, shared database of world's knowledgeAcquired by Google in 2010. It is the basis of Google knowledge graphDBpedia (http://dbpedia.org)Extracts knowledge from Wikipedia and converts it to RDFWikidata (http://wikidata.org/)Free knowledge base edited collaborativelyDeveloped by Wikimedia foundation
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF as an internal databaseSpecialized RDF databases (triplestores)RDF = very flexible, easy to adapt to domain changesSeveral big companies are using RDF internallyExample: BBC, Europeana
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF for Linked open dataPrinciples proposed by Tim Berners-Lee to publish data:1. Use URIs to denote things2. Use HTTP URIs so that people can look up those names3. When someone looks up a URI, provide useful information, using thestandards (RDF*, SPARQL)4. Include links to other URIs. so that they can discover more things.
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF as the basis of Semantic WebRDF = lingua franca of Semantic WebSemantic web layer cakeURIUnicodeXML + Namespaces + XML SchemaProofRDF + RDF SchemaOntologiesLogicTrustFirst version proposed by Tim Berners Lee, year 2000http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDF as the basis of Semantic WebRDF = lingua franca of Semantic WebSemantic web layer cake (revised)URIUnicodeXML/JSON/...RDFQuery:SPARQLRDFSOntologiesOWLTrustUnifying LogicRulesRIFProofValidationSHACLShEx
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDFS & inferences
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDFSOriginally RDF Schema (2000)Defines a vocabulary for common conceptsClasses: rdfs:Class, rdfs:Property, rdfs:LiteralProperties: rdfs:domain, rdfs:range, rdfs:subClassOf, ...
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraRDFSRDFS processors can infer new triplesRDFS defines several rules for inference:IF x rdf:type A AND A rdfs:subClassOf B THEN x rdf:type B:alice:Lecturerrdf:type:Personrdfs:subClassOfrdf:type
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraOWLWeb Ontology Language.First version (2004), OWL 2 (2009)Based on description logicsLanguage to describe classes, individuals, relationships
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraOWL example<> a owl:Ontology .:Man a owl:Class ;owl:equivalentClass [owl:intersectionOf (:Person[ a owl:Restriction ;owl:onProperty schema:gender ; owl:hasValue schema:Male] )] .:Woman a owl:Class ;owl:equivalentClass [owl:intersectionOf ( :Person[ a owl:Restriction ;owl:onProperty schema:gender ; owl:hasValue schema:Female] )] .[ a owl:AllDisjointClasses ; owl:members ( :Woman :Man ) ] .:Person owl:equivalentClass [ rdf:type owl:Class ;owl:unionOf ( :Woman :Man )] .:alice a :Woman ;schema:gender schema:Female .:bob a :Man .:alice a :Person .:bob a :Person .:bob schema:gender schema:Male .Instance dataInferred data
Jose Emilio Labra Gayo http://www.di.uniovi.es/~labraOWLOWL can been used to describe domain ontologiesDifferent kinds of ontologies:Upper level ontologies (SUMO, WordNet, ...)Domain specific (example: SNOMED)Tools to edit ontologies: Protégé editor

Recommended

PPT
RDF and OWL
PPTX
SPARQL Cheat Sheet
PPT
Introduction to RDF
PPTX
Introduction to SPARQL
PDF
Introduction to RDF & SPARQL
PDF
Chapter 1 semantic web
PPTX
RDF Data Model
PPTX
The Semantic Web #9 - Web Ontology Language (OWL)
PDF
FIWARE Training: Introduction to Smart Data Models
 
PDF
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
PDF
지식그래프 개념과 활용방안 (Knowledge Graph - Introduction and Use Cases)
PPTX
Great Expectations Presentation
PPTX
Mapping Data Flows Training deck Q1 CY22
PDF
SPARQL 사용법
PPTX
Knowledge Graph Introduction
PDF
DBpedia Tutorial - Feb 2015, Dublin
PPTX
The semantic web
byap
 
PDF
Designing and developing vocabularies in RDF
PPTX
Semantic web
PDF
Ontologies and semantic web
PDF
Knowledge Graphs - The Power of Graph-Based Search
 
PDF
Lecture: Question Answering
PPTX
Linked Data: principles and examples
PPTX
Semantic Web - Ontologies
PDF
Introduction to linked data
PDF
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
PDF
A microservice approach for legacy modernisation
PDF
Rdf data-model-and-storage
PPTX
Linked Data MLA 2015
PPTX
Linked data MLA 2015

More Related Content

PPT
RDF and OWL
PPTX
SPARQL Cheat Sheet
PPT
Introduction to RDF
PPTX
Introduction to SPARQL
PDF
Introduction to RDF & SPARQL
PDF
Chapter 1 semantic web
PPTX
RDF Data Model
PPTX
The Semantic Web #9 - Web Ontology Language (OWL)
RDF and OWL
SPARQL Cheat Sheet
Introduction to RDF
Introduction to SPARQL
Introduction to RDF & SPARQL
Chapter 1 semantic web
RDF Data Model
The Semantic Web #9 - Web Ontology Language (OWL)

What's hot

PDF
FIWARE Training: Introduction to Smart Data Models
 
PDF
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
PDF
지식그래프 개념과 활용방안 (Knowledge Graph - Introduction and Use Cases)
PPTX
Great Expectations Presentation
PPTX
Mapping Data Flows Training deck Q1 CY22
PDF
SPARQL 사용법
PPTX
Knowledge Graph Introduction
PDF
DBpedia Tutorial - Feb 2015, Dublin
PPTX
The semantic web
byap
 
PDF
Designing and developing vocabularies in RDF
PPTX
Semantic web
PDF
Ontologies and semantic web
PDF
Knowledge Graphs - The Power of Graph-Based Search
 
PDF
Lecture: Question Answering
PPTX
Linked Data: principles and examples
PPTX
Semantic Web - Ontologies
PDF
Introduction to linked data
PDF
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
PDF
A microservice approach for legacy modernisation
PDF
Rdf data-model-and-storage
FIWARE Training: Introduction to Smart Data Models
 
Data Mess to Data Mesh | Jay Kreps, CEO, Confluent | Kafka Summit Americas 20...
지식그래프 개념과 활용방안 (Knowledge Graph - Introduction and Use Cases)
Great Expectations Presentation
Mapping Data Flows Training deck Q1 CY22
SPARQL 사용법
Knowledge Graph Introduction
DBpedia Tutorial - Feb 2015, Dublin
The semantic web
byap
 
Designing and developing vocabularies in RDF
Semantic web
Ontologies and semantic web
Knowledge Graphs - The Power of Graph-Based Search
 
Lecture: Question Answering
Linked Data: principles and examples
Semantic Web - Ontologies
Introduction to linked data
Vertex AI - Unified ML Platform for the entire AI workflow on Google Cloud
A microservice approach for legacy modernisation
Rdf data-model-and-storage

Similar to RDF, linked data and semantic web

PPTX
Linked Data MLA 2015
PPTX
Linked data MLA 2015
PPT
Future of Web 2.0 & The Semantic Web
PDF
Introduction to linked data
PPTX
TPDL2013 tutorial linked data for digital libraries 2013-10-22
PPTX
Linked open data project
PPTX
Linked data HHS 2015
PDF
Open data and linked data
PDF
FAIR data: LOUD for all audiences
PDF
Intro to Exhibit Workshop
PDF
Methodological Guidelines for Publishing Linked Data
PPTX
Intro to the semantic web (for libraries)
PPTX
2011 05-02 linked data intro
PPTX
Sem webmaubeuge
PPTX
2011 05-01 linked data
PDF
ESWC SS 2013 - Thursday Keynote Vassilis Christophides: Preserving linked data
ODP
Linked Data
PDF
Linked Data
PPTX
Hack U Barcelona 2011
PDF
Linked Open Data
Linked Data MLA 2015
Linked data MLA 2015
Future of Web 2.0 & The Semantic Web
Introduction to linked data
TPDL2013 tutorial linked data for digital libraries 2013-10-22
Linked open data project
Linked data HHS 2015
Open data and linked data
FAIR data: LOUD for all audiences
Intro to Exhibit Workshop
Methodological Guidelines for Publishing Linked Data
Intro to the semantic web (for libraries)
2011 05-02 linked data intro
Sem webmaubeuge
2011 05-01 linked data
ESWC SS 2013 - Thursday Keynote Vassilis Christophides: Preserving linked data
Linked Data
Linked Data
Hack U Barcelona 2011
Linked Open Data

More from Jose Emilio Labra Gayo

PPTX
Publicaciones de investigación
PPTX
Introducción a la investigación/doctorado
PPTX
Challenges and applications of RDF shapes
PPTX
Legislative data portals and linked data quality
PPTX
Validating RDF data: Challenges and perspectives
PPTX
PPTX
Legislative document content extraction based on Semantic Web technologies
PPTX
ShEx by Example
PPTX
Introduction to SPARQL
PPTX
Introducción a la Web Semántica
PPTX
2017 Tendencias en informática
PPTX
19 javascript servidor
PPTX
Como publicar datos: hacia los datos abiertos enlazados
PPTX
16 Alternativas XML
PPTX
Arquitectura de la Web y Computación en el Servidor
PPTX
RDF validation tutorial
PPTX
RDF Validation Future work and applications
PPTX
ShEx vs SHACL
Publicaciones de investigación
Introducción a la investigación/doctorado
Challenges and applications of RDF shapes
Legislative data portals and linked data quality
Validating RDF data: Challenges and perspectives
Legislative document content extraction based on Semantic Web technologies
ShEx by Example
Introduction to SPARQL
Introducción a la Web Semántica
2017 Tendencias en informática
19 javascript servidor
Como publicar datos: hacia los datos abiertos enlazados
16 Alternativas XML
Arquitectura de la Web y Computación en el Servidor
RDF validation tutorial
RDF Validation Future work and applications
ShEx vs SHACL

Recently uploaded

PPTX
kernel PPT (Explanation of Windows Kernal).pptx
PDF
[BDD 2025 - Mobile Development] Crafting Immersive UI with E2E and AGSL Shade...
PDF
Transcript: The partnership effect: Libraries and publishers on collaborating...
PDF
How Much Does It Cost To Build Software
PDF
KMWorld - KM & AI Bring Collectivity, Nostalgia, & Selectivity
PDF
The partnership effect: Libraries and publishers on collaborating and thrivin...
PDF
The Evolving Role of the CEO in the Age of AI
PDF
Accessibility & Inclusion: What Comes Next. Presentation of the Digital Acces...
PDF
[BDD 2025 - Full-Stack Development] PHP in AI Age: The Laravel Way. (Rizqy Hi...
PDF
MuleSoft Meetup: Dreamforce'25 Tour- Vibing With AI & Agents.pdf
PDF
Parallel Computing BCS702 Module notes of the vtu college 7th sem 4.pdf
PDF
[BDD 2025 - Mobile Development] Mobile Engineer and Software Engineer: Are we...
PDF
Top Crypto Supers 15th Report November 2025
PDF
"DISC as GPS for team leaders: how to lead a team from storming to performing...
 
PPTX
Leon Brands - Intro to GPU Occlusion (Graphics Programming Conference 2024)
PDF
[BDD 2025 - Full-Stack Development] The Modern Stack: Building Web & AI Appli...
PPTX
Support, Monitoring, Continuous Improvement & Scaling Agentic Automation [3/3]
PDF
Cheryl Hung, Vibe Coding Auth Without Melting Down! isaqb Software Architectu...
PPTX
MuleSoft AI Series : Introduction to MCP
PDF
Mastering Agentic Orchestration with UiPath Maestro | Hands on Workshop
kernel PPT (Explanation of Windows Kernal).pptx
[BDD 2025 - Mobile Development] Crafting Immersive UI with E2E and AGSL Shade...
Transcript: The partnership effect: Libraries and publishers on collaborating...
How Much Does It Cost To Build Software
KMWorld - KM & AI Bring Collectivity, Nostalgia, & Selectivity
The partnership effect: Libraries and publishers on collaborating and thrivin...
The Evolving Role of the CEO in the Age of AI
Accessibility & Inclusion: What Comes Next. Presentation of the Digital Acces...
[BDD 2025 - Full-Stack Development] PHP in AI Age: The Laravel Way. (Rizqy Hi...
MuleSoft Meetup: Dreamforce'25 Tour- Vibing With AI & Agents.pdf
Parallel Computing BCS702 Module notes of the vtu college 7th sem 4.pdf
[BDD 2025 - Mobile Development] Mobile Engineer and Software Engineer: Are we...
Top Crypto Supers 15th Report November 2025
"DISC as GPS for team leaders: how to lead a team from storming to performing...
 
Leon Brands - Intro to GPU Occlusion (Graphics Programming Conference 2024)
[BDD 2025 - Full-Stack Development] The Modern Stack: Building Web & AI Appli...
Support, Monitoring, Continuous Improvement & Scaling Agentic Automation [3/3]
Cheryl Hung, Vibe Coding Auth Without Melting Down! isaqb Software Architectu...
MuleSoft AI Series : Introduction to MCP
Mastering Agentic Orchestration with UiPath Maestro | Hands on Workshop

RDF, linked data and semantic web

  • 1.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF, linked data and semantic webDepartamento de InformáticaUniversidad de OviedoJose Emilio Labra Gayo
  • 2.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraAbout meMain researcher WESO research group (WEb Semántics Oviedo)Author of the following books:http://www.di.uniovi.es/~labraWeb Semántica (2012) Validating RDF Data (2017)
  • 3.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraStructure of presentationWhy RDF?RDF data modelRDF ecosystemRDF applicationsInference systems: RDFS, OWLSPARQLChallenges
  • 4.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraWhy RDF?
  • 5.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labra
  • 6.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraThe flood of dataProducing data is more and more easyOpen trendsOpen SoftwareOpen ContentOpen DataOpen ScienceOpen GovernmentOld models are affectedMúsic, Films, finance,...EducationGovernment ...
  • 7.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraWhy?Reasons for governmentsTransparencyLeadershipGovernment as catalyzerPromote participationNew initiatives and appsReasons for citizensData belong to usCreated with public moneyWe want better services
  • 8.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraOK, long live to data!but…
  • 9.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraProblems of current webIt is not enough to publish dataIt must be foundIf not found, as if it doesn't existIt must be usableIf not usable, it is worthlessReuse data in unexpected contexts
  • 10.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraSemantic lossWhen publishing data, some semantics is lostThe person that wants to publish has more info about the dataSome info is lost during the publication processpublisherparty nextsaturdayFormats:HTML, PDF, JPG,...consumer(person)consumer(agent)party nextsaturdaySemantics9/Dec/2017Datapublished
  • 11.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraHTML doesn't have enough semanticsHTML is intended to publish hypertextHTML tags are understood by browsersInformation inside tags = natural languageMachines don't understand natural language yet<p>Event:<ul><li>Name: Concert</li><li>Date: Next saturday</li></ul></p><p>իրադարձություն:<ul><li>տիպ: համերգ</li><li>ամսաթիվ: հաջորդ շաբաթ/li></ul></p>
  • 12.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraXML problemXML goes a step forwardSpecific vocabularies have meaning in some specific contextSpecific applications can process XML documentsXML documents are difficult to integrate if they are from different domains<event><name>համերգ</name><date>հաջորդ շաբաթ</date></event><event><name>Concert</name><date>Next saturday</date></event><իրադարձություն><տիպ>համերգ</տիպ><ամսաթիվ>հաջորդ շաբաթ</ամսաթիվ></իրադարձություն>
  • 13.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraJson problemJSON is almost the same as XMLIt may be easier to parse and processby developersBut the meaning depends on each domainIt is even worse as there are no namespaces or validation{"event": {"name": "Party" ,"date": "Next saturday"}}{"event": {"name": "համերգ" ,"date": "հաջորդ շաբաթ"}}{"իրադարձություն": {"տիպ": "համերգ" ,"ամսաթիվ": "հաջորդ շաբաթ"}}
  • 14.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraTowards semantic webSemantic web = vision of the data webTim Berners LeeSource: WikipediaGoal: Share and Reuse data between applications, and communitiesFrom a web of documents to a web of data
  • 15.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraBenefitsAccessible dataAvoid semantic lossFacilitate task automationLinked dataData reuseApplication integrationThe best way to use your data will befound by other peopleJo Walsh, Rufus Pollock, http://www.okfn.org/files/talks/xtech_2007/
  • 16.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraWeb featuresNon centralizedDifficult to ensure data integrity and qualityDynamic informationInformation is constantly changingBig amounts of informationBig data3Vs: Volume, Velocity, VarietyOpen systemAAA lemma: Anyone can say Anything about Any topic
  • 17.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraBiggest challenge = IntegrationIn general, the challenge is not tocomputerize somethingThe challenge is integrate systemsInteroperabilityIt is not enough to publish data…
  • 18.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraPublish = make something accessibleAccessibility levelsPhysical disabilityTechnical disability: other environmentsCultural and intellectualIlliteracyKnowledge barriersOther languages…Accessible to machines
  • 19.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraStar model*★ Publish data(any format)★★ Use structured formats(Excel instead of scanned pictures)★★★ Non proprietary structured formats(CSV instead of Excel)★★★★ Use URIs to identify data(other systems can link to our data)★★★★★ Link to other data(provide contextual information)* Tim Berners-Lee, Gov 2.0 Expo 2010http://www.youtube.com/watch?v=ga1aSJXCFe0
  • 20.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraUnstructured formatsBlack box formats: Pictures, video, audio, etc.Binary formats: PDF, PS, etc.They require low level techniques, patternrecognition, signal processing, etc★
  • 21.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraStructured formatsData have some structureExample: ExcelProblem with proprietary formatsMay require non-free tools★ ★
  • 22.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraNon-proprietary formatsUse open-structured formatsExamples: CSV, HTMLProblem: Content depends on context★ ★ ★
  • 23.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraURIs identify dataUse URIs to identify dataContent negotiation can provide different representations★ ★ ★ ★Example
  • 24.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraExample: RDF ★ ★ ★ ★<http://www.sepe.es/data/unemployment/Asturias/Allande/2013/10>HTML?@prefix sepe: <http://www.sepe.es/datos/>sepe:obs1 sepe:municipality "Allande" ;sepe:unemployees 18 .RDF?
  • 25.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLink with other dataRepresentations return links to other dataIt allos to:Reuse and find other dataUnforeseen applications★ ★ ★ ★ ★
  • 26.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked data example ★ ★ ★ ★ ★<http://www.sepe.es/data/unemployment/Asturias/Allande/2013/10>HTML?@prefix sepe: <http://www.sepe.es/data/>sepe:obs1 sepe:municipality dbo:allande;sepe:unemployees 23 .RDF?dbo:allande dbo:areaTotal 342.24 ;rdf:type <http:/.../municipalitiesInAsturias> ;dbo:country <http:/.../Spain> ;dbo:populationTotal 2106 ;. . .
  • 27.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked Open Data principles1. Use URIs to denote things2. Use HTTP URIs so that people can look up those names3. When someone looks up a URI, provide useful information, using thestandards (RDF*, SPARQL)4. Include links to other URIs. so that they can discover more things.★ ★ ★ ★ ★
  • 28.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked open data (2007)
  • 29.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked open data (2008)
  • 30.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked open data (2009)
  • 31.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked open data (2014)
  • 32.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLinked open data (2017)Fuente: "Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"
  • 33.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF Data Model
  • 34.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraShort history of RDFRDF: Resource Description FrameworkAround 1997 - PICS, Dublin core, Meta Content Framework1997 1st Working draft https://www.w3.org/TR/WD-rdf-syntax-971002RDF/XML1999 1st W3C Rec https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/XML Syntax, first applications RSS, EARL2004 - RDF Revised https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/Emergence of SPARQL, Turtle, Linked Data2014 - RDF 1.1 https://www.w3.org/TR/rdf11-concepts/SPARQL 1.1, JSON-LD2017 - RDF validation: SHACL/ShEx
  • 35.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF Data ModelRDF is made from statementsStatment = a triple (subject, predicate, object)Example:http://example.org/alicehttp://example.org/bobhttp://schema.org/knowssubject predicate object<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .N-Triples representationsubject objectpredicate
  • 36.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraSet of statements = RDF graphRDF data model = directed graphExample:http://example.org/aliceex:bobhttp://example.org/carolhttp://example.org/bobhttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knowsN-triples representation<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/bob> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/alice> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/bob> .subject predicate object
  • 37.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraTurtle notationHuman readable notation that simplifies N-TriplesAllows namespace declarations<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/bob> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/alice> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/bob> .prefix : <http://example.org/>prefix schema: <http://schema.org/>:alice schema:knows :bob .:bob schema:knows :carol .:carol schema:knows :bob .:carol schema:knows :alice .TurtleN-TriplesNote:We will see later other Turtle simplifications
  • 38.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraNamespaces simplificationhttp://example.org/aliceex:bobhttp://example.org/carolhttp://example.org/bobhttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knowshttp://schema.org/knows:aliceex:bob:carol:bobschema:knowsschema:knowsschema:knowsschema:knows
  • 39.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF is compositionalRDF graphs can be merged to obtain a bigger graphAutomatic data integrationschema:knowsschema:knowsschema:knows:aliceex:bob:carol:bobschema:knowsschema:birthPlace:carol schema:birthPlacedbr:Oviedo:bobgraph 1 graph 2
  • 40.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF is compositionalRDF graphs can be merged to obtain a bigger graphAutomatic data integrationschema:birthPlaceschema:knowsschema:knowsschema:knows:aliceex:bob:carol schema:birthPlacedbr:Oviedo:bobschema:knowsgraph 1 + graph 2
  • 41.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraTurtle syntaxSome simplificationsprefix declarations; when triples share the subject, when triples share subject and object:alice schema:birthPlace dbr:Oviedo ;schema:knows :bob .:alice schema:birthPlace dbr:Oviedo .:alice schema:knows :bob .:alice schema:knows :alice .:alice schema:knows :bob .:carol schema:knows :alice , :bob .
  • 42.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraTurtle syntaxExercise: simplifyprefix : <http://example.org/>prefix schema: <http://schema.org/>prefix dbr: <http://dbpedia.org/resource>:alice schema:knows :bob .:bob schema:knows :carol .:carol schema:knows :bob .:carol schema:knows :alice .:bob schema:birthPlace dbr:Spain .:carol schema:birthPlace dbr:Spain .prefix ex: <http://example.org/>prefix schema: <http://schema.org/>prefix dbr: <http://dbpedia.org/resource>:alice schema:knows :bob , :carol.:bob schema:knows :carol ;schema:birthPlace dbr:Spain .:carol schema:knows :bob, :alice ;schema:birthPlace dbr:Spain .Try it: https://tinyurl.com/y9wbdycp
  • 43.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF LiteralsObjects can also be literalsLiterals contain a lexical form and a datatypeTypical datatypes = XML Schema primitive datatypesIf not specified, a literal has datatype xsd:string:bobRobertschema:name1980-03-10schema:birthDatexsd:datexsd:string:bob schema:name "Robert" ;:bob schema:birthDate "1980-03-10"^^<xsd:date>.Turtle notation
  • 44.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRemember...RDF is compositionalMerging previous dataschema:birthPlaceschema:knowsschema:knowsschema:knows:aliceex:bob:caroldbr:Spainschema:birthDate:bobRobert xsd:string1980-03-10 xsd:dateschema:nameschema:knowsprefix : <http://example.org/>prefix schema: <http://schema.org/>prefix dbr: <http://dbpedia.org/resource>:alice schema:knows :bob , :carol.:bob schema:knows :carol ;schema:birthPlace dbr:Spain;schema:name "Robert";schema:birthDate "1980-03-10"^^<xsd:date>.:carol schema:knows :bob, :alice ;schema:birthPlace dbr:Spain .schema:birthPlace
  • 45.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraBlank nodesSubjects and objects can also be Blank nodes:carolschema:knows23:age"Carol knows someone whose age is 23":carol schema:knows _:x ._:x :age 23 .:carol schema:knows [ :age 23 ] .Turtle notation with local identifierTurtle notation with square bracketsx(schema:knows(:carol,x)  :age(x, 23)Mathematical meaning:
  • 46.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraBlank nodesex:aliceex:carolschema:knowsschema:knowsschema:birthPlaceex:daveschema:birthPlace:age23 xsd:integerschema:knowsAlice knows someone whoknows DaveCarol knows someone whoseage is 23 that was born in thesame place as Dave:alice schema:knows [ schema:knows :dave ] .:carol schema:knows [ :age 23 ;schema:birthPlace _:p ] .:dave schema:birthPlace _:p .
  • 47.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraLanguage tagged stringsString literals can be qualified by a language tagThey have datatype rdfs:langStringex:spain rdfs:label "Spain"@en .ex:spain rdfs:label "España"@es .ex:spainSpainrdfs:labelEspañardfs:labelesenTurtle notation
  • 48.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF data modelschema:knowsschema:knowsschema:knowsex:aliceex:bobex:carol schema:birthPlacedbr:Spainschema:knowsschema:knowsschema:birthDateex:bobRobert xsd:string1980-03-10 xsd:dateschema:nameschema:birthPlaceschema:knowsex:daveschema:birthPlaceschema:age23 xsd:integerschema:knowsSpainrdfs:labelEspañardfs:labelesen3 types of nodesURIsBlank nodesLiteralsSubjects: URIs or Blank nodesObjects: URIs, Blank nodes or literalsPredicates always URIsschema:birthPlace
  • 49.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labra...and that's all about the RDF data modelThe RDF Data model is very simple
  • 50.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF ecosystemRDF SyntaxShared entities and RDF vocabulariesApplications of RDFInference and ontologiesQuery languagesRDF Validation
  • 51.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF syntaxFirst syntax based on XML: RDF/XMLN-Triples (enumerates all triples separated by dots)Turtle (human readability)JSON-LD...other syntaxes...
  • 52.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF/XML<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"xmlns="http://example.org/"xmlns:schema="http://schema.org/"><rdf:Description rdf:about="http://example.org/carol"><schema:knows><rdf:Description rdf:about="http://example.org/bob"><schema:knows rdf:resource="http://example.org/carol"/><schema:name>Robert</schema:name><schema:birthDate rdf:datatype="xsd:date">1980-03-10</schema:birthDate></rdf:Description></schema:knows><schema:knows><rdf:Description rdf:about="http://example.org/alice"><schema:knows rdf:resource="http://example.org/bob"/><schema:knows rdf:resource="http://example.org/carol"/></rdf:Description></schema:knows><schema:knows rdf:parseType="Resource"><age rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">23</age></schema:knows></rdf:Description></rdf:RDF>First syntax
  • 53.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraN-Triples<http://example.org/carol> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/carol> <http://schema.org/knows> <http://example.org/alice> .<http://example.org/carol> <http://schema.org/knows> _:x ._:x <http://example.org/age> "23"^^<http://www.w3.org/2001/XMLSchema#integer> .<http://example.org/alice> <http://schema.org/knows> <http://example.org/bob> .<http://example.org/alice> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/bob> <http://schema.org/knows> <http://example.org/carol> .<http://example.org/bob> <http://schema.org/name> "Robert" .<http://example.org/bob> <http://schema.org/birthDate> "1980-03-10"^^<xsd:date> .For testing and easy parsing...just triples separated by dots
  • 54.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraTurtleDesigned to be human-readableprefix : <http://example.org/>prefix schema: <http://schema.org/>:alice schema:knows :bob , :carol .:bob schema:knows :carol ;schema:name "Robert";schema:birthDate "1980-03-10"^^<xsd:date>.:carol schema:knows :bob, :alice ;schema:knows [ :age 23 ] .
  • 55.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraJSON-LDJson for linked data{"@context" : {"knows" : { "@id" : "http://schema.org/knows", "@type" : "@id" },"age" : { "@id" : "http://example.org/age", "@type" : "http://www.w3.org/2001/XMLSchema#integer" },"name" : { "@id" : "http://schema.org/name" },"birthDate" : { "@id" : "http://schema.org/birthDate", "@type" : "xsd:date" },"@vocab" : "http://example.org/","schema" : "http://schema.org/"},"@graph" : [{ "@id" : "http://example.org/alice","knows" : [ "http://example.org/bob", "http://example.org/carol" ] },{ "@id" : "http://example.org/bob","birthDate" : "1980-03-10","knows" : "http://example.org/carol","name" : "Robert" },{ "@id" : "http://example.org/carol","knows" : [ "http://example.org/bob", "http://example.org/alice", "_:x" ] },{ "@id" : "_:x","http://example.org/age" : 23 }]}
  • 56.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraOther Turtle simplificationsRDF type propertyNumbersCollections
  • 57.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF type propertyThe rdf:type property declares the type of a resource@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.@prefix schema: <http://schema.org/> .e:alice rdf:type schema:Person .e:bob rdf:type schema:Person .@prefix schema: <http://schema.org/> .:alice a schema:Person .:bob a schema:Person .rdf:type can be simplified as a
  • 58.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraConstantsNumbers and boolean values can be represented without quotesThey are parsed as XML Schema datatypesDatatype Shorthand example Lexical examplexsd:integer 3 "3"^^xsd:integerxsd:decimal -3.14 "true"^^xsd:decimalxsd:double 3.14e2 "true"^^xsd:doublexsd:boolean true "true"^^xsd:boolean
  • 59.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraCollectionsOrdered listsrdf:firstrdf:restrdf:restrdf:restschema:name:m23:resultsNew York City Marathonrdf:nil:bobrdf:first :alice:dave:m23 schema:name "New York City Marathon ";:results ( :dave :alice :bob ) .:m23 schema:name "New York City Marathon ";:results _:1 ._:1 rdf:first :dave ;rdf:next _:2 ._:2 rdf:first :alice ;rdf:next _:3 ._:3 rdf:first :bob ;rdf:next rdf:nil .Internally, represented as linked listsrdf:first
  • 60.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraShared entities and vocabulariesThe use of URIs instead of plain strings facilitates:Merging data from heterogeneous sourcesAvoid ambiguityChallenge: Agreeing on common entities and propertiesAppearance of some popular vocabularies:schema.org: Joint effort from Google, Yahoo, Microsoft, YandexLinked open vocabularies Project: http://lov.okfn.org/
  • 61.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraSome popular vocabularies and namespacesAlias URL Name Some propertiesrdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#RDF type, subject,predicate,object,…rdfs: http://www.w3.org/2000/01/rdf-schema# RDF Schema domain, rangeClass, PropertysubClassOf,…owl: http://www.w3.org/2002/07/owl# OWLOntologíassameAs,intersectionOfunionOf, …dc: http://purl.org/dc/elements/1.1/ Dublin Core author, date,creator, …schema http://schema.org/ Schema.org name, knows, etc.skos: http://www.w3.org/2008/05/skos# SKOSSimple KnowledgeOrganization Systembroader,narrower,Service http://prefix.cc can be used to find the most popular prefix for some URI
  • 62.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraApplications of RDFFirst applicationsRDF & HTML: RDFa, MicrodataRDF to represent knowledgeRDF as an internal databaseLinked data
  • 63.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraFirst RDF applicationsSome initiatives proposed by W3CRSS 1.0 was proposed with an RDF/XML based syntaxOther XML based versions were availableEARL: Evaluation and Reporting LanguageRDF/XML adoption was not popular
  • 64.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF & HTMLPossibilitiesOne resource for HTML and another for metadata in RDFRDFa: Use HTML attributes to encode RDF triplesMicrodata: New HTML5 attributes can encode metadata<p vocab="http://schema.org/"typeof="Book"about="http://example.org/book1">The book<span property="name">The Spring</span> by<span property="author">Cervantes</span>was published<span property="datePublished"content="2014-05-04">last Saturday</span>.</p><p itemscopeitemid="http://leer.com/libro123"itemtype="http://schema.org/Book">The book<span itemprop="name">The Spring</span> by<span itemprop="author">Cervantes</span>was published<time itemprop="datePublished"content="2014-05-04">last saturday</time>.</p>RDFa Microdata
  • 65.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF to represent knowledgeFreebase: developed by Metaweb (2005)Open, shared database of world's knowledgeAcquired by Google in 2010. It is the basis of Google knowledge graphDBpedia (http://dbpedia.org)Extracts knowledge from Wikipedia and converts it to RDFWikidata (http://wikidata.org/)Free knowledge base edited collaborativelyDeveloped by Wikimedia foundation
  • 66.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF as an internal databaseSpecialized RDF databases (triplestores)RDF = very flexible, easy to adapt to domain changesSeveral big companies are using RDF internallyExample: BBC, Europeana
  • 67.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF for Linked open dataPrinciples proposed by Tim Berners-Lee to publish data:1. Use URIs to denote things2. Use HTTP URIs so that people can look up those names3. When someone looks up a URI, provide useful information, using thestandards (RDF*, SPARQL)4. Include links to other URIs. so that they can discover more things.
  • 68.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF as the basis of Semantic WebRDF = lingua franca of Semantic WebSemantic web layer cakeURIUnicodeXML + Namespaces + XML SchemaProofRDF + RDF SchemaOntologiesLogicTrustFirst version proposed by Tim Berners Lee, year 2000http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
  • 69.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDF as the basis of Semantic WebRDF = lingua franca of Semantic WebSemantic web layer cake (revised)URIUnicodeXML/JSON/...RDFQuery:SPARQLRDFSOntologiesOWLTrustUnifying LogicRulesRIFProofValidationSHACLShEx
  • 70.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDFS & inferences
  • 71.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDFSOriginally RDF Schema (2000)Defines a vocabulary for common conceptsClasses: rdfs:Class, rdfs:Property, rdfs:LiteralProperties: rdfs:domain, rdfs:range, rdfs:subClassOf, ...
  • 72.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraRDFSRDFS processors can infer new triplesRDFS defines several rules for inference:IF x rdf:type A AND A rdfs:subClassOf B THEN x rdf:type B:alice:Lecturerrdf:type:Personrdfs:subClassOfrdf:type
  • 73.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraOWLWeb Ontology Language.First version (2004), OWL 2 (2009)Based on description logicsLanguage to describe classes, individuals, relationships
  • 74.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraOWL example<> a owl:Ontology .:Man a owl:Class ;owl:equivalentClass [owl:intersectionOf (:Person[ a owl:Restriction ;owl:onProperty schema:gender ; owl:hasValue schema:Male] )] .:Woman a owl:Class ;owl:equivalentClass [owl:intersectionOf ( :Person[ a owl:Restriction ;owl:onProperty schema:gender ; owl:hasValue schema:Female] )] .[ a owl:AllDisjointClasses ; owl:members ( :Woman :Man ) ] .:Person owl:equivalentClass [ rdf:type owl:Class ;owl:unionOf ( :Woman :Man )] .:alice a :Woman ;schema:gender schema:Female .:bob a :Man .:alice a :Person .:bob a :Person .:bob schema:gender schema:Male .Instance dataInferred data
  • 75.
    Jose Emilio LabraGayo http://www.di.uniovi.es/~labraOWLOWL can been used to describe domain ontologiesDifferent kinds of ontologies:Upper level ontologies (SUMO, WordNet, ...)Domain specific (example: SNOMED)Tools to edit ontologies: Protégé editor

[8]ページ先頭

©2009-2025 Movatter.jp